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ON THE CAUCHY PROBLEM FOR ANALYTIC
SEMIGROUPS WITH WEAK SINGULALITY

By

Kenichiro UMEZU

I. Introduction and Results

Let X be a Banach space with norm |-]| and € a linear operator defined
in X. We 'consider the following initial-value problem: Given an element
u,=X and an X-vauled function f defined on an interval I=[0, 7], find an X-
valued function u defined on [ such that

du
(*) —; O=Au®O+fO,  0<t=T,
u(0)=1u,.

In this paper, under the condition that the operator U generates an analytic
semigroup with weak singularity, we give sufficient conditions on the function
f for the existence and uniqueness of solutions of the problem (x).

We say that-a function u(#) is a strict solution or simply a solution of the
problem (*) if it satisfies the following three conditions:

(1.1) usC([0, T]; X)NC*(O, T1; X).
(1.2) u(t) is in the -domain 9D(N) of the operator A for 0<t<T.
(1.3) u(0)=1u, and ‘Z—?(t)z?lu(t)—l—f(t), 0<t<T.

Here C([0, T]; X) denotes the space of continuous functions on [0, 7] taking
values in X, and C*(0, T]; X) denotes the space of continuously differentiable
functions on (0, 7] taking values in X, respectively.

We recall the following fundamental result in the theory of analytic semi-
groups (cf. Pazy [2]; Tanabe [4]):

THEOREM 1.0. Assume that the following three assumptions are satisfied :

(A.1) The operator N is a densely defined, closed linear operator in X.

(A.2) There exist constants 0<w<w/2 and 2,<0 such that the resolvent set
of W contains the region Y(w)={A=C; |arg(A—2A,)| <=m/2+w}.
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(A.3) If 0<e<w, then there exists a constant C(e)>0 such that the resolvent
(A—A)"* satisfies the estimate:

- C(e)
(A—2) Hé———l_’_m, Ae2(e).

Then the operator N generates a semigroup e** in X which is analytic in
the sector d(w)={z=t+is=C; z+0, |arg z| <w}.

If 0<r<1, we let

C7([0, T]; X)=the space of X-valued, continuous functions f(¢) on [0, T]
such that we have ||f(t)—f(s)ISM|t—s|7, t, s€[0, T] for
some constant M >0.

Now it is known (cf. Pazy [2], Theorem 3.2) that the following theorem
holds.

THEOREM 1.1. Assume that the operator W satisfies Assumptions (A.1), (A.2)
and (A.3). If feC'([0, T]; X) with 0<yZ1, then, for any u,= X, the problem
(%) has a unique solution which takes the following form:

(1.4) u(t):e‘”uo+S:e“‘”“ F(s)ds.

The next Besov space version of is due to Muramatu (see
[1], Theorem B).

THEOREM 1.2. Assume that the operator N satisfies Assumptions (A.1), (A.2)
and (A.3). If f belongs to the Besov space B (0, T); X), then, for any u,=
X, the problem (x) has a unique solution which takes the form of (1.4).

REMARK 1.1. is a generalization of [Theorem 1.I. In fact,
the following inclusion holds:

<Us C([0, T]; X)EBS (0, T); X).
0<rs1

ExAMPLE 1.1. The following function f belongs to the space BS ,((0, T);
R), but does not belong to the spaces C’([0, T]; R) for any 0<r=1.

1 .
0 if 1=0.

For the precise definition of the Besov space BS ,((0, T); X), we refer to
Section 2.
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We say that the operator U satisfies Assumption (AS), with 0<8<1 if it
satisfies Assumptions (A.1) and (A.2) and the following weaker assumption than
(A.3):

(A.3)s If 0<e<w, then there exists a constant C(¢)>0 such that the

resolvent (A—A)™* satisfies the estimate :

C(e)
(412D’

By Theorem 5.3 of Taira [3], we know that the operator 2 which satisfies
Assumption (AS), with 0<# <1 generates an analytic semigroup ¢?*¥ such that

M,
le?¥|| < l—;l—T

(A== 2s3(e).

zedlw).

