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ON MINIMAL SPANNING SYSTEMS OVER
SEMIPERFECT RINGS

By

Yutaka KAWADA

A ring $A$ is called semiperfect in case $A/rad$ $A$ is semisimple and idem-
potents lift modulo rad $A$ , or equivalently, every finitely generated right (resp.

left) A-module has a projective cover, which is uniquely determined up to A-
isomorphism (Cf. Bass [4]). The main purpose of this paper is to refine a
version of Warfield [11] concerning Auslander-Bridger duality. (Cf. [2] and [3])

In Section 1, we first define a minimal spanning system for a finitely

generated right (resp. left) A-module $M(\neq 0)$ , and show that these minimal
spanning systems of $M$ have the properties analogous to bases of a finite-di-
mensional vector space over a field.

To more exact description of minimal spanning systems of $M$, in Section 2
we shall use a restricted matrix theory over $A$ which is called the fit matrix
theory, and show that any minimal spanning system of $M$ is obtained from the
one by applying finitely many times of “elementary substitutions”.

Next in Section 3, for a finitely presented non-projective right (resp. left)

A-module $M$, we shall define a relation matrix $R$ of $M$, and by means of $R$

provide characterizations of the properties that $M\in mod_{p}A$ (resp. $mod_{P}A^{0p}$ ) in
the sense of Auslander and Reiten [3] (Cf. [2] and [11]), and that $M$ is in-
decomposable.

Finally in Section 4, we shall consider the following condition:
(TSF) The number of all the isomorphism classes of “top-simple” right A-

modules is finite.
Then we shall show that, in case $A$ satisfies (TSF), $A$ has only a finite

number of two-sided ideals. It should be noted that representationfinite artinian
rings satisfy (TSF).

Throughout this paper, $A$ is a semiperfect ring and rad $A$ denotes the
Jacobson radical of $A$ , and also $e,$ $f,$ $e_{i},$ $f_{j},$ $g_{k}$ and $h_{l}$ mean always primitive
(and hence local) idempotents of $A$ .
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1. Minimal spanning systems of finitely generated modules.

An element $u$ in a right (resp. left) A-module $M$ is called right (resp. left)

local if $u=ue(resp. u=eu)$ for some $e$ . Throughout this paper we shall treat
only right (or left) local elements in $M$. A finite sequence consisting of right
(resp. left) local elements in $M$ will be always expressed in the form of a row
(resp. column) vector.

Let $M(\neq 0)$ be a finitely generated right A-module. Then, without loss of

generality, we can express a projective cover of $\lrcorner lI$ in the form: $\bigoplus_{i=1}^{m}e_{i}A-\div\cdot M_{A}p$

(Cf. Mueller [9]).

DEFINITION. In the above, keeping the order of indices, $(p(e_{1}), \cdots, p(e_{m}))$

is called a minimal spanning system (abbreviated $m$ . $s$ . $s.$ ) of $M_{A}$ . Here $m$ is
uniquely determined by $M_{A}$ , and so we define $m=rankM_{A}$ .

This denomination is justified by the considerations below:

DEFINITION. $(u_{i}=u_{i}e_{i}\in M_{A}|i=1, \cdots, m)$ is called a spanning system of $ll\prime f_{A}$

if $M=\sum_{i=1}^{m}u_{i}A$ .

DEFINITION. $(u_{i}=u_{i}e_{i}\in M_{A}|i=1, \cdots, m)$ is called right A-linearly independent
if the following condition is satisfied:

$(*)$ $(u_{1}, \cdots, u_{m})\left(\begin{array}{l}a_{1}\\\vdots\\ a_{m}\end{array}\right)=0$ with $\left(\begin{array}{l}a_{1}\\\vdots\\ a_{m}\end{array}\right)\in\bigoplus_{i=1}^{m}e_{i}A\Rightarrow\left(\begin{array}{l}a_{1}\\\vdots\\ a_{m}\end{array}\right)\in\bigoplus_{i=1}^{m}e_{i}(radA)$ .

Then we have the next lemmas.

