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ON COMPLETE SPACE-LIKE SURFACES WITH
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LORENTZIAN 3-SPACE FORM
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Introduction

By a Lorentzfan $(n+1)$ -space form $M_{1}^{n+1}(c)$ we mean a Minkowski space
$R_{1}^{n+1}$ , a de Sitter space $S_{1}^{n+1}(c)$ or an anti-de Sitter space $H_{1}^{n+1}(c)$ , according as
$c>0,$ $c=0$ or $c<0$ , respectively. That is, a Lorentzian space form $M_{1}^{n+1}(c)$ is
a complete connected $(n+1)$-dimensional Lorentzian manifold with constant cur-
vature $c$ .

A hypersurface in a Lorentzian manifold is said to be space-like if the in-
duced metric on the hypersurface is positive definite. On a space-like hyper-
surface, the first fundamental form, the second fundamental form and the mean
curvature are defined in the same way as those on a hypersurface in a Rie-
mannian manifold [\S 1].

It has been proved by Bernstein and others that the only entire minimal
hypersurface in a Euclidean space $R^{n+1}$ is a linear hyperplane for $n\leqq 7$ , but
there are other examples for $n>7$ . So, Calabi proposed to study a Lorentzian
analoge, called the Bernstein type problem, in Minkowki space $R_{1}^{n+1}$ , and this
was solved by Cheng and Yau [4] for every $n$ .

More precisely, a space-like hypersurface in a Lorentzian manifold is said
to be maximal, if the mean curvature is zero. The Bernstein type problem has
led to the conclusion that the only entire maximal space-like hypersurface in
$R_{1}^{n+1}$ is a linear hyperplane. In order to prove this, Cheng and Yau [4] esta-
blished the following result:
$(^{*})$ If an entire space-like hypersurface $M$ in $R_{1}^{n+1}$ has a constant mean curvature

$H$, then the induced Lorentzian metric on $M$ is a complete Riemannian metric
and the length of second fundamental form of $M$ is bounded from above by
$n|H|$ .

It follows from this result that if $M$ is maximal, then it is totally geodesic.
Moreover, Nishikawa [11] studied the Bernstein type problem for complete

maximal space-like hypersurfaces in other Lorentzian maniflolds, and Ishihara

Received January 23, 1990. Revised March 27, 1990.



236 Reiko AIYAMA

[8] found a similar result for complete maximal space-like submanifolds $M^{n}$ in
a semi-Riemannian space form $M_{p}^{n+p}(c)$ .

On the other hand, in the theory of relativity, certain space-like hyper-
surfaces with constant mean curvature in arbitrary space-times are also investi-
gated. For instance, Choque-Bruhat, Fischer and Marsden [5] studied the
Bernstein type problem in a space-time $M_{1}^{4}(c)(c\geqq 0)$ in connection with the
positivity of mass, and proved that a compact maximal space-like hypersurface

in $M^{4_{1}}(c)(c\geqq 0)$ must be totally geodesic.
We shall consider, in this paper, complete space-like hypersurfaces with

non-zero constant mean curvature in a Lorentzian space form $M_{1}^{n+1}(c)$ . The
well-known standard models of these are the totally umbilical space-like hyper-
surfaces and the following product manifolds:

$H^{k}(c_{1})\times M^{n-k}(c_{2})$

$H^{k}(c_{1})\times S^{n-k}(c_{2})$ in $S_{1}^{n+1}(c)$ $[\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c},$ $c_{2}>0]$ ,

$=H^{k}(c_{1})\times R^{n-k}$ in $R_{1}^{n+1}$ $[c=c_{2}=0]$ ,

$H^{k}(c_{1})\times H^{n-k}(c_{2})$ in $H_{1}^{n+1}(c)$ $[\frac{1}{c_{1}}+\frac{1}{c_{2}}=\frac{1}{c},$ $c_{2}<0]$ .

where $k=1,$ $\cdots$ , $n-1$ . $H^{1}(c_{1})\times M^{n-1}(c_{2})$ is, in particular, called a hyperbolic
cylinder.

Goddard [6] conjectured that the only complete space-like hypersurfaces of
constant mean curvature in $M^{4_{1}}(c)(c\geqq 0)$ are the above standard models. How-
ever, it is proved by Treibergs [16] that many other examples of complete
space-like surfaces with constant mean curvature exist in $R_{1}^{3}$ . Thus, conversely,

it seems to be interesting to characterize the above standard models among
these space-like surfaces.