Thus, such an analytic semigroup as ¢*¥ may be called an analytic semigroup
with weak singularity. We remark that Assumption (A.3); is nothing but
Assumption (A.3). v

A concrete example of A which satisfies Assumption (AS), is given by
Taira [3]. Furthermore, Taira has demonstrated that the operator «UA
generates an analytic semigroup ¢** which does not necessarily have the follow-
ing property:

lim e*Muy=u, for all u.,=X.
>
14 Ca)

Here d(w)={A=C; |arg 1| <w}. More precisely, using fractional powers of the
operator A, Taira has proved that if Assumption (AS)s is satisfied, then
the operator % generates an analytic semigroup ¢'* which has the property

lim etmuozuO
1¢1-0
ted(w)

for all u,=D((—N)*) with 1—f<a<1. Here if the operator A satisfies Assump-
tions (A.l), (A.2) and (A.3)s, we can define the fractional powers (—A)™* of A
for 1—-0<a<1 by

(— )= sinan

["trea—wmat,
and also define the fractional powers (—%)* by
(—MW*=the inverse of (—A)"“.
By the definition of (—)*, we have the following :
M D2(—WHC X, 1-0<a<,
D(—AW")=X.
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The following theorem is due to Taira (cf. [3], Theorem 8.2). In the
case =1, the theorem coincides with [Theorem 1.1.

THEOREM 1.3. Assume that the operator W satisfies Assumption (AS)s with
1/2<60<1. If f=C([0, T]; X) with 1—-0<y<1, then, for any u,=9{(—A)*)
with 1—0<a<@, the problem (x) has a unique solution which takes the form of
(1.4).

In this paper, using Besov space theory, we prove the following result:

THEOREM 1.4. Assume that the operator W satisfies Assumption (AS)s with
1/2<@8<1. If f belongs to the Besov space BL4((0, T); X), then, for any u,<
D(—W*) with 1—0<a<B, the problem (x) has a unique solution which takes the
form of (1.4).

REMARK 1.2. is a generalization of [Theorem 1.3 and [Theoreml
1.2. In fact, the following inclusion holds (cf. [Corollary 2.1 and Remark 2.2):
\J C7([0, T]; X)&BLUO, T); X).

1-6<rst
ExAMPLE 1.2. The following function f belongs to the space BL9((0, T);
R), but does not belong to the spaces C7([0, T]; R) for any 1-0<r=1.

t1—0

f=| Togr I O<tST,

0 if ¢=0.

The rest of this paper is organized as follows:

In Section 2 we state the basic definition and properties of Besov spaces
that will be used in the sequel.

In Section 3 we present a brief description of the analytic semigroups with
weak singularity generated by the operator 2 which satisfies Assumption (AS)y
with 0<8<1.

Section 4 is devoted to the proof of our main by following the
argument in the proof of Theorem B of Muramatu [1].

2. Besov spaces

This section is devoted to a description of the definition and properties of
Besov spaces (for the details, see Muramatu [1]). We define Besov spaces on
an open set 2 in RY, but, in this paper, only use the case when £ is an open
interval I(N=1).
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Let £ be an open set in RY, X a Banach space with norm |||, I£p<
and m a non-negative integer. For an X-valued function f on £, we define

([lremeax)™ it 1=p<e,

”f”Lp(.Q; = ' .
esxsE%up}]f(x)ll if p=oo,

(fprowizi-vaz)™ it 1sp<eo,

1fllzac; xr= ,
es;(_:%upllf(x)ll if p=oco,

I/ la™ 2o X>=|a1253m1|3“flmcg; X

Here all the derivatives 0“f are taken in the sense of distributions. If X=R,

we simply write [|-lz7c; x5, - llz2c0; x> and [:lla™?c; x> as -127co, [I-llLBc2>
and |-| g™ 2., respectively.