LEMMA 1.1. Let $M_{A}(\neq 0)$ be finitely generated, and $u_{i}=u_{i}e_{i}(i=1, \cdots, m)$

$ele$ments of A4. Then, $(u_{1}, \cdots, u_{m})$ is an $m.s.s$ . of $M$ if and only if $(u_{1}, \cdots , u_{m})$

is a spanning system of $M$ and is right A-linearly independent.

PROOF. Define a map $p;\bigoplus_{i=1}^{m}e_{i}A\rightarrow M_{A}$ by putting $p(e_{i})=u_{i}(i=1, \cdots, m)$ .
Then $p$ is a projective cover of $M$ if and only if $p$ is an epimorphism and

$Kerp\subset\bigoplus_{i=1}^{m}e_{i}(radA)$ , which proves the lemma.

LEMMA 1.2. Let $M_{A}(\neq 0)$ be finitely generated, and $(u_{i}=u_{i}e_{i}|i=1, \cdots, n)a$

spanning system of M. Then we can choose its subsequence $(u_{i_{1}}, \cdots , u_{i_{m}})(?n\leqq n)$

as an $m.s.s$ . of $\Lambda l$.
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PROOF. Casting out, in turn, redundant elements (as a spanning system of
$M)$ from $(u_{1}, \cdots, u_{n})$ , we get at last an irredundant spanning system $(u_{t_{1}},$ $\cdots$ ,

$u_{i_{m}})$ of $M$. The irredundance of $(u_{i_{1}}, \cdots, u_{i_{m}})$ as a spanning system of $M$

implies the right A-linear independence of $(u_{i_{1}}, \cdots , u_{i_{m}})$ . Because, assume that

$\sum_{k=1}^{m}u_{i_{k}}a_{i_{k}}=0$ with $a_{i_{k}}\in e_{i_{k}}A(k=1, \cdots, m)$ , and further that $a_{i_{1}}\not\in e_{i_{1}}(radA)$ . Then,

since $e_{i_{1}}$ (rad $A$ ) is the unique maximal (proper) submodule of $e_{i_{1}}A$ , we have
$a_{i_{1}}A=e_{i_{1}}A$ , and so there is an element $b$ in $Ae_{i_{1}}$ such that $a_{i_{1}}b=e_{i_{1}}$ . Then we

see $u_{i_{1}}=-\sum_{k=2}^{m}u_{i_{k}}a_{i_{k}}b$ , which contradicts the irredundance of $(u_{i_{1}}, \cdots, u_{i_{m}})$ .

Therefore $(u_{i_{1}}, \cdots, u_{i_{m}})$ must be right A-linearly independent. Thus the proof

is completed by Lemma 1.1.
Accordingly, for a spanning system $(u_{1}, \cdots, u_{n})$ of $M$, it becomes an m.s. $s$ .

of $M$ if and only if it is “minimal” as a spanning system of $M$, in a sense that
any proper subsequence of it is no spanning system of $M$.

Lemmas 1.1 and 1.2 show also that an $m$ . $s$ . $s$ . of $M_{A}$ has the properties

analogous to a basis of a finite-dimensional vector space over a field. However
it is invalid that, to a given right A-linearly independent system $(u_{i}=u_{i}e_{i}\in$

$M_{A}|i=1,$ $\cdots$ , $l$ ), we may always get an $m$ . $s$ . $s$ . of $M$ by adding some elements
in $M$.

EXAMPLE 1. Let $A$ be the trivial extension of $R$ by $C;A=R\ltimes C$, where
$R$ and $C$ denote respectively the field of real numbers and of complex numbers.
Then $A$ is a commutative local artinian ring, and $((0,1),$ $(0, i))$ is right A-
linearly independent in $A$ , but rank $A_{A}=1$ .