In this direction, Akutagawa [2], Ramanathan [14] and Cheng and Naka-
gawa [3] obtained the conditions for a complete space-like hypersurfaces with
constant mean curvature in $S_{1}^{n+1}(c)$ to be totally umbilical.

On the other hand, K. Milnor [10] and Yamada [171 characterized the
hyperbolic cylinder $H^{1}(c_{1})\times R^{1}$ in $R_{1}^{3}$ as the only complete ”uniformly” non-um-
bilical space-like surface with non-zero constant mean curvature. In particular,
K. Milnor proved this result by making use of the Cheng-Yau result $(^{*})$ .

The purpose of this paper is to prove a certain extension of the Cheng-

Yau result $(^{*})$ as stated in Theorem 1 [\S 2]. This theorem means that a com-
plete space-like surface with constant mean curvature in $M_{1}^{3}(c)$ is totally um-
bilical, or the Gaussian curvature is non-positive. Furthermore, by applying
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theorem 1, a characterization of the hyperbolic cylinder $H^{1}(c_{1})\times M^{1}(c_{2})$ in $\lrcorner 1f_{1}^{3}(c)$

is obtained in Theorem 2 [\S 3].

THEOREM 1. Let $M$ be a complete space-like surface with constant mean cur-
vature $H$ in a Lorentzian 3-space form $M_{1}^{3}(c)$ . Let $\alpha$ be the second fundamental
form of M. Then the following hold:

(1) If $c$ is non-positive, then $|\alpha|^{2}\leqq 4H^{2}-2c$ .
(2) If $c$ is positive, then $M$ is totally umbilical or $|\alpha|^{2}\leqq 4H^{2}-2c$ .

THEOREM 2. The hyperbolic cylinder is the only complete space-like surface
in $M_{1}^{3}(c)$ with non-zero constant mean curvature whose principal curvatures $\lambda$ and
$\mu$ satisfy $\inf(\lambda-\mu)^{2}>0$ .

The author would like to thank Prof. Hisao Nakagawa for his guidance
and advice.

1. Space-like hypersurfaces in a Lorentzian manifold.

Let $\tilde{M}$ be an $(n+1)$-dimensional Lorentzian manifold and $M$ be a space-
like hypersurface in $\tilde{M}$. Throughout this paper, manifolds are always as-
sumed to be connected and geometric objects are assumed to be smooth, unless
otherwise stated. We choose a local field of Lorentzian orthonormal frames
$\{E_{A}\}=\{E_{0}, E_{1}, \cdots, E_{n}\}$ defined on a neighborhood of $\tilde{M}$ in such a way that,

restricted to $M,$ $\{E_{1}, \cdots, E_{n}\}$ are space-like and tangent to $M$ and $E_{0}$ is time-
like and normal to $M$. Let $\tilde{\nabla}$ (resp. $\nabla$ ) denote the Levi-Civita connection of $\tilde{M}$

(resp. $M$ ).

We use the following convention on the ranges of indices throughout this
paper, unless otherwise stated:

$A,$ $B,$ $\cdots=0,1,$ $\cdots$ , $n$ ; $i,$ $j,$ $\cdots=1,$ $\cdots$ , $n$ .
With respect to the frame field $\{E_{A}\}$ , let $\{\omega_{A}\}=\{\omega_{0}, \omega_{i}\}$ denote its dual frame
field. Then the Lorentzian metric tensor $\tilde{g}$ of $\tilde{M}$ is given by $\tilde{g}=\sum\epsilon_{A}\omega_{A}\otimes\omega_{A}$ ,

where $\epsilon_{A}$ is defined by $\epsilon_{0}=-1$ and $\epsilon_{i}=1$ . The connection forms on $\tilde{M}$ are de-
noted by $\omega_{AB}$ , that is, $\omega_{AB}$ is defined by $\omega_{AB}(E_{C})=\tilde{g}(E_{A},\tilde{\nabla}_{E_{C}}E_{B})$ . The canonical
forms $\omega_{A}$ and the connection forms $\omega_{AB}$ of the ambient space satisfy the struc-
ture equations

(1.1) $d\omega_{A}+\Sigma\epsilon_{B}\omega_{AB}\wedge\omega_{B}=0$ , $\omega_{AB}+\omega_{BA}=0$ ,
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(1.2) $d\omega_{AB}+\sum\epsilon_{C}\omega_{AC}\wedge\omega_{CB}=\tilde{\Omega}_{AB}$ ,

