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THE GENERALIZATIONS OF FIRST COUNTABLE SPACES

By

Zhu JIAN-PING

Abstract. In this paper we consider some generalizations of first
countable spaces, called w,-spaces. When «£=1, w;, oo, the spaces
are respectively Fréchet spaces, w-spaces in the sense of G. Gruen-
hage [5] and first countable spaces. We show that the w,-spaces
are the images of metric spaces under certain kind of continuous
maps, called w,-maps. For any cardinals «,<k,, we construct by
forcing a model in which there is a countable space with character
w; which is a w,,-space but not w,,-space.

1. Imntroduetion

Generalizations of first countable spaces have been one of the traditional
topics in general topology. G. Gruenhage [5] defined the class of w-spaces by
topological games. P.L. Sharma [9] gave out a very useful characterization
of w-spaces. In this paper we introduce w,-spaces which establish an interest-
ing relationship among Fréchet spaces, w-spaces and first countable spaces.

It is well-known that Fréchet spaces and first countable spaces are respec-
tively the images of metric spaces under pseudo-open and almost open maps
(see [7]). The author [10] proved that w-spaces are the images of metric
spaces under w-maps. Theorem 3.2 in this paper unifies all of these results.

Assuming MA, F. Galvin [4] constructed a w-space which is not a c*-
space, i.e. a space X with countable tightness and every countable subspace of
X is first countable. In this paper we show that for any cardinals &, <k, it is
consistent that there is a countable space with character w, which is a w,,-
space but not w,,-space.

2. Notations, Definitions and Basic Properties

All spaces considered are assumed to be Hausdorff and maps continuous
onto. The notation {A,:a<k} is not necessarily faithful. For the terminology
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and basic facts about forcing see [67], for the weak versions of Martin’s axiom
see [3]. We use p to denote the least cardinality of a centered family & of
subsets of w such that there is no A=[w]® such that AcC*B for any Beg.
a, B, --- denote ordinals and &, 4, -+ cardinals.

DEFINITION 2.1. We call a map f: X—Y a w,map, if for any y=Y and
any open cover {U,:a<k} of f~(y), there exists an a such that y<int (f(U.)).
If a map is a w,-map for any &, we call it a w.-map. From now on, & is a
nonzero cardinal or oo.

It is obvious that the class of w,-maps equals to the class of pseudo-open
maps. We can easily construct for any x,<k, a map which is a w,-map but
not w,,-map.

LEMMA 2.1. Let f: XY, then the following are equivalent :

(1) fis a we-map;

(2) If {As:a<k} is a family of subsets of Y, y=Nn{cl(A.): a<k}, then
there exists an x< f~'(v), xeN{cl(f 7 (A): a<k}.

PROOF. (1)—(2) Suppose that there exists a family {A4,: a<x} of subsets
of ¥ and yen{cl(A.,): a<k} such that for any x<f %), x&N{cl(f (AN :
a<k}. Then if x=f~(y), there are an open neighbourhood U, of x and an
a.<t such that U,Nf""(A,,)=0. Let U,={U.: x&f "(y) & a,=a} for any
a<k {Uq:a<k} is clearly an open cover of f~'(y). Since f is a w,-map, there
is a U, such that ycint(f(U,)). However, U, N\f Y A)=J{U.Nf (A xE
FUy) & a,=a}=0. So f(U,)NA,=0, but yecl(A,). This is a contradiction.

(2)—(1) Suppose that f is not a w,-map, i.e. we have a y,=Y and a cover
{Uy:a<k} of f~%»,) such that for any a, U, is open and y,&int(f(U.).
Therefore, we have y, =N\ {cl(Y —f(U,)): a<k}. By (2), there exists an x&
FWy) such that xeN{c(f" Y —f(UL)): a<k}. However, since {U,: a<k}
is a cover of f~(v,), there is a U,, xU,. Since U Nf'Y —fU.)=0, x¢&
(Y (Y —f(UL))). This contradiction completes the proof. O

DEFINITION [7] 2.2. f: XY is called almost open, if for any y=Y, there
is an x< f~Yy) such that for any neighbourhood U of x, f(U) is a neighbour-
hood of y.

