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ON ITERATED WEIGHTED MEANS OF BOUNDED
SEQUENCES AND UNIFORM DISTRIBUTION

By

Michael DrRMOTA

Abstract. It is proved that natural conditions on the weights b
all weighted Holder and Cesaro means are equivalent to a generalized
Abel method for bounded sequences. Furthermore it is shown that
the induced co-limitation methods are equivalent to a uniform limita-
tion method. At last some applications to the theory of uniform
distribution of sequences in compact spaces are given.

1. Introduction.

Let P=(p,)5-1 be a sequence of positive real numbers, such that
(1) Pp= 23 De
k=1

tends to infinity (as n—»c0). Then a real sequence (x,)%_, is called limitable to
xpwith respect to the limitation method M, if

@) Jim L ]ﬁ}l Dexp=1 .

For short we will write lim x,=x (M,). This method is regular since lim P,

=oo, If p,=1 for all n, then M, is the usual arithmetic mean or the first Holder
mean H;. Tnerefore we can call the weighted arithmetic mean M, weighted
Holder mean H{® and the k& times iterated weighted mean weighted Holder
mean of order 2 H{P’ defined inductively by

H(gp)(xn):xn

@
HE ) =My E(x0)= 5 3 pH () (r=0, 1, ).

£

—_

For simplicity we will write lim x,=x (H ) instead of lim ¥ (x,)=x. On

n—00
the other hand M, is the first Cesaro mean for p,=1. Therefore we can intro-
duce a weighted Cesaro mean by C{(x,)=c¥(x,)/P, ., where
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P (xp)=%xn, cEU(xn)= 2 PP (%) (r=0,1, --),
4)
Po,n:L r+1 n=— E kar k (7':0: 1; )

A sequence (x,)5.: is said to be limitable to x with respect to C¥ if

(5) lim C¥P(x,)=x (for short lim x,=x (C¥)).

It is easily verified that lim x,=x (H®) (or (C{¥)) implies lim x,=x (H{’) (or
(C®)) for r<r,. Therefore we can consider the related H{” and C{” limita-

tion methods. A sequence (x,)%-, is called limitable te x with respect to HJ
or C& if

6) lim fim H‘P)(xn)—hm 11m HP(x,)=x
or
) lim lim C“’)(xn)—hm lim C®(x,)=x.

7500 N-00 —00 N—00

For short we will write lim x,=x (H¥) or lim x,=x (C¥).

It is also interesting to consider a generalized Abel method A“”. We will
say lim x,=x (A®) if

8 llmsz,pnx e Prn=x

§-0+ n=1

Note that (8) is similar to the definition of the method [, (see [71, [21).

For p,=1/n the relations H{, HY> and A’ have been discussed by P.
Diaconis [4]. P. Schatte [14], [16], [17] and R.F. Tichy [23] developed many
results concerning H.., especially in connection with the theory of uniform dis-
tribution. The intention of this paper is to discuss the relations between H{",
CP, HP C®, and AP for bounded sequences (section 2) and to give some
applications to the theory of uniform distribution (section 3).

2. Summation theoretical theorems.

The generalization of the “classical” equivalence between Holder and Cesaro
means is

THEOREM 1. Let P=(p,)2-; be a real positive mean with lim P,=c and

lim p,/P,=0. Then, for every positive integer r, C{ is equivalent to HP,

L —>00
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Proof. It is easy to see that CH,=M,C¥> where M, is a weighted arith-
metic mean with ¢,=p,P,", and Q,=P,,,,,. A simple induction shows that

P;

Pr,n’\’
r!

<n¥>oo) s

indeed
1

=3 3 T l 1 r+1
Prﬂ,n—kglkar,kwr!kgkakwﬂmPn '

Now Theorem I1.20 of [13] yields that the weighted means M, and M, are

equivalent, since
Pa@n__ Priin -~ 1

ann PrnPn T"‘l

Therefore C{(C¥) '=M;=M,. Since the limitation methods C¥>, C¥, and
M, are regular and normal (see Theorem I1.22 of [13]), this implies

CEA=CEUCH) CE=M,CE=HPCP

which gives by induction C#>=H ¥ for every positive integer 7.