We introduce function spaces as follows:

L?(Q; X)=the space of X-valued functions such that | f|.?c0. x, is finite.
L{(2; X)=the space of X-valued functions such that | f|.z, x> is finite.
H™?(Q; X)=the space of functions f= LP(2; X) whose derivatives
0°f, |la|<m, in the sense of distributions, belong to
LP(Q2; X).

The spaces L?(£2; X) and H™?(2; X) are Banach spaces with the norms
-z x> and |-[lz™ ?co, x>, respectively.

DEFINITION OF BESOV SPACES. Let X be a Banach space with norm |-, £
an open set in RY, 1<p, g< o and ¢ a real number such that ¢=m460 with
an integer m and 0<#=1.

(@) The case m=0 and 0<#<1: The Besov space BS (£; X) is the set
of all functions fe H™?(£2; X) such that the seminorm

| flBg g 5= 23 |l “010% f(x+3)—0° f(X)LPco,, ,; 250128 RV

= 2. (I, 1oscern—aesmira)” =)

la|=m
k

is finite. Here £, ,= (\O.Q—jy and Q—jy={z—Jy; z€2}.
J=

(b) The case m=0 and #=1: The Besov space BY (£ ; X) consists of all
functions fe H™?(2; X) such that the seminorm

lle“ 2;
».q

=|a|2=m” ly|0*f(x +25))_2aaf(x+y)+aaf(x)||Lp(92,y; o ll2a gy
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is finite.
The space B$ (£; X) is a Banach space with the norm
”f”B‘;,,q(Q; o=[fllz™ 2, x>+[f|3‘;,_q<!2; X -

(c) The case m<0: The Besov space B9 (£; X) is the set of all distribu-
tions f of the form

(2.1) f= °far  [a€EB}(2; X).

lajg-m

The space Bj (£; X) is a Banach space with the norm
”f“B‘;,‘q(.Q; X)=inf|m§a_m “fa”B%’q(.Q; X))

where the infimum is taken over all expressions of the form [2.1).

In the rest of this section we describe a characterization theorem of Besov
spaces. In the following we denote the interval (0, T) by [I.

We introduce two function spaces.

(i) Ko) is the set of all functions ¢=C=(R?*) which satisfy the follow-
ing conditions :

(2.2) For any t< R, there exists a compact set K, in R such that K,
contains the support of ¢(t, -).

(2.3) For any compact set K in I, there is a compact set K,/ such that
supp ¢(¢, (t—-)/7)C K, for tK and 0<r<l.

(ii) K n(l) is the set of m-th derivatives 07*@(¢, s) of the functions in K ([).
Let ¢, be a function in C%(R) which satisfies the conditions :

supp ¢/, SR¢0(t)dt:1.
If 0<c<1, we define ¢, ¢n, e as follows:

m m
(2.4) o(t, s)=ms dot—s),
m-1 1
ent, =5 ¥ rs*eut—9},  m=1,2, -,
(2.5) eX(t, s)=2en(t, s)—gem(t, ent—cr, s—r)dr, m=1, 2, ---.
Then we have the following results:

LEMMA 2.1. The functions @, e, and e¥, introduced above belong to the space
Ko(I). Further ¢, en and e% belong to the space KXo (J) for any open interval
JolI.
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LEMMA 2.2 (Integral representation of distributions). Let 0<c¢<1 and m=
[+h where | and h are non negative integers. Let @, ek, be the functions as above.
If f is an X-valued distribution on I, then it can be represented as follows:

rO=[{Zgun(t, 122), ute, 9) &

+J§h° S:<‘1T¢o,m+j(t: E;_s_)’ u;n(T, $)>s£

Lo

where <, >, denotes the pairing of D(R)XD'(R; X) and
@ (t, $)=0i0’P(t, s),

wte,0=(5) B Dbt 52, 10),
u;n(7, 3)2(—7)h—j(?>g:( :_’ )h<’1_1,_¢h—j,z(t: t—z.—”/i): f(S)>s d:

THEOREM 2.1 (Characterization of Besov spaces). Let 1<p, g< oo, 6=R and
m a non-negative integer such that m>a, and 0<c<1l. An X-valued distribution
S on I belongs to the space B% I; X) if and only if the following conditions
are satisfied :

(92, -
z""<¢( , d

REMARK 2.1. (A) Let m, h and / be integers such that —h<e <!, m=I[+
h. Set ‘

) f9), S LM X for any g KD,

), 1)) S LUO, 03 L5 X)) for any g nll).