$\tilde{\Omega}_{AB}=-\frac{1}{2}\sum\epsilon_{C}\epsilon_{D}\tilde{R}_{ABCD}\omega_{C}\wedge\omega_{D}$ .

where $\tilde{\Omega}_{AB}$ is called the Riemannian curvature form on $\tilde{M}$, and $\hslash_{ABCD}$ denotes
the component of the Riemannian curvature tensor fl on $\tilde{M}$. That is, $\beta_{ABCD}$ is
defined by

$\tilde{R}_{ABCD}=\tilde{g}(\tilde{R}(E_{A}, E_{B})E_{C},$ $E_{D}$),

$\tilde{R}(E_{A}, E_{B})E_{C}=\tilde{\nabla}_{E_{A}}\tilde{\nabla}_{E_{B}}E_{C}-\tilde{\nabla}_{E_{B}}\tilde{\nabla}_{E_{\Lambda}}E_{C}-\tilde{\nabla}_{[E_{A}.E_{B}]}E_{C}$ .

Restricting these forms to the hypersurface $M$, we have

(1.3) $\omega_{0}=0$ ,

and the Riemannian metric $g$ of $M$ induced from the Lorentzian metric $\tilde{g}$ on $\tilde{M}$

is given by $g=\sum\omega_{j}\otimes\omega_{j}$ . Then, with respect to this metric, $\{E_{j}\}$ becomes a
local orthonormal frame field and $\{\omega_{j}\}$ is a local dual frame field of $\{E_{j}\}$ .
Further, $\omega_{ij}$ is the connection form on $M$ satisfying $\omega_{ij}(E_{k})=g(E_{i}, \nabla_{E_{k}}E_{j})$ .
From the structure equations of $\tilde{M}$ it follows that the structure equations for
$M$ are given by

(1.4) $d\omega_{i}\cdot\cdot\vdash\sum\omega_{ij}\wedge\omega_{j}=0$ , $\omega_{ij}\cdot+\omega_{ji}=0$ ,

(1.5) $d\omega_{ij}+\Sigma\omega_{ik}\wedge\omega_{kj}=\Omega_{ij}$ ,

$\Omega_{ij}=-\frac{1}{2}\Sigma R_{ijkl}\omega_{k}\wedge\omega_{l}$ ,

where $\Omega_{ij}$ is the Riemannian curvature form on $M$ and $R_{ijkl}$ is the component

of the Riemannian curvature tensor $R$ on $M$. That is, $R_{ijkl}$ is definded by

$R_{ijkl}=g(R(E_{i}, E_{j})E_{k},$ $E_{\iota}$ ),

$R(E_{i}, E_{j})E_{k}=\nabla_{E_{i}}\nabla_{E_{j}}E_{k}-\nabla_{E_{j}}\nabla_{E_{i}}E_{k}-\nabla_{[E_{i}E_{j}]}E_{k}$ .

It follows from (1.3) and Cartan’s lemma that the exterior derivative of (1.3)

gives rise to

(1.6) $\omega_{0i}=\Sigma h_{ij}\omega_{j}$ , $h_{ij}=h_{ji}$ .

On the other hand, the second fundamental form $\alpha$ of $M$ is defined by

$\tilde{\nabla}_{X}Y=\nabla_{X}Y+\alpha(X, Y)$ ,

where $X$ and $Y$ are local vector fields on $M$. Then $\alpha$ is the symmetric bilinear
form with values in the normal bundle and it can be written as

$\alpha=\epsilon_{0}\Sigma h_{ij}\omega_{i}\otimes\omega_{j}E_{0}$ .
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It follows from (1.2), (1.5) and (1.6) that the Gauss equation is given by

(1.7) $R_{ijkl}=\tilde{R}_{ijkl}+\epsilon_{0}(h_{i\iota}h_{jh}-h_{ik}h_{jl})$ .

The components of a Ricci tensor $S$ are given by

(1.8) $S_{ij}=\Sigma R_{kijk}=\Sigma\tilde{R}_{kijk}+\epsilon_{0}hh_{ij}-\epsilon_{0}h_{ij}^{2}$ ,

where $h=traceh=\sum h_{kk}$ is $n$ times the mean curvature function $H$ of $M$ and
$h_{ij}^{2}=\Sigma h_{ih}h_{kj}$ .