Notice that C{> and C{?, are not equivalent under these assumplions. But
if the sequence is bounded we have

THEOREM 2. Let P=(pn)s-1 be a real positive mean with lim P,=co and

N—oo

lim po/P,=0. Then all weighted Cesaro and Holder limitation methods C¥> and

=00

H® with r=21 are equivalent for bounded sequences (x,)%_:.

(For a proof of the equivalence of the weighted Holder means see [3], Compare
also with [15]. An alternate proof will be indicated in the sequel.)
Since lim p,/P,=0 it is not difficult to construct a sequence (x,)*_1 with

x,<={—1, 1} such that

1 n

‘Pn‘ 1§1 Dexe

D
<sup—.
Akng Pk

Therefore we have lim x,=0 (H{¥) for r=1. Thus H¥ is not equivalent to
usual convergence. But if lim p,/P,>0 instead of lim p,/P,=0 lim x,=x (H %)
n—o0 N =00

(for some r=1) implies lim x,=x. Next we discuss the relation between H®
n-»o0
and C¥&.

THEOREM 3. Let P=(p.)s_; be a real positive mean with lim P,=o0 and

NnN—-0

lim p,/P,=0. Then lim x,=x (C&) and lim x,=x (H&®) are equivalent to

n-oo
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. 1 Pi. 1
(9) Ll_l;]i Skuzll) log Pnkgp]zgepnpjxj x| =0

for bounded sequences (x5)7-i.

Note that every H® -limitable sequence is H’-limitable. But with these
theorems we can construct bounded sequences which are H{-limitable but not
H® . limitable for any ». Set x,=e'"°¢f2»=PZ Using Taylor’'s theorem we get

i Pi— B pin= B (S (P PED—14PA)
o8

Therefore by Theorem 2 (Re(x,))%-; or (Im(x,))3-, are not H{-limitable for
any r=1. On the other hand we have

> Plxj: 2 p]-P;'-":@(l)-m( > L;

ksPjskPp Pj k<PjskPp kéPJékPnPj

Thus by Theorem 3 lim Re(x,)=lim Im (x,)=0 (HZ).

):O(l)-l-o(log P,).

For the proof of Theorem 3 we can proceed similarly to [4]. We need two
Lemmata.

LEMMA 1. Let P=(p,)5-1 be a real positive mean with lim P,=oco and
lim p,/P,=0. Then

N0

(10) HEM )= 5 log (Pa/pa) xikol)  (n->s0).
and

1
D CEUx= "z B PPa—PY 5iboll)  (nee).

hold for every non-negative inleger v and for bounded sequences (xn)7-1.

Proor. For »=0 (10) and (11) are trivial. If (10) holds for some » we
have

HE(x)= _P é +)1(xk)"— é Pﬂk iﬁ log (Pu/Py)" x ;40(1)
= iS1 Py =1
= 1 En} pix 2 D log (P/P;)" +o(1) .
Pl &S50 =jP k

Since

SPnlog (x/P)" dleog (P/Py)T
Py X 7’+1 ’
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the function log (x/P;)"/x is monotonely increasing for P;<x<P;e” and mono-
tonely decreasing for x=Pse", and lim P,/P,.,=1 we get for arbitrary ¢>0 and
nzjzNGe)

rTh; — nlog (x/P;)"
— / T __ e\ L)
(1—) 3 Blog (R Py —2" " Sp,. L
S(l+e )2, *log (P, /P)T+2£?ﬁ
- y Py P,
where Pi—1§Pj8T<Pi. Hence
L S, pye L& log(Pu/P)"
Pn?'! j=1 ; lOg <Pk/P) P( +1)‘ ijx] T”'L‘l

=@ ( )+O(e)+05(l)

which concludes the proof of Lemma 1, since (11) can be proved similarly.
LEMMA 2. Under the same conditions as in Lemma 1

(12) N =)  (nooo)

implies lim x,=0 (HP’) and lim x,=0 (C&?) for bounded sequences (x,)%_..

Proor. Set F(x)=xlog(1/x)"/r!l. Then by (10)

H® ()= P2 pp Py to.(1)
k=1 Pk

= 85 (F(PY/ P~ F(Pani/ Pa) 3} ixs+0r(D)

yields
HE\(x,)=0F (e ")+o0.(1),

since F(x) is monotonely increasing for 0<x<e¢ " and monotonely decreasing
for eo"<x<1. Thus

lim Tim | H&(x,)] =0.