Ou(t, s)=0%0L ek (2, ), =0, -, 1.
Then feB% (I; X) if the following conditions are satisfied :
1
T—G<T ¢la m+l- k( LP(I X))

for k:o, "':l:
e Zgnsa(s, S0), 1) S L3O, 0; LT X))

for j5=0, -, R,
(o

for k=0, ---, 1.
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(B) Furthermore, the norm of f in BY% (I, X) is equivalent with the sum
of the corresponding norms of the above functions.

COROLLARY 2.1. We have the following inclusions:

(2.6) Bl (I3 X)CBt,(I; X)  for 1£qi, q2< 0, 0,<a;.

2.7 B, . (I; X)CBg ., (I; X) for 1£¢,<¢:<,0=R.

(2.8) B .(I; X)cL=(I; X). '

(2.9) Bz .,I; X)cC™[0, T]; X) if m is a non negative integer.
(2.10) BS (I; X)=C%[0, T]; X) for 0<O<1.

Further the inclusions (2.6), (2.7) and (2.8) are continuous.

REMARK 2.2. From the inclusions (2.6) and (2.10), it follows that

Cr([0, T]; X)cBy4I; X) for 1—0<r<l.

THEOREM 2.2. Let 1<p,q<c0 and o=R. If g=B3% (I; X), then there
exists a sequence {gn}n=1 Such that

g€ B} (I; X)NCX[0, T]; X),
gn—>g in B (I; X)NLYI; X) as n— .

3. Analytic semigroups with weak singularity

In this section we briefly state properties of analytic semigroups with weak
singularity which will be used in the following section.

THEOREM 3.1. Assume that a linear operator W satisfies conditions (A.l),
(A.2) and (A.3)s for 0<8<1. Then we have the following :

(3.1) The operator N generates a semigroup e*™ on X which is analytic in the
sector d(w).

(.2) The operators UA™e** and (d™/dz™)e*™ are bounded operators on X for
any non-negative integer m and z<4(w), and satisfy the following
relation and estimate.

m
dz™

1AM < Mpl2z|®~"", zedw).

(e*H)=Y™me? ¥ zed(w).

Here the letter My is a constant depending on m and w.
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PROOF. We can define the semigroup ¢*¥ for any 0<e<w as follows:

U= — %Sre”@!—l)"dl .

Here I is a path in the set 2(¢) such that '=—I",+I", where
Ii={reizi2+0; g<r<oo}. |
Iy={ret®/2+8 . )<y < oo} .
Then, according to Theorem 5.3 of Taira [3], we have the conditions (3.1)
and (3.2) for m=0, 1. In the following we show the condition (3.2) for general

m=2.
First we show the following formula:

am z¥ _.__L m,zA _ -1 7 >
T (ety= Sr,z e A—Nd,  m=1, zE4e).

3.3) 2n7

For z€4(e) and A<, we set
z=|z|e*, 0<a<e,

A=re HFm/2red 0=5r<oco,
Then we have

Iezl I — l e|z|r(c05(a—n:/2—s)+i sin(a-x/2-¢))

:_e-]z] resin(e-a)

Hence it follows that for z=4(¢) and A€,

(3.4) JAmer U2y et e SO0
Similarly, for z€4(e) and A<’,, we let
z=|z|e**, 0=a<e,
A=reim/ate) 0=r<eco,
Then we have
| g4 | = | g!?I7(coSCa+a zre) i sincatn/ered)
—plziTsinGete)
Hence it follows that for z=4(e) and 2<l,
3.5) |Ame*3 (A —2)7 | Spme1aiTsmcsra (1045?)" :

If ze4(e), we have by the estimates and
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m,z2 N1
[ 1america—n1da