More strongly than $(*)$ , we may also define as follows:

DEFINITION. $(u_{i}=u_{i}e_{i}\in M_{A}|i=1, \cdots, m)$ is called right A-independent if the
condition below is satisfied:

$(u_{1}, \cdots, u_{m})\left(\begin{array}{l}a_{1}\\\vdots\\ a_{m}\end{array}\right)=0$ with $\left(\begin{array}{l}a_{1}\\\vdots\\ a_{m}\end{array}\right)\in\bigoplus_{i=1}^{m}e_{i}A\Rightarrow\left(\begin{array}{l}a_{1}\\\vdots\\ a_{m}\end{array}\right)=\left(\begin{array}{l}0\\\vdots\\ 0\end{array}\right)$ .

In this case, $\sum_{i=1}^{m}u_{i}A\approx\bigoplus_{i=1}^{m}e_{i}A$ .

LEMMA 1.3. Let $M_{A}(\neq 0)$ be finitely generated. Then $M$ is projective if
and only if an (and every) $m.s.s$ . of $M$ is right A-independent.

PROOF. Trivial.
As for left A-modules, we need later similar definitions; $e$ . $g$ .
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DEFINITION. Let AM $(\neq 0)$ be finitely generated, and $\bigoplus_{i=1}^{m}Ae_{i}\rightarrow p$ AM a pro

jective cover of $M$. Then, keeping the order of indices, $\left(\begin{array}{l}p(e_{1})\\\vdots\\ p(e_{m})\end{array}\right)$ is called an

$m$ . $s$ . $s$ . of $AM$. In this case we further define $m=rank_{A}M$.

DEFINITION. ${}^{t}(u_{i}=e_{i}u_{iA}\in M|i=1, \cdots, m)$ is called left A-linearly independent
if the following condition is satisfied:

$(*^{\prime})$ $(a_{1}, \cdots, a_{m})\left(\begin{array}{l}u_{1}\\\vdots\\ u_{m}\end{array}\right)=0$ with $(a_{1}, \cdots, a_{m})\in\bigoplus_{i=1}^{m}Ae_{i}\Rightarrow$

$(a_{1}, \cdots , a_{m})\in\bigoplus_{i=1}^{m}$ (rad $A$ ) $e_{i}$ .

2. Fit matrix theory.

In Sections 2 and 3, we shall treat only matrices of the restricted form,

which is as follows:
(I) $m\times n$ matrices $P=(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ for every $(i, j)$ , where $m$ ,

$n,$ $e_{i}(1\leqq i\leqq\uparrow)$ and $f_{j}(1\leqq j\leqq n)$ are arbitrarily variable.
(II) Matrix addition is defined only between matrices of the same type in

the sense of (I); that is, $m\times n$ matrices $P=(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ and $Q=$

$(q_{ij})_{i.j}$ with $q_{ij}\in e_{i}Af_{j}$ .
(III) Matrix multiplication is defined only between an $lXm$ matrix $P=$

$(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ and an $m\times n$ matrix $Q=(q_{jk})_{j.k}$ with $q_{jk}\in f_{j}Ag_{k}$ . It

should be noted that between $P$ and $Q$ common $f_{j}\prime s(j=1, \cdots, m)$ appear in the
same order. These products are sometimes called the fit products.

(IV) Scalar multiplication is not defined. However, an $m\times n$ matrix $P=$

$(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ is regarded either as $P\in Hom_{A}(\bigoplus_{j=1}^{n}f_{j}A,\bigoplus_{t=1}^{m}e_{i}A)$ or as

PE $Hom_{A}(\bigoplus_{i=1}^{m}Ae_{i},\bigoplus_{j=1}^{n}Af_{j})$ . So, in spite of (I) and (III), we shall allow the (fit)

products in the forms:

$P\left(\begin{array}{l}a_{1}\\\vdots\\ a_{n}\end{array}\right)$ for $\left(\begin{array}{l}a_{1}\\\vdots\\ a_{n}\end{array}\right)\in\bigoplus_{j=1}^{n}f_{j}A$ and $(a_{1}, \cdots, a_{m})P$ for $(a_{1}, \cdots, a_{m})\in\bigoplus_{i=1}^{m}Ae_{i}$ .