T—00 N

lim x,=0 (C¥’) can be shown similarly. &

Now we can prove Theorem 3. First suppose lim x,=0 (H¥). It is no
loss of generality to assume x=0. By induction we get for every »r>1

5 Pnpe)= » b

ksPjskPp L) k(P]SkPnP

=x;+o(log P,)

uniformly in k2. Choose » and N(¢) such that |H & (x,)|< e for n=N(e). Thus
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Di i=o(log P)+0.1)+¢ log P,

rePerpy P

uniformly in k. The arguments for lim x,=0 (C¥’) are similar. Thus the
first part of the proof is finished. Now suppose that (9) holds with x=0.
Choose N(e) such that

> p_jxj

log P, k<P =Py Pj <e

sup
k>1

for n=N(¢) and define y, by

Y= Py

pLsp <Pl+1P /pl <p <Pl+1P

for PL<p,< Pit'. Thus for every r=1

im|HP)y)| <lim|y,| =0(e) and lim C(y)=0(s).
ko0 k—co k00

Trivially the sequence z,=y,—x, satisfies the assumption of Lemma 2. Thus
lim z,=0 (H¥) and lim z,=0 (C¥) or

m|H®P(z,)|<e and Im|C®(z,)|<e
for r=r(¢). Hence

im|HP(x,)|=0(e) and Hm|C{(xa)|=0C(e)

T 00

for »=7(¢) which implies lim x,=0 (H{¥) and lim x,=0 (C&). This completes
the proof of Theorem 3.

In the following we study the limitation method A“>. We will prove

THEOREM 4. Let P=(p,)-, be a real positive mean with lim P,=c and

00

lim pn/Pn=0. Then AP is equivalent to C¥ and H{¥ (r=1) for bounded

n—co

sequences.

It is sufficient to prove that A‘® is equivalent to M, for bounded sequences.
But this is an immediate consequence of the following Lemmata.

LEMMA 3. Let P=(p,)2-. be a real positive mean with lim P,=co and

00

lim pn/Pn=0. Then lim x,=x implies lim x,=x (AP). (AP 4s regular.

N 00 n—co

Proof. First we show lim 1=1 (A®). Since hmP /P,_1=1 we have P,<
P,_i(1+¢) for n=N(e). Thus
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P P
S n 8_(1+s)s£dt£pne—(1+s)sPn_1£pne—3Pn£S n e—stdt
Pn-1 o B T JPa

yields
L
1+e

which implies lim 1=1 (A). If lim x,=0 we have for arbitrary >0

N0

+sK(e)<s ilpne‘“’"él ,

=
0

s i Paxpe Fn ;’:SK(S)—I—SES e Stdt=sK(e)+te.
n=1
Therefore A is regular. &

LEMMA 4. Let P=(p.)3-1 be as in Lemma 3. If the sequence (x,)7-, is
bounded below or above then lim x,=x (A®) implies lim x,=x (M,).

Proor. The proof is a direct application of Karamata’s method. We can
assume x,>0. If f(x)=x* k=0, we have

(13) lim s 35 pox,e™*?n f(e-SPn>:x3 Ftyde .

1
$-0+ 0

Thus (13) holds for all Riemann-integrable functions f(x). Now set f(x)=0
0=x<e? and f(x)=1/x for ¢"'<x=<1 and s=1/Py. Then (13) implies lim x,
=x (M,). (Compare also with [8] and [21].) =B

LEMMA 5. Let P=(pn)5- be as in Lemma 3. If the sequence (x,)3-. is
bounded then lim x,=x (M,) implies lim x,=x (APD).