2 m,z2 -1
gzg JAme (A —2)" 1 d A
i=1 I‘i

o rm

o (147)¢

A

(e-—le r-sin(s—a)_f_e-yu r-sin(e+a))dr

c<a)5
Let p=|z|r. By interchanging the integral order, we have
I - oo _ .
S __(e 1217 +8inCe a)+e 12|r-sm(s+a))d’,

0 (1+7,)0

oo 1 '} . _ _ . dp
— m -p.sin(e-a) psinCe+ady 27
{"onzn (prrar) @ +e T

0-1-m ® m-6 -p.since-a) -p.sin(e+a)
<|z| Sop (e +e Ydo.
Since sin(e—a)>0 and sin(e+a)>0, we obtain that

Soopm_e(e_p_sin(s_a)_l_e-p-sin(e+a))dp<oo .
]

This implies that the operator Srlme“(?l—-l)‘ldl is bounded on X for z=4(e).

Further we have

ar 2% ___1_ m,zA -1
(3.6) le™= zm_gr,z A=A, zede)
and
3.7) H ;z"‘ (em)]gcme-l-m, zed(e).

Here the letter C is a constant depending on m and w.
Next, using induction on m, we show that

m

dz™

By Theorem 5.3 of [3], we have the equality for m=1. We assume that
the equality holds for m=1. Then it follows from that

(3.8) (e*H=Ame*Y, zed(e).

m+1 1
2N~ m+1,22 N1
e e=— | amriei -z
-——_L m,y2zd -1
- zm-S# e AA—D)dA.

By Remarking that A(A—A)'=1+AA—2)", it follows that
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A= o et AN a5 et di
dz"‘“(e )_~2—7r7§l‘ ¢ 2ri Jr )

The closedness of U tells us that

__.L_ m,z2 -1 _ _L m,zA -1
zm.grau e AR—da=2( Zm.Srz e (A—2)7dR)
— dm z¥
=W (@)
:Qrm+lezﬁl.

Note that
Sr}lme”a’lzo for m=1.

Hence it follows that

m+1
PP (ezﬂx)____amﬂezm’ ZEA(E).
The statements and imply that
A" =Mnl|z]?77m,  z€d(e), mz=l

with a constant M, >0 depending on m and w.
The proof of is complete.

4. Proof of

In this section we prove by following the proof of Theorem
B of Muramatu [1]. If there exists a solution u of the problem (x) for u,=
D((—A)*) with 1—<a<f, we can uniquely write the solution in the follow-
ing form:

u@=eturt| eV f(s)ds,  0=t=T.

First we verify that u satisfies the condition [1.1). [Theorem 1.3 tells us that
e*u,eC([0, T]; X)NCY (O, T]; X).

So, it suffices to show that
F(-)={ e="%f(s)ds=C(Q0, TT; X)NCHO, T1; X).

Since it is clear that f=BLY(I; X) implies F=C([0, T]; X), we have only to
verify that FCY (0, T]; X). By [Corollary 2.1, we have

Bl (e, T); X)C¥[e, T1; X)  for any 0<e<T.
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Therefore, if FEBL (e, T); X) for any 0<e<7, it follows that FeC*((0,

T]; X).
Let I, be the open interval (¢, T). In the following we simply write
SR as S In order to verify that FeBl (I.; X), we apply with

I=I, and m=4. That is, we show that the function F satisfies the following
conditions for 0<c<=l1:

4.1) S¢(-,'—:i)F<s)dseLw<Is; X) for gesol),

4.2) -15 é(- - )F(s)dseL 0, ¢); L=(I.; X))

for g K (I)NK(I) (cf. and Remark 2.1(A)).
First, we show that F satisfies the condition [4.1). Since ¢ satisfies the
condition (2.3), we have
t—s
¢

S )F(s>ds~_—gf¢(t, )(S:e“'”” f(rydr)ds.