Now, the components $h_{ijk}$ of the covariant derivative $\nabla\alpha$ of the second
fundamental form $\alpha$ of $M$ are given by

$\sum h_{ijh}\omega_{k}=dh_{ij}-\sum(h_{hj}\omega_{ki}+h_{ik}\omega_{kj})$ .

Then, by substituting $dh_{ij}$ in this definition into the exterior derivative of (1.6),

we obtain the Codazzi equation

(1.9) $h_{ijk}-h_{ikj}=\tilde{R}_{0ijk}$ .
Similarly, the components $h_{ijkl}$ of the second covariant derivative $\nabla^{2}\alpha$ of $\alpha$

can be defined by

$\Sigma h_{ijkl}\omega_{l}=dh_{ijk}-\Sigma(h_{ljk}\omega_{li}+h_{ilk}\omega_{lj}+h_{ijl}\omega_{lk})$ ,

and the simple calculation gives rise to the Ricci formula

(1.10) $h_{ijk\iota}-h_{ijlk}=\sum(h_{mj}R_{milk}+h_{im}R_{mjlh})$ .

In particular, let the ambient space $\tilde{M}$ be a Lorentzian space from $M^{n_{1}+1}(c)$

of constant curvature $c$ . In this case, the Riemannian curvature $\tilde{R}$ of $\tilde{M}$ is
given by

R $ABcD=c\epsilon_{A}\epsilon_{B}(\delta_{AD}\delta_{BC}-\delta_{Ac}\delta_{BD})$ .

Then the Gauss equation and the Codazzi equation are given by

(1.11) $R_{ijkl}=c(\delta_{i\iota}\delta_{jk}-\delta_{ih}\delta_{jl})+\epsilon_{0}(h_{il}h_{jk}-h_{ik}h_{jl})$ ,

(1.12) $h_{ijk}=h_{ikj}$ .

The Ricci curvature is given by

(1.13) $S_{ij}=c(n-1)\delta_{ij}+\epsilon_{0}h/\iota_{ij}-\epsilon_{0}h_{ij}^{2}$ .
By means of (1.9) and (1.10), the Laplacian $\Delta h_{ij}=\sum h_{ijkk}$ of the function $h_{ij}$ is
given by

$\Delta h_{ij}=(h)_{ij}+c(nh_{ij}-h\delta_{ij})-\epsilon_{0}h_{2}h_{ij}+\epsilon_{0}hh_{ij}^{2}$ ,

where $(h)_{ij}=\nabla_{E_{j}}\nabla_{E_{i}}h$ and $h_{2}$ is a function on $M$ defined by $h_{2}=|\alpha|^{2}=\sum h_{ij}^{2}=$

$\sum h_{if}h_{ij}$ . Then the Laplacian $\Delta h_{2}$ of the function $h_{2}$ is given by
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$\Delta h_{2}=2\sum(h)_{ij}h_{ij}+2c(nh_{2}-h^{2})-2\epsilon_{0}(h_{2})^{2}+2\epsilon_{0}hh_{3}+2|\nabla\alpha|^{2}$

where $h_{3}=\sum h_{ij}h_{jk}h_{ki}$ and $|\nabla\alpha|^{2}=\sum h_{ijk}h_{ijk}$ .
Now, let the mean curvature $H$ of $M$ be constant. Then, since $(h)_{ij}=0$ ,

the Laplacian of $h_{2}$ is given by

(1.14) $\Delta h_{2}=2c(nh_{2}-h^{2})-2\epsilon_{0}(h_{2})^{2}+2\epsilon_{0}hh_{3}+2|\nabla\alpha|^{2}$

These formulas are obtained by Cheng and Yau [4].

2. Proof of Theorem 1.

Let $M$ be a space-like surface with constant mean curvature $H$ in a Lorent-
zian 3-space form $M_{1}^{3}(c)$ , and let $\lambda$ and $\mu$ be the principal curvatures of $M$. We
can choose a local field of Lorentzian orthonormal frames $\{E_{0}, E_{1}, E_{2}\}$ on $M_{1}^{3}(c)$

in such a way that, restricted to $M,$ $\{E_{1}, E_{2}\}$ are tangent to $M$ and

(2.1) $ h_{11}=\lambda$ , $h_{12}=h_{21}=0$ , $ h_{22}=\mu$ .