The matrix theory composed under the restrictions $(I)-(IV)$ is called the fit
matrix theory over $A$ , which appeared partly in the literatures. $(e. g. [9])$

First of all we begin with the definition below.
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DEFINITION. An $n\times n$ matrix $P=(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ is called invertible
if there exists an $n\times n$ matrix $Q=(q_{ji})_{j,i}$ with $q_{ji}\in f_{j}Ae_{i}$ such that

$PQ=\left(\begin{array}{lll}e_{1} & & \\ & \ddots & \\ & & e_{n}\end{array}\right)$ and $QP=\left(\begin{array}{lll}f_{1} & & \\ & \ddots & \\ & & f_{n}\end{array}\right)$ .

In this case, $Q$ is uniquely determined by $P$, and so we define $Q=P^{-1}$ . Also,

the diagonal matrices above appeared are called $n\times n$ identity matrices.

REMARK. Let an $n\times n$ matrix $P=(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ be invertible,

and assume that $e_{i}Af_{j}=g_{i}Ah_{j}$ for every $i$ and $j(i, j=1, \cdots, n)$ . Then we have
readily $GE=E,$ $EG=G,$ $FH=F$ and $HF=H$, where by $E,$ $F,$ $G$ and $H$ we denote
respectively $n\times n$ identity matrices $(\delta_{ij}e_{i})_{i.j},$ $(\delta_{ij}f_{j})_{i.j},$ $(\delta_{ij}g_{i})_{i.j}$ and $(\delta_{ij}h_{j})_{i,j}$ .
Therefore, if $Q$ is the inverse of $P=(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ , we see that HQG

just becomes the inverse of $P=(p_{ij})_{i,j}$ with $p_{ij}\in g_{i}Ah_{j}$ .
Then we have readily the next.

LEMMA 2.1. Assume that $P$ and $Q$ are invertible matrices and the product
$PQ$ is defined. Then $PQ$ is invertible and $(PQ)^{-1}=Q^{-1}P^{-1}$ .

DEFINITION. An element $a\in eAf$ is called invertible if the $1\times 1$ matrix $(a)$

is invertible.
As is readily seen, $a\in eAf$ is invertible if and only if $a\in eAf\backslash e(radA)f$ .
Now by the analogy of matrices over a field, we want to define elementary

matrices.

DEFINITION. The three kinds of $n\times n$ matrices below are called elementary

matrices, where $\epsilon_{ij}(1\leqq i, j\leqq n)$ denote the ordinary matrix units and $f_{i}(1\leqq i\leqq n)$

are arbitrarily variable.

(EM 1) $\rho_{n}(j, k)=\sum_{i\neq j.k}f_{i}\epsilon_{ii}+f_{j}\epsilon_{jk}+f_{k}\epsilon_{kj}(J\neq k)$ and its transpose ${}^{t}\rho_{n}(j, k)$ .

(EM 2) $\delta_{n}(j;a)=\sum_{i\neq j}f_{i}\epsilon_{ii}+a\epsilon_{jj}$ with $a\in f_{j}Ag_{j}\backslash f_{j}$ (rad $A$ ) $g_{j}$ .

(EM 3) $\tau_{n}(Jk;a)=\sum_{i=1}^{n}f_{i}\epsilon_{ii}+a\epsilon_{jk}$ with $a\in f_{j}Af_{k}(j\neq k)$ .

Obviously every elementary matrix is invertible and its inverse also becomes
an elementary matrix.

For an $m\times n$ matrix $P=(p_{ij})_{i,j}$ with $p_{ij}\in e_{i}Af_{j}$ , we can define elementary

column transformations on $P$, which are induced by multiplications of elementary

matrices (except ${}^{t}\rho_{n}(j,$ $k)$ ) from the right. In particular, applying in turn
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elementary column transformations to $P$ such that $P\not\equiv Omod (e_{i}(radA)f_{j})_{i.j}$ ,

we get at last the reduced column echelon form $\tilde{P}=(\tilde{p}_{ij})_{i,j}$ ; that is, there is
an increasing sequence $1\leqq i_{1}<i_{2}<\cdots<i_{r}\leqq m(1\leqq r\leqq n)$ such that $\tilde{p}_{i_{k}.k}=e_{t_{k}},\tilde{p}_{i_{k}.j}$

$=0(]\neq k)$ for each $k(k=1, \cdots, r)$ and that $\tilde{p}_{ij}\in rad$ $A$ whenever $(i, j)$ belongs
to one of the following:

$\{i<i_{1}, j\geqq 1\},$ $\{i_{k-1}<i<i_{k}, j\geqq k\}(k=2, \cdots, r)$ and $\{i>i_{r}, j\geqq r+1\}$ .