“.3) S

By interchanging the integral order of s and » and by integration by substitu-
tion with s—r=s’, the right hand of becomes

S:;b , )(S e ”“f(r)dr)ds

(o 2
=[7(( g (e, =)o mas)rar

Again, by interchanging the integral order of s and r, it follows that

e s

25: Uy S “o(t, L) frvdr

Hence we have

Jo(c. -

Now we cite a lemma which we use in order to estimate the right term
(cf. Muramatu [1], Lemma 3).

_S:e’”dsgf"qs(t, S aler

LEMMA 4.1. Suppose that 1<p=<co, 0<r<l, feL'; X) and ¢ < Ko(lo).
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Then there exists a constant M,>0 such that

IST si¢( _.—”j_r )Frdr

1Jo

for 0<s<T.

SM P flizier; xo
LP¢r; Xy

By making use of Lemma 4.1 and the estimate:
let¥ | <Msb-2,  s>0,

it follows that

(4.4) : ”S¢( %S)F(s)ds

LoCT ¢ X)

ggfne”‘nds

J.o( =)o
=Clifllzics; x> -

Here and in the following the letter C is a general constant independent of f.

Next we show that F satisfies the condition[4.2). Let 0<z<c¢, d= KX (ION
HK,(I) and

LI X)

U, t):S% ) F(s)ds.

We divide the integral with respect to s into two parts as follows:

Uz, t)=§%

S )F(s)ds
=S:es%sgf‘“—lt—¢(z, —"‘Ziri) Fdr

(oD Lole =)o

=U(z, t)+Uy(r, t).

We cite a lemma which is used in order to estimate U, and U, (cf. Mura-
matu [1], Lemma 4).

LEMMA 4.2. Assume that 1<p<oco, 0<r<c, f= L'{; X) and o= Koo).
Then there exists a constant M,>0 such that

[ 2o( =) e

< é—%uuxr, Merers 1+ Mas’e™ V2] fllacr, 13

LP(Ig X
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for 0<s<e. Here
T] t—r
uy(, t)=S0 -T—¢,-.o<t, —T——)f (rdr,
¢j,k(t: S)zajzagﬁb(t, S).

Now we may assume that 0<c<Ze. gives that
(4.5) 1U (7, ')”L°°<15; x>

<[Tremas] [ Lo (- =2 stvar]

Lo X

T _ 2 sj _
<{ Mso1( 3350 uste, Mamer o+ Mas'e™ 1 flaacs, )ds
0 j=0 7.

=0 2 Pluse, Mema o+ f loscrs ).

Since ¢g= K, (I )NK(I), we can represent ¢ as ¢(t, s)=0dip(t, s) where =
Kol )N KoI). By interchanging the integral order, we have

Uz, n={ eas( " —¢(t =DV fdr
T ke e
P e oo

where ¢; ;(t, s)=0i0%¢(¢, s). By integration by parts, it follows that
T-r 1 S—T\ souq._ & t—r—r -
ST —(/Jo 4( —-;_———)e ds—kgogbo,k(t, — )(z'QI) e

+ST— T‘ragb(t, t——sz_—_r—)ﬁl‘emds .

T

Hence we obtain that
T-t/ 8 t—r—
4.6) Uz, 5=\ "(Z ¢u.s(t ) cuyre

T-7 4 {—s—r 4,89
+Sf g1, T )Weetds) f(r)dr .
We write the first and second terms of as

Vite, =o)Ly, ,,(t ) peydr, £=0,1,2,3,

vie 0=, (I, ee(t, ) wetds) rdr,
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respectively. That is, U,(r, t) is written as

Uiz, = 2 Valr, D+V.(z, 1.

By noting that
[A™e || < Mpt?17m, >0

with a constant M,>0 for m=0, 1, 2, ---, Lemma 4.2 gives that

4.7) IV (7, ')”L°°(15; n= Cf“lﬁ(;zj.:z0 ||ijjk(‘l', Mo o+ f 2 X))

for k=0, 1, 2, 3.
Here

T
vate, 0={" 2 9uu(t, D) fdr,  7=0,1,2, £=0,1,2,3.