In this case, the Gaussian curvature $G=R_{1221}$ of $M$ is given by

(2.2) $ G=c-\lambda\mu$ ,

and the constant mean curvature $H$ is represented as

(2.3) $H=\frac{/l}{2}$ , $ h=\lambda+\mu$ .

The function $h_{2}=|\alpha|^{2}$ is given by

(2.4) $h_{2}=\lambda^{2}+\mu^{2}=2G+h^{2}-2c$ $(\geqq 0)$ .

It follows from (1.14) that the Laplacian of $h_{2}$ is calculated as

(2.5) $\Delta h_{2}=2G(\lambda-\mu)^{2}+2|\nabla\alpha|^{2}\geqq 2G(\lambda-\mu)^{2}$

In this section, we prove Theorem 1 which gives the estimate of the func-
tion $h_{2}$ on a complete space-like surface with constant mean curvature in $M_{1}^{3}(c)$ .
For this purpose, the following generalized maximum principle due to Omori
[12] and Yau [18] is needed for the estimate of the Laplacian of the function
of class $C^{2}$ .

THEOREM (Omori and Yau). Let $N$ be a complete Riemannian manifold
whose Ricci curvature is bounded from below and let $F$ be a function of class $C^{2}$

on N. If $F$ is bounded from below, then for any $\epsilon>0$ there exists a point $q$ such
that

(2.6) $|\nabla F(q)|<\epsilon$ , $\Delta F(q)>-\epsilon$ , $ F(q)<\inf F+\epsilon$ .
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In fact, since $M$ is a complete space-like surface with constant mean cur-
vature $H$, it follows from (1.13) that the Ricci curvature tensor $S_{ij}=\sum_{k}R_{kijh}$ is
given by

(2.7) $S_{11}=S_{22}=G=c-\lambda\mu=c-\lambda(h-\lambda)=c-h\lambda+\lambda^{2}=c+(\lambda-H)^{2}-H^{2}\geqq c-H^{2}$ ,

$S_{12}=S_{21}=0$ .

implying that the Ricci curvature is bounded from below by constant $c-H^{2}$ .
Accordingly, we can apply this theorem to prove Theorem 1.

PROOF OF THEOREM 1. Given any positive number $a$ , we define a smooth
function $F$ on $M$ by $(h_{2}+a)^{-1/2}$ , which is positive and is also bounded from
above by positive constant $a^{-1/2}$ . So we can apply the generalized maximum
principle due to Omori and Yau to $F$.

First, we compute the gradient and the Laplacian of $F$ :

$\nabla F=-\frac{1}{2}(h_{2}+a)^{-3/2}\nabla h_{2}=-\frac{1}{2}$I $3\nabla h_{2}$ ,

$\Delta F=-\frac{3}{2}F^{2}\nabla F\nabla h_{2}-\frac{1}{2}F^{3}\Delta h_{2}=3F^{-1}|\nabla F|^{2}-\frac{1}{2}F^{3}\Delta h_{2}$ .

Consequently, the following inequality

(2.8) $F^{4}G(\lambda-\mu)^{2}\leqq 3|\nabla F|^{2}-F\Delta F$

is obtained by (2.5).

For a convergent sequence $\{\epsilon_{m}\}$ such that $\epsilon_{n\iota}>0$ and $\epsilon_{m}\rightarrow 0(m-\succ\infty)$ , by the
theorem due to Omori and Yau, there is a point sequence $\{q_{m}\}$ such that $F$

satisfies (2.6) at each $q_{m}$ for $\epsilon_{m}$ ;

(2.6) $|\nabla F(q_{m})|<\epsilon_{m}$ , $\Delta F(q_{m})>-\epsilon_{m}$ , inf $F\leqq F(q_{m})<\inf F+\epsilon_{m}$ .

Then the sequence $\{F(q_{m})\}$ converges to inf $F$, which implies by the definition
of $F$ that $h_{2}(q_{m})\rightarrow suph_{2}(m\rightarrow\infty)$ . We shall prove that $h_{2}$ is bounded.