By using this fact we have the next.

PROPOSITION 2.2. An invertible matrix is expressed as a product of a finite
number of elementary matrices.

PROOF. Under the same notations as above (together with $m=n$ ), let $P$ be
an invertible $n\times n$ matrix, and $\tilde{P}$ its reduced column echelon form. Then $\tilde{P}$ is
expressed in the form:

$\tilde{P}=PE_{1}\cdots E_{t}$ ,

where $E_{k}(1\leqq k\leqq t)$ denote elementary matrices, and hence by Lemma 2.1 $\tilde{P}$ is
an invertible matrix. On the other hand, $\tilde{P}$ must be the identity matrix

$\left(\begin{array}{lll}e_{1} & & \\ & \ddots & \\ & & e_{n}\end{array}\right)$ ; otherwise, $r<n$ and so $\tilde{p}_{ij}\in rad$ $A$ for every $(i, j)\in\{i\geqq 1, j\geqq r+1\}$ ,

and consequently $\tilde{P}^{-1}\tilde{P}$ is no identity matrix, a contradiction. Thus $ P=E_{t}^{-1}\cdots$

$E_{1}^{-1}$ , which proves the lemma.
Turn next our attention to finitely generated right A-modules.

DEFINITION. Let $M_{A}(\neq 0)$ be finitely generated, and let $(u_{1}, \cdots, u_{m})$ with
$u_{i}=u_{i}e_{i}(i=1, , 7n)$ be an $m$ . $s$ . $s$ . of $M$. Then the three kinds of substitutions
below are called elementary substitutions in $M_{A}$ .
(ES 1) transposition: interchanging $u_{j}$ and $u_{k}(j\neq k)$ .
(ES 2) dilatation: replacing $u_{j}$ by $u_{j}a$ with $a\in e_{i}Ag_{j}\backslash e_{i}(radA)g_{j}$ .
(ES 3) transvection: replacing $u_{j}$ by $u_{j}+u_{k}$ $a$ with $a\in e_{k}Ae_{j}(j\neq k)$ .

These are realized by multiplications of elementary matrices $\rho_{m}(j, k)$ ,

$\delta_{m}(j;a)$ and $\tau_{m}(k, j;a)$ respectively from the right. Hence we obtain the
following.

THEOREM 2.3. Let $(u_{1}, \cdots, u_{m})$ and $(v_{1}, \cdots, v_{m})$ be given two $m.s.s$ . $s$ of a
finitely generated module $M_{A}$ . Then the one is obtained from the other by apply-
ing finitely many times of elementary substitutions in $M_{A}$ .

PROOF. Assume that $(u_{1}, \cdots, u_{m})$ and $(v_{1}, \cdots, v_{m})$ are determined respec-
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tively by the projective covers $\bigoplus_{i=1}^{m}e_{i}A\rightarrow pM_{A}$ and $\bigoplus_{j=1}^{m}f_{j}A\rightarrow^{\prime}M_{A}p$ . Then by the

uniqueness of projective covers of $M$ there is a commutative diagram below:

$t=1\bigoplus_{m}^{m}eAM\oplus f_{J}^{i}AM_{A}^{A}P|[,\Vert\underline{p\underline{p}}$

$f=1$

where $P=(p_{ij})_{i.j}$ with $p_{ij}\in e_{i}Af_{j}$ must be invertible. Since $p(e_{i})=u_{i}$ and $p^{\prime}(f_{j})$

$=v_{j}$ , we have readily
$(v_{1}, \cdots, v_{m})=(u_{1}, \cdots, u_{m})P$ .