Proor. Let lim x,=x (M,). It is no loss of generality to assume x,>>0.
Set y,=c{(x,). Then we get by similar methods as in the proof of Lemma 3

(14) lim s* 3 pryne *Fr=x
§-0+ n=1
By partial summation we have

- o o
X peyee k=3 pax, 33 pre”iFk .
k=1 n=1 k=n

Now we have for n=N(e)

o~ 81+ Py o 00
z = emsaFet i< > ke—st
s(1+e¢) SPn-l k:np
o ¢~ SPn
ég e—stdt+pne—3Pn: +pne sPn’
Py S

which implies
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s =3 _ ==} _
SK(8)+1+ D PoXne “”“Pn§322 Dryre Py
~&n=1 k=1

i\

== (==}
§ 3} paxne Frts’ Elp%xne‘“’n .
=

n=1

Since

lim s 3 pixne =0,
$—0+4 n=1

(14) and (15) imply lim x,=x (A®). =

REMARK. Note that a refinement of Lemma 5 gives an alternate proof of
Theorem 2. If lim x,=x (C¥) for some »=1 we get by similar methods

oo
lim s 3 pacF(x,)e Fr=x
$-0+ n=1
and then by induction for 0=k =<r

lim s**'S prpcif(xn)e Fr=x .
80+ n=1

Therefore lim x,=x (A®).

3. Uniform distribution

Let X be a compact metric space and g a positive normalized Borel measure
on X. Then a sequence (x,)5-;, ©,&X, is said to be uniformly distributed with
respect to p¢ and a real positive mean P=(p.)n-: if

N
(16) lim 5= 3 paf ()= fd

oo

holds for all real-valued continuous functions f on X. Note that (16) can be

read as
a7 lim f(xn)= SX Fdp (H®).

Therefore it is a natural generalisation to consider H -uniformly distributed
(H®.y.d.) and C¥-u.d. sequences which are defined by the relations

(18) lim fGe={ fdp (HE) and lim fGe)={ fdp (CF)

for all continuous f:X-—R. Niederreiter [12] has proved that the condition
lim p./P.=0 is necessary and sufficient for the existance of a H{-u.d. sequence

n-sc0

(x2)2-; if lim P,=co and g is not concentrated on one point. For weighted

Hélder and Cesaro means we can prove



On Iterated Weighted Means 257

THEOREM 5. Let X be a compact metric space, ¢t a normalized Borel mea-
sure on X with p({x})=0 for all x=X, and P=(pa)n-1 a real positive mean.
Then there exists an H®-u.d. (or C¥-d.d.) sequence (rz1) if and only if
lim P,=c and lim p,/P,=0.

TL—00 -0

Proor. If lim P,=c and lim p,/P,=0 there exists on H{P-u.d. sequence

-0 00

which is H¥’-u.d. and C¥-u.d. for »>1, too.
Now suppose that (x,)3—; is H¥-u.d. (or C¥-n.d.) for some r=1. First
we want to show that lim P,=P..< oo is impossible. If f(x)=0 for all x=X

n—00

it is easy to derive for every k>1

lim B ()2 55 1) (or im OOz o=t ran).

Now we construct a continuous function f: X--R with ngd;,e:I and f(x)ps/

(Pr—1)1)=2 for some k=1. Denote d(-,-) a metric on X and B(x, r)=
{yveX | d(x, y)<r} the open ball with centre x and radius . If p(B(x,, 7,))=0

for some sequence (r,)3-, of positive numbers there is an Urysohn function
f: X—=R with f(x,)=0, n=1, and Sxfdy<0, which is impossible. Thus there
is some k=1 such that p(B(x,, »))>0 for all »>0. Furthermore 1351 p(B(xy, 7))
=0 since p({x,})=0. Now construct an Urysohn function f: X—R with f(x,)
=1 and Sxfdpgm/@(r—l)!&). Thus f(x)= f(x)/gx fdp satisfies Sdeyzl and

fxppe/(Pe(r—1)1)=2. But this is a contradiction to the assumption that (x,)s_,
is H¥-u.d. (or C¥-u.d.). Now suppose that lim p,/P,>0. Then there is an

increasing sequence (n,);-; of possitive integers such that p,./P,.>¢ for some
e>0. Let x, be an accumulation point of the subsequence (x, 2i=1. Now con-

struct a continuous function f: X—R with f(x)=0, Sde,ugl, and f(y)=2¢"

for all v K(x,, ) for some »>0. Then the relation

HEfz(5) e (or cowenz(5) 7))

is again a contradiction to the assumption that (x,)%., is H®-u.d. (or C¥-
u.d.).