V(z, t) is, by interchanging the integral order of s and », written by the
following form:

Ve, t)zz-‘gj%[“es”dssz,_s—i—gb(t, —"‘lsfi—’—) F(dr.

and give that
(4.8) V(T e x

(i Dmeemas|[7 2ol = )r0e],,

(M55 loate, lamcr, oo Mas'e | f e )
T . 4S AT V;o(T, L®CI; XD 28°T Licr; x> )as

IA

A

T

+14S Mis®=52Y fllpacr; x>d's
- 2
éCz“‘S s? g S Nvse(T, llzocr; o+ 77 f i, X>>ds
r
C‘L‘“S s flizier; x>ds

=0 ( B Ivate, Memer, @+ lorcrs )

Hence we have

@9 Uz, My 1= 31V, Hlima

3 2
<C B (S, lama: H+E 4Ol flsa; ).
E=0 j=0

By the estimates and (4.9), we have
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(4.10) Iz U(T, Dllzd o, 00 L2z 20

=[evte, Iamrr s

2
éc(]go ”T_“-O’uj(‘l', Dllzd o er; zocr; 0

2 3 ‘
+ Eo Eollf-(l-e)vjk(f’ Dllzd cco.o2; 22cr; 2+ f 21 x>)-
By Remark 2.1 (B), it follows that

(4.11) 27 U(z, Ollzd o0 221 x0 =CUFliter; o5+ 1 f lizres: ).

It has been proved that F satisfies the condition [(4.2).

Now, by making use of Remark 2.1 (B), the estimates and
imply that

4.12) ”F”B;,lu,; X)éC(HfHB};'{’(I; o+ llzia; x)-

Now we verify that u, given by the formula
u(t):emuo—}—S:e“'””f(s)ds,

satisfies the conditions (1.2) and [(1.3). tells us that e**u, satisfies
the conditions (1.2) and [1.3). By virtue of [Theorem 2.2, there exists a sequence
{fr}r=1 such that

(4.13) feBLIU; X)nCY[0, T]; X),
(4.14) fa—> f in BYIUI; X)NL'{U; X).
We let

Fn(t)=S:e“'”*‘fn(S)ds .
Then we have by [Theorem 1.3
F,eC' (0, T]; X),

F,(tH)ye 2(N), 0<t<T,

dF,
dt

By applying the inequality to f—f. and F—F,, we have
”F—FnHBgo.l(Is; xéC(lIf—fnllBg;fu-, ot f—=fallzia; x).
Using the statement we obtain that

O=UFO)+f), O0<t<T.
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4.15) | F— Fa| 5t

oo,l(IE;X)_—>0 as n—> oo,

On the other hand, we have

.‘an—%g_+f BBO'I(IE; X)>
:”_f"—l_iijt_n—%_{_f BY (g X>

dF, dF
e a2

BY (I X)

We estimate the two terms of the right. The inclusion (2.6) and the statement

4.14) tell us that
(4.16) Ifa—Flisg ;e >=Cllfa—flisifas x

éC“fn—f”B};fu;X)——éo as n—> oo,

The definition of Besov spaces and give that

‘ dF, dF

(4.17) a7 dr

BY 1 _X)§”Fn—F”B;,_1cIE; Xy —> 0 as n—> oo,
co, 1M+ &7

From (4.16) and (4.17), it follows that

(4.18) Han—‘é—f—

—>0 as n—> 0.
B (I X

By using the inclusion (2.8), if t<I., the statements and (4.18) imply
that as n—o

U Fo(t) —> —%tﬁ(t)— f& in X.
By virtue of the closedness of ¥, it follows that
Ftea), 0<t£T,

AF(t)= Cfd—fa)— ), 0<t<T.

The proof of is now complete.
REMARK 4.1. The proof of tells us that for any >0

fEBLIO, T); X)== FeBs (e, T); X).

This implies that the regularity of F is as maximal as possible. In other words,
if ¢>1 and 1<¢=<oo, it does not necessarily hold that FeBg (s, T); X) if
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fEBLUO, T); X).
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