THEOREM 2.1. Let f:X—Y. The following are equivalent:
(1) f is an almost open map;
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(2) [ is a wy-map, where py=sup{L{(f~Yy)): y=Y}, L denotes the Lindelif
degree;
(3) f is a wy-map, where p,=2'Y",

The proof is routine by the definitions and Lemma 2.1.

3. Theorems on w,-spaces

DEFINITION 3.1. A space Y is called a w,-space, if for any family {A.: a<t}.
of subsets of ¥ and yen{c/(A.):a<x}, there exists a decreasing sequence
{F,:n=w)} of subsets of Y satisfying that F,NA,.#0 for any n and a and for
any open neighbourhood U of y there is an »n such that F,CU for any m>n,
i.e., {F,:n<w} converges to y. What a w.-space means is obvious.

We can see easily from the definition that when & is finite, w.-spaces are
exactly Fréchet spaces. By the trick of repeatedly enumerating, if necessary,
we can see from [9] that w,-spaces are exactly the w-spaces in the sense of
G. Gruenhage [5].

THEOREM 3.1. Let Y be a space. The following are equivalent :
(1) Y is a first countable space;

(2) Y is a we-space;

(3) Y is a w,yi-space.

ProOF. We need only to proof (3)—(1). Take y=Y. We enumerate
{A:yecl(A) & ACY)} as {A,: a<2¥'}. Since Y is a w,yi-space, there must
be a decreasing sequence {F,: n<w} converging to v such that F,n4,+0 for
any n and a. Let U,=int(F,). Then {U,: n=w} is a neighbourhood base
atyy. 0O

We generalize A.V. Arhangelskii’s sheaf (see [8]) to any cardinals. We
need it in the proof of Theorem 3.2.

DEFINITION 3.2. If {r,:a<4} is a family of convergent sequences with a
common limit point y, we call it k-sheaf with the vertex y. Letr,={y.,: n<w).
If for any neighbourhood U of y, there is an n, such that y.,=U for any
n>n, and a, we call it a uniform #-sheaf. If for any k-sheaf {r,:a<k} in ¥
there is a uniform #-sheaf {r,:a<«} such that », is a subsequence of »,, we
call Y a k-sheafed space.
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PROPOSITION 3.1. A space Y is a wy-space if and only if Y is a Fréchet k-
sheafed space. Consequently, w.-spaces are almost countably productive for any
EZ20.

The last part of Proposition 3.1 follows from the fact that w-spaces are
almost countably productive [8].

THEOREM 3.2. A space Y is a w.-space if and only if Y is an image of a
metric space under a w.-map.

PrOOF. On the part of “only if” needs to be proven here, since w,.-spaces
are preserved by w,.-maps by Lemma 2.1.

Let {R,: p= A} be an enumeration of all uniform f-sheaves in Y. For
any pc A we construct a metric space X, as follows: Take x disjoint count-
able infinite sets {s,y: @<t} and x ;& U {say:a<x}. Let X;)=U{s.y:a<e}\U{x,}
and s,,={x%.: n€w}. We define

1/m+1/n a#

dr](xgmy lez):{ 5
|1/m—1/n| a=f

dn(me: xﬂ):]-/m .

Then (X,, d,) is a metric space. Let X be the topological sum of {X,:n=4}
and f:X-Y be the map which maps X, onto UR, in a natural way. Now
we want to show that f is a w.map. Suppose {A.:a<x} is a family of sub-
sets of ¥ and yen{cd((A.): a<e}. SinceY is Fréchet, there is an p= 4 such
that »,,C A« where R,={r.,: a<x}, and the vertex of R, is y. It is easily
seen from the definition of f that s,,Cf7'(4.) and x,=/"*(»). Therefore,
x,5cl(f'(As)). By Lemma 2.1, f is a w,-map. This completes the proof. [J

THEOREM 3.3. Let Y be a space with countable tightness and character less
than p. Then Y is a w-space. In particular, if Y is countable, Y is a w.-space
for any £<p.