Therefore the conditions lim P,=c and lim p,/P,=0 seem to be natural

n->00 N0
for the application of Theorem 2 to uniform distribution. Since every continuous
function f: X—~R on a compact space X is bounded we get under the usual
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assumptions on P=(p,)3.; that a sequence (x,)5-, is H{¥-u.d. (or C¥H.u.d.)
with respect to g if and only if (x,)5-: is u.d. with respect to p and P.

As a generalisation of an Abel unform distribution introduced and discussed
by E. Hlawka [9] and H. Niederreiter [11] we can define that a sequence
(x,)2-, in a compact metric space X is A®-u.d. with respect to p if

(19) lim f(xn)=Sde# (AP)

holds for every continuous function f: X—R. Under the usual assumptions on
P this definition is again equivalent to (16). In the case of uniform distribution
modulo 1 similar theorems to those in [9] and [11] can be deduced easily by
verbally the same arguments used there.

Theorem 3 is interesting in relation to well distribution with respect to
weighted means. (Note that there are many possibilities to generalize the usual
well distribution to weighted means. See e.g. Tichy [22], Goto and Kano [6],
and Schatte [18], [19], 120].) We use Schatte’s concept. Define L(k, n) by

Lk, n) Lk, n)+1
(20) 2 sl X p;.
j=k+1 Jj=k+1

Then a sequence (x,)%-, is said to be well distributed (for short w.d.) with
respect to ¢ and P=(p.)5-: if

1

. | L(k_.1n)
21 lim skgrl)‘ 7 j%lpjf(xj)~ngd,u}=0

N0

holds for every continuous function f: X—R.

It motivates an H&¥ - and a C& -uniform distribution. A sequence is called
H® y.d. (or C&-u.d.) with respect to g if

(22) lim f(xn)—*—ngd,u (H®) (or lim f(xn):ngdy (Cc‘f)))

holds for every continuous function f: X—R.

First we remark that every H®-u.d. sequence is H{-u.d. and C&-u.d.
if lim P,=cc. But the converse statement iS not true. As above it can be

shown (by Weyl’s criterion) that the sequence x,=log P, is not H{"-u.d. but
HP.u.d. and C&-u.d. modulo 1. Thus we get such an example for arbitrary
compact metric spaces X and normalized Borel measures ¢ by Hedrlin’s lifting
method [1].
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Next we use Theorem 3 to get another equivalence. Under the usual as-
sumptions on P=(p,)5-; a sequence (x,)3_; is H¥-u.d. or C&-u.d. if and only
if it is w.d. with respect to Q=(p/Pn)n_:. Furthermore we can read Theorem
3 the other way round. A sequence (x,)3-, is w.d. with respect to Q=(g.)5=
if and only if it is H®-u.d. of C%-u.d. with respect to P=(g,e%)z_, if
lim ¢,=0 and lim Q,=c0 (Qn=33{-iq0).

In [5] metric theorems concerning the weighted well distribution with re-
spect to the infinite product measure p.. are established. Comparing these with
Theorem 3 we obtain

THEOREM 6. Let X be a compact metric space, p a normalized positive Borel
measure on X, and P=(p,)5-; a real positive mean with lim P,=co and lim b/ Py
>0 n->00
=0. If

T n . I n
llmjL log n<loo and Ilim log P =
R 00 log n

or if pn/Pn is monotonely decreasing and

lim 2% v/7 log n(log log n)*/**=0

700 n

Sfor some >0 then p.-almost all sequences (x,)3-, are HE -u.d. or C¥P . d. If
o is not concentrated on one point and

lim Dn log n=-o0

n—00 n

then pe-alinost no sequences are HE-u.d. or C&-u. d.

For example consider the sequence of weights

n/log(n+1)

P~ log (n 1)

Then p, is monotone (for n=4) and lim log(n)- p,/P,=1. Therefore He-almost

all sequences are H&-u.d. (or C&-u.d.) but P=(p,)%-; does not satisfy Hill’s
condition

5 e-ap%/glz’fg < oo for all 6>0.

n=1

Thus p.-almost no sequences are u.d. with respect to P since Hill’s condition
is a criterion for the Borel property in the case of monotone weights », (see

[100D).
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