Suppose $ suph_{2}=+\infty$ . Since $h_{2}=\lambda^{2}+\mu^{2}=2(\lambda-H)^{2}+2H^{2}$ , the sequence $\{\lambda(q_{m})\}$

then diverges to positive infinity, by taking a subsequence if necessary. More-
over, we have

$\frac{\mu(q_{m})}{\lambda(q_{m})}--1$ $(m\rightarrow\infty)$ ,
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for $\mu,/\lambda+1=(\mu+\lambda)/\lambda=h/\lambda$ . On the other hand, from the inequality (2.8), we
get the relation

(2.9) $F(q_{m})^{4}G(q_{m})\{\lambda(q_{m})-\mu(q_{m})\}^{2}<3\epsilon_{m}^{2}+\epsilon_{m}F(q_{m})$ ,

in which the right hand side converges to $0$ , because the function $F$ is bounded.
Hence the left hand side of (2.9) converges to a non-positive number. But, since
the left hand side is

$\frac{\{c-\lambda(q_{m})\mu(q_{m})\}\{\lambda(q_{m})-\mu(q_{m})\}^{2}}{\{\lambda(q_{m})^{2}+\mu(q_{m})^{2}+a\}^{2}}=\frac{\{\frac{c}{\lambda(q_{m})^{2}}-\frac{\mu(q_{m})}{\lambda(q_{m})}\}\{1-\frac{\mu(q_{m})}{\lambda(q_{m})}\}^{2}}{\{1+\frac{\mu(q_{m})^{2}}{\lambda(q_{m})^{2}}+\frac{a^{2}}{\lambda(q_{m})^{2}}\}}$ ,

it should converge to 1 as $ m-\rangle$ $\infty$ . This is a contradiction. Accordingly, $h_{2}$ is
bounded.

This implies that the sequence $\{G(q_{m})\}$ converges to $supG$ which is bounded.
So we have

$\{\lambda(q_{m})-\mu(q_{m})\}^{2}-sup(\lambda-\mu)^{2}<\infty$ $(m\rightarrow\infty)$ ,

since $(\lambda-\mu)^{2}=(\lambda+\mu)^{2}-4\lambda\mu=h^{2}+4G-4c$ . Then if follows from (2.9) that we
have

(2.10) $supG\cdot sup(\lambda-\mu)^{2}\leqq 0$ .

Hence, if $sup(\lambda-\mu)^{2}$ is positive, then $G$ is non-positive. On the other hand,

when $sup(\lambda-\mu)^{2}=0,$ $\lambda-\mu$ is identically zero. In consequence, under the assump-
tion of Theorem 1, $M$ is either totally umbilical or $G\leqq 0$ . Note that, when $c$

is non-positive, if $M$ is totally umbilical then $G$ is non-positive, for $ G=c-\lambda\mu$

$=c-\lambda^{2}$ . Finally, it follows from (2.4) that the condition $G\leqq 0$ is equivalent to
$h_{2}=|\alpha|^{2}\leqq 4H^{2}-2c$ . $q.e.d$ .

REMARK 1. Cheng and Nakagawa [3] extend the Cheng-Yau result and

give an estimate of $|\alpha|$ for a complete space-like hypersurface with constant
mean curvature in $M^{n_{1}+1}(c),$ $c\leqq 0$ . In the case $c\leqq 0$ , Theorem 1 is equivalent to

of their result, but the method of proof is different from theirs.

REMARK 2. In the case $c>0$ , a totally umbilical surface $S^{2}(c_{2})$ in $S_{1}^{3}(c)$ has
positive Gaussian curvature $c_{2}$ , and the other surfaces in $S_{1}^{3}(c)$ have non-positive

curvature. On the other hand, Akutagawa [2] gave the condition for a com-
plete space-like hypersurface $\Lambda f^{n}$ in $S_{1}^{n+1}(c)$ to be totally umbilical. In the case
$n=2$ , Akuatgawa’s theorem can also be proved by Theorem 1:
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COROLLARY (Akutagawa). Let $M$ be a complete space-like surface with con-
stant mean curvature $H$ in $S_{1}^{3}(c)$ . Suppose $c\geqq H^{2}$ , then $\lrcorner ll$ is totally umbilical.

PROOF. Since the Gaussian curvature $G$ is given by $G=c-\lambda\mu=(\lambda-H)^{2}+$

$c-H^{2}$ , $G$ is non-negative by the assumption $c\geqq H^{2}$ . Then, it follows from
Theorem 1 that $G$ is positive constant or identically zero. Hence, $M$ is a totally

umbilical surface in $S_{1}^{3}(c)$ . $q.e.d$ .