PROOF. Let € be a local base at yY with cardinality less than p. Sup-
pose that {4,:nSw} is a family of subsets of ¥ such that y=A,. Since ¥
has countable tightness, we can assume that A, is countable. Let \U{A,: ncw)}
={y,:ncw}. We define P={({, S): Ic[w]<* & Se[v]<®} and (I’, S")<U, S)
iff I'DI, 'S and I'NICN{U : U<S}. It is easily seen that (P, <) is a o-
centered poset. The conclusion follows from the standard density arguments. [J
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REMARK. It follows from Example 4.2 that it is consistent that ,< <2,
and there is a countable space with character w; which is not a w p-Space.

4. Examples of countable w -spaces with character @,

It follows from Theorem 3.1 that every countable wye-Space is first count-
able. Therefore, we are only interested in the models of 2°>w, in this section.
We will construct some models of set theory in which there exist our desired
examples.

EXAMPLE 4.1. A countable space which is Fréchet but not a w-space.

Let X be the quotient space of countably many copies of {0,1/2,1/3,--.
1/, -} with all limits adhering together. We adjoin w, dominating reals to
any model of 2°>w,. Then in this model. X is a desired one.

EXAMPLE 4.2. A countable space with character o, which is a w,,-Space
but not w,,-space, where w<r,<r,<2°

We can assume that &, is regular. We start with a model V of MA+2°>k,.
Let A={A,: a<w;} be a family of infinite subsets of @w and well-ordered by
C*. We define a finite supports iteration {(Py, Q) n<us} of ccc forcing in
the following way:

In ¥P», we first take a ccc poset Q; so that in VP1x% we have MAH-29>g,.
Now we work in VP2*¢;, We define a poset Q7={(a, S): es[w]<*, SC[w]® is
finite and for any a<w,, USC*A,} where (a’, S")<(a, S) iff a’Da, S’DS and
(a"™~a)NB=0 for any BES. Let D, ,={(a, S): there exists an m>n such that
m<anA,} for any a and n. It is easily seen that D,, is dense in Q7. So if
Gy is a generic filter of Q; then B,=U{a: there is an S with (a, Se Gy}
satisfies that B,NA, is infinite for any a<w,. By a similar density argument,
if BE[w]°NVP7*%r satisfies BC+A, for any a<w;, then BAB, is finite. Let
Q;7+1=Q;*Qé’-

Let G,, be a generic filter of P,
VIG.,].

For any UC[w]® and |U|<«, there is an a<x, such that U= VIiG.]. So
if U has the strong finite intersection property, there is a We[w]® such that
Wc*U for any U=4. Therefore, we have P2k, in V[G,].

On the other hand, since there is no U €[w]” such that UC*A, and U NB,
is infinite for any a<w, and 7<k,, we have p=<g, by Theorem 3.8 [2].

Now we begin to construct the countable space X with character w; which

over V. From now on, we work in
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is a w,-space but not w,-space. Let X—@. We define the topology in the
following way: If x+0, x is isolated; The neighbourhood base at 0is
{(ANs)U{0}: a<w, and se[w]<®}. By Theorem 3.3, X is a w,,-space since
p=r,. However, we can take {Bj: <k} C[w]® so that B,C*A.NBy for any
a<w, and p<k. Itis obvious that Bj is a convergent sequence. Suppose that
X is a w,,-space. Then there exist {F,: n=w} such that:

(1) F.el[w]® and Fp.CF, for any ncw;

(2) For any a<w, there is an n such that F,CA.;

(3) F,NBj;m#0 for any n, mca® and 7 <ks.

Therefore, there is an n such that F,C*A, and F.NBj is infinite for any
a<w;, and 7P<kK,. This is impossible by our choice of {By: P<Ka}. O

QUESTION 4.1. Is it consistent that every countable w-space is first countable?
Moreover, is it consistent with ~CH that every countable Fréchet space with

character less that 2° is first countable?

REMARK. A. Dow and ]. Steprans [2] have constructed a model in which
every countable Fréchet a,-space is first countable.
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