Hence the theorem follows from Proposition 2.2.
Finally we shall come back to the fit matrix theory over $A$ .

DEFININION. Let $R=(r_{ij})_{i,j}$ with $r_{ij}\in e_{i}Af_{j}$ be an $m\times n$ matrix $(\neq 0)$ and

set further $R=(r_{1}, \cdots , r_{n})=\left(\begin{array}{l}s_{1}\\\vdots\\ s_{m}\end{array}\right)$ . Then we define respectively

column rank $R=rank\sum_{j=1}^{n}r_{j}A(\subset\bigoplus_{i=1}^{m}e_{i}A)$ , and

row rank $R=rank\sum_{i=1}^{m}As_{i}(\subset\bigoplus_{j=1}^{n}$ A $f_{j})$ .

Obviously column rank $ R\neq$ row rank $R$ in general.
Now the following is a direct consequence of Lemma 1.2.

LEMMA 2.4. Let $R=(r_{1}, \cdots, r_{n})=\left(\begin{array}{l}s_{1}\\\vdots\\ s_{m}\end{array}\right)$ be an $m\times n$ matrix $(\neq 0)$ .

Then column rank $R=t$ if and only if there exists a subsequence $(r_{J_{1}}, \cdots, r_{j_{t}})$

of $(r_{1}, \cdots, r_{n})$ such that it becomes an $m$ . $s$ . $s$ . of $\sum_{j=1}^{n}r_{j}A$ . Similarly,

row rank $R=r$ if and only if there exists a subsequence ${}^{t}(s_{i_{1}}, \cdots, s_{i_{\gamma}})$ of
${}^{t}(s_{1}, \cdots , s_{m})$ such that it becomes an $m$ . $s.s$ . Of $\sum_{i=1}^{m}As_{i}$ .

Moreover, these ranks remain invariable whenever we multiply $R$ by in-
vertible matrices. Namely,

PROPOSITION 2.5. Let $R=(r_{ij})_{i,j}$ with $r_{ij}\in e_{i}Af_{j}$ be an $m\times n$ matrix $(\rightarrow-0)$

and let $P$ and $Q$ be invertible matrices. If the product $PRQ$ is defined, then we
have
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column rank $PRQ=column$ rank $R$ , and row rank $PRQ=row$ rank $R$ .

PROOF. We have only to show the first equality. Set now $R=(r_{1}, \cdots , r_{n})$

and assume column rank $R=t$ . Then by Lemma 2.4 there is an $m$ . $s$ . $s$ . $(r_{j_{1}},$ $\cdots$ ,

$r_{j_{t}})$ of $\sum_{j=1}^{n}r_{j}A$ . Since the other $r_{j_{k}}(t+1\leqq k\leqq n)$ becomes a right A-linear com-
bination of $(r_{j_{1}}, \cdots, r_{j_{l}})$ by Lemma 1.1, there is a $t\times(n-t)$ matrix $B$ such that

$(r_{j_{l+1}}, \cdots, r_{j_{n}})=(r_{j_{1}}, \cdots, r_{J_{t}})B$ .

At first noting that $PR=(Pr_{1}, \cdots, Pr_{n}),$ $(Pr_{j_{l+1}}, \cdots, Pr_{J_{n}})=(Pr_{J_{1}}, \cdots , Pr_{i_{t}})$

$B$ and that, since $(r_{j_{1}}, \cdots, r_{j_{l}})$ is right A-linearly independent, $(Pr_{j_{1}}, \cdots, Pr_{!\iota})$

is so, we get at once an $m$ . $s$ . $s$ . $(Pr_{j_{1}}, \cdots, Pr_{j_{l}})$ of $\sum_{j=1}^{n}(Pr_{j})A$ . This shows

column rank $PR=t$ .
To show next column rank $RQ=t$ , by Proposition 2.2 we may assume

that $Q$ is an elementary matrix. However the right A-module $\sum_{j=1}^{n}r_{j}A$ remains

invariable, as a whole, by applying an elementary column transformation to $R$ .
Hence from the definition of column ranks it follows that column rank $RQ=t$ .
Thus the lemma is proved.