3. Proof of Theorem 2.

In this section, we prove Theorem 2 which characterizes a hyperbolic
cylinder in a Lorentzian space form $M_{1}^{3}(c)$ .

First, it is to be remarked that hyperbolic cylinders are the only flat space-
like surfaces with non-zero constant mean curvature in $M_{1}^{8}(c)$ . This fact is
proved by the use of a theorem due to Abe, Koike and Yamaguchi [1]. Hence
we have only to prove that the Gaussian curvature of a “uniformly” non-
umbilical space-like surface with constant mean curvature in $M_{1}^{3}(c)$ is identically

zero. On the other hand, Theorem 1 asserts that if a space-like surface with
constant mean curvature in $M_{1}^{3}(c)$ is not totally umbilical, then the Gaussian cur-
vature is non-positive. Accordingly, Theorem 2 will follow immediately from
the following lemma.

LEMMA. Let $M$ be a complete space-like surface with constant mean curva-
ture $H$ in $M_{1}^{3}(c)$ . If the principal curvatures $\lambda$ and $\mu$ of $M$ satisfy

inf $(\lambda-\mu)^{2}>0$ ,

then the Gaussian curvature $G$ of $M$ is non-negative.

In order to prove this lemma, the generalized maximum principle due to
Omori [12] and Yau [18] is used here again. So, we are going to compute

the Laplacian of the Gaussian curvature $G$ of $M$.
Now, since the mean curvature $H^{1}=h/2$ and $c$ are constant, the relation

$\Delta h_{2}=2\Delta G$ is obtained from (2.4). Then it follows from (2.5) that the Laplacian
$\Delta G$ is given by

(3.1) $\Delta G=G(\lambda-\mu)^{2}+|\nabla\alpha|^{2}$ ,

where $|\nabla\alpha|^{2}=(h_{111})^{2}+3(h_{221})^{2}+(h_{222})^{2}+3(h_{112})^{2}$ . Since the principal curvatures $\lambda$

and $\mu$ are mutually different everywhere by the assumption $\inf(\lambda-\mu)^{2}>0$ , it is
known that they are both smooth functions on $M$ (see Szab6 [15], for example).
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Recalling the definition of the components $h_{ijk}$ , the derivatives of $\lambda$ and $\mu$ are
given by

$d\lambda=dh_{11}=h_{111}\omega_{1}+h_{112}\omega_{2}$ ,

$d\mu=dh_{22}=h_{221}\omega_{1}+h_{222}\omega_{2}$ .

Since $h$ is constant, the derivative $ dh=d\lambda+d\mu$ is identically zero, and hence
the following relations are obtained;

$h_{111}+h_{221}=0$ and $h_{1I2}+h_{222}=0$ .
Also, from (2.2), the derivative of $G$ is given by

$\nabla G=dG=-(d\lambda)\mu-\lambda(d\mu)=(\lambda-\mu)d\lambda$ .
Hence we have

$|\nabla\alpha|^{2}=4\{(h_{111})^{2}+(h_{112})^{2}\}=4|d\lambda|^{2}=\frac{4}{(\lambda-\mu)^{2}}|\nabla G|^{2}$

which combined with (3.1), implies that the Laplacian $\Delta G$ is given by

(3.2) $\Delta G=G(\lambda-\mu)^{2}+\frac{4}{(\lambda-\mu)^{2}}|\nabla G|^{2}$

PROOF OF LEMMA. It follows from (2.7) that we can apply the generalized
maximum principle due to Omori and Yau to a smooth function $F$ bounded from
below. Here, we define $F$ to be $exp[aG]$ for any given positive number $a$ .
Note that $F$ is a smooth function bounded from below by a positive constant
$F_{0}=exp[a(c-H^{2})]$ , because of (2.7).

The gradient and the Laplacian of $F$ are then given by

$\nabla F=aexp[aG]\nabla G=aF\nabla G$ ,

$\Delta F=a\nabla F\nabla G+aF\Delta G=a^{2}F|\nabla G|^{2}+aF\Delta G$ .

Further, it follows from (3.2) that the Laplacian $\Delta F$ is given by

(3.3) A $F=aFG(\lambda-\mu)^{2}+\{2a^{2}-(a^{2}-\frac{4a}{(\lambda-\mu)^{2}})\}F|\nabla G|^{2}$ .

We put $k=\inf(\lambda-\mu)^{2}$ , which is positive by the assumption of the lemma. Let
$a$ be greater than $4/k$ . Then

$a^{2}-\frac{4a}{(\lambda-\mu)^{2}}\geqq a^{2}-\frac{4a}{k}=a(a-\frac{4}{k})>0$ .

Accordingly, from (3.3), the Laplacian $\Delta F$ is evaluated by

$\Delta F\leqq aFG(\lambda-\mu)^{2}+2a^{2}F|\nabla G|^{2}$ ,
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which implies, since $\nabla F=aF\nabla G$ and $F>0$ , the following inequality;

(3.4) $aF^{2}G(\lambda-\mu)^{2}\geqq F\Delta F-2|\nabla F|^{2}$

For a convergent sequence $\{\epsilon_{m}\}$ such that $\epsilon_{m}>0$ and $\epsilon_{m}\rightarrow 0(m\rightarrow\infty)$ , the
theorem due to Omori and Yau implies that there is a point sequence $\{q_{m}\}$ such
that $F$ satisfies (2.6). Then the sequence $\{F(q_{m})\}$ converges to inf $F$, which
satisfies inf $F\geqq F_{0}>0$ . So the definition of $F$ implies that $G(q_{m})\rightarrow\inf G(m\rightarrow\infty)$ ,

where inf $G$ is bounded.
Moreover, by taking subsequences if necessary, $\lambda(q_{m})$ and $\mu(q_{m})$ tends to

some numbers;

$\lambda(q_{m})-\lambda_{1}$ , $\mu(q_{m})-\mu_{1}=h-\lambda_{1}$ $(m\rightarrow\infty)$ .
This is proved in the following way. Suppose $\{\lambda(q_{m})\}$ is not bounded. Then
we can regard $\{\lambda(q_{m})\}$ and $\{\mu(q_{m})\}$ as sequences which diverge to positive in-
finity and negative infinity, respectively. It follows from (2.2), that $G(q_{m})$ must
diverge to positive infinity. This contradicts the fact that $G(q_{m})$ converges to
its infimum. Thus $\{\lambda(q_{m})\}$ is bounded and hence it containes a subsequence
converging to some finite number.

On the other hand, from the inequality (3.4), the following relation is ob-
tained;

$aF(q_{m})^{2}G(q_{m})\{\lambda(q_{m})-\mu(q_{m})\}^{2}>-\epsilon_{m}\{F(q_{m})+2\epsilon_{m}\}$ ,

in which the right hand side converges to $0$ as $m$ tends to $\infty$ , since the func-
tion $F$ is bounded. Accordingly, we get

(3.5) $a(\inf F)^{2}(\inf G)(\lambda_{1}-\mu_{1})^{2}\geqq 0$ .
Since $a>0$ , inf $F>0$ and $(\lambda_{1}-\mu_{1})^{2}\geqq k>0$ , the inequality (3.5) now implies that

inf $G$ is non-negative. Hence the Gaussian curvature $G$ is non-negative every-
where. $q.e.d$ .

As mentioned above, Theorem 2 is proved by this lemma and Theorem 1
immediately.

REMARK 1. Recently, various kinds of surfaces of revolution with constant
mean curvature in Minkowski space $R_{1}^{3}$ are constructed by Hano and Nomizu
[7] and Ishihara and Hara [9], which shows that the condition $\inf(\lambda-\mu)^{2}>0$

in this theorem cannot be omitted in the case $c=0$ .

REMARK 2. The examples given by Akutagawa [2], each of which is a
space-like rotation surface in $S_{1}^{3}(c)$ , are complete space-like surfaces with con-
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stant mean curvature and negative Gaussian curvature. They are not totally

umbilical and satisfy inf $(\lambda-\mu)^{2}=0$ . This shows that there are many surfaces
with constant mean curvature in $S_{1}^{3}(c)$ such that $G\leqq 0$ which are different from
the hyperbolic cylinders.

Finally, it is to be noted that the fact that all the above examples of com-
plete space-like surfaces in $R_{1}^{3}$ and $S_{1}^{3}(c)$ have negative Gaussian curvature leads
us to the following conjecture: Let $M$ be a complete space-like surface with
constant mean curvature in $M_{1}^{3}(c)$ . If there is a point $p$ in $M$ at which the
Gaussian curvature is zero, the Gaussian curvature is identically zero on $M$ .
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