EXAMPLE 2. Let $\Delta\supset\Gamma$ be a division ring extension such that $[\Delta_{\Gamma} : \Gamma]=2$ ;
that is, $\Delta_{\Gamma}=\Gamma\oplus d_{0}\Gamma$. Set now respectively

$A=\left(\begin{array}{ll}\Delta & \Delta\\ 0 & \Gamma\end{array}\right)$ , $e_{1}=(10$ $00$ , $e_{2}=\left(\begin{array}{ll}0 & 0\\0 & 1\end{array}\right)$ , $u=\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right)$ and $v=\left(\begin{array}{ll}0 & d_{0}\\0 & 0\end{array}\right)$ .

Then $A$ is an artinian ring with rad $A=\left(\begin{array}{ll}0 & \Delta\\ 0 & 0\end{array}\right)$ , and we see $u=e_{1}ue_{2}$ and $v=$

$e_{1}ve_{2}$ . For the next $3\times 4$ matrix:

$R=\left(\begin{array}{llll}e_{1} & 0 & 0 & 0\\0 & e_{2} & 0 & 0\\0 & 0 & u & v\end{array}\right)$ ,

we get column rank $R=4$ but row rank $R=3$ . Further remark that the sequence
consisting of its column vectors is right A-independent and also that the
sequence consisting of its row vectors is left A-independent.

3. Relation matrices.

We begin with the definition of relation matrices.
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DEFINITION. Let $M_{A}$ be a finitely presented non-projective module, and let
$(**)$ below denote a minimal projective presentation of $M$ :

$(**)$ $\bigoplus_{j=I}^{n}f_{j}A--\geq p_{1}\bigoplus_{i=1}^{m}e_{i}AM_{A}\underline{p_{0}}-0$ (exact),

where $p_{0}$ denotes a projective cover of $M$ and $p_{1}$ induces a projective cover of

$Kerp_{0}$ . Set now $p_{1}(f_{j})=r_{j}=\left(\begin{array}{l}r_{1j}\\\vdots\\ r_{mj}\end{array}\right)(]=1, \cdots, n)$ . Then the $m\times n$ matrix $R=$

$(r_{ij})_{i,j}$ with $r_{ij}\in e_{i}(radA)f_{j}$ may be regarded as an $m$ . $s$ . $s$ . of $Kerp_{0}$ , which is
called the relation matrix of $M_{A}$ associated with $(**)$ .

In this case, of course $(r_{1}, \cdots, r_{n})$ is right A-linearly independent, and further

(1) $p_{1}\left(\begin{array}{l}a_{1}\\\vdots\\ a_{n}\end{array}\right)=R\left(\begin{array}{l}a_{1}\\\vdots\\ a_{n}\end{array}\right)$ for every $\left(\begin{array}{l}a_{1}\\\vdots\\ a_{n}\end{array}\right)\in\bigoplus_{j\approx 1}^{n}f_{j}A$ .

For another minimal projective presentation $(**’)$ of $M_{A}$ , we get the follow-
ing commutative diagram:

$\bigoplus_{j=1}^{n}f_{j}A\underline{p_{1}}\bigoplus_{l=1}^{m}e_{i}A\rightarrow^{p_{0}}M_{4}1$ $0$ (exact)

$(**^{\prime})$

$Q^{-1}\downarrow|_{j}\bigoplus_{j\approx 1}^{n}hA\rightarrow^{p_{1}^{\prime}}\bigoplus_{i=1}^{m}gAP\downarrow|_{i}\rightarrow^{p_{0}^{\prime}}M_{A}\Vert\rightarrow 0$

(exact) ,

whence we have the next.

LEMMA 3.1. Let $M_{A}$ be a finitely presented non-projective module, and $R$ a
relaton matrix of M. Then every relation matrix of $M$ is expressed in the form:
$PRQ$ , where $P$ and $Q$ denote invertible matrices.

Taking now A-duals of $(**)$ , we get

$(***)$
$\bigoplus_{i=1}^{m}Ae_{i}-\rightarrow p_{1}*\bigoplus_{j=1}^{n}$ $A$

$f_{j}>\underline{q}$ Coker $p_{1}*\rightarrow 0$ (exact) ,

where $p_{1^{*}}=Hom_{A}(p_{1}, A)$ and $q$ denotes the canonical epimorphism, and it follows
readily that

(2) $p_{1^{*}}(a_{1}, \cdots, a_{m})=(a_{1}, \cdots, a_{m})R$ for every $(a_{1}, \cdots, a_{m})\in\bigoplus_{i=1}^{m}Ae_{i}$ .

Hence ${\rm Im} p_{1}*is$ a finitely generated module $(\neq 0)$ contained in $\bigoplus_{j=1}^{n}$ (rad $A$ ) $f_{j}$ , and

so $q$ is a projective cover of Coker $p_{1}*and$ Coker $p_{1}*is$ a finitely presented non-
projective left A-module.
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After Auslander and Reiten [3], we shall adopt the next:

DEFINITION. $\Lambda^{\prime}I_{A}\in mod_{P}$ $A$ implies that $\lrcorner lf_{A}$ is finitely presented and that
$M_{A}$ has no projective module $(\neq 0)$ as its direct summand. Similarly $ AM\in$

$mod_{P}A^{0p}$ is defined.
Such a property can be characterized by the fit matrix theory over $A$ .

THEOREM 3.2. Let $M_{A}$ be a finitely presented non-projective module, and

$R=\left(\begin{array}{l}s_{1}\\\vdots\\ s_{m}\end{array}\right)$ the relation matrix associated with $(**)$ . Then the conditions below are

equivalent to each other.
(i) $M_{A}\in mod_{p}A$ .
(ii) ${}^{t}(s_{1}, \cdots, s_{m})$ is left A-linearly independent.
(iii) $(***)$ expressed above becomes a minimal $proJ^{ective}$ presentation of

Coker $p_{1}*$ .

In these cases, further $R$ also becomes the relation matrix of Coker $p_{1}*$

associated with $(***),\cdot$ that is, Coker $p_{1^{*}}=TrM_{A}\in mod_{p}A^{op}$ after Auslander and
Reiten [3].

PROOF. $(i)\Leftrightarrow$ (iii) is well known (Cf. [2] and [11]).

$(i)\Leftarrow$ (ii): To prove this, we have only to show that A $f_{A}\not\in mod_{p}$ $A$ if and
only if row rank $R<m$ . Assume first $M_{A}=N_{A}\oplus L_{A}$ with a projective module

$L(\neq 0)$ . Let $\bigoplus_{i=1}^{s}g_{i}A\rightarrow\sigma N_{A}(1\leqq s<m)$ and $\bigoplus_{i=s+1}^{m}g_{i}A\rightarrow\sim^{\rho}L_{A}$ be the projective covers

of $N_{A}$ and $L_{A}$ respectively. Then we have a projective cover of $M_{A}$ : $\bigoplus_{i=1}^{m}g_{i}A$

$\underline{\sigma\oplus\rho}_{1}l/f_{A}$ , and since $Ker\sigma\oplus\rho=Ker\sigma\subset\bigoplus_{i=1}^{s}g_{i}A$ the relation matrix $R^{\prime}$ of $Ker\sigma\oplus\rho$

is of the form: $s\{\left(\begin{array}{l}*\\O\end{array}\right),$ $i$ . $e$ . row rank $R^{\prime}<m$ . On the other hand, by Lemma 3.1

we see $R^{\prime}=PRQ$ with invertible matrices $P$ and $Q$ . Therefore row rank $R=$

row rank $R^{\prime}<m$ by Proposition 2.5.
Conversely assume row rank $R<m$ . In view of Lemma 2.4, by applying

elementary row transformations to $R$ we may reach to an matrix $R^{\prime}=s\{\left(\begin{array}{l}*\\O\end{array}\right)$

$(1\leqq s<\dagger n)$ . By Proposition 2.2 there is an invertible matrix $P=(p_{ij})_{i.j}$ with
$p_{ij}\in g_{i}Ae_{j}$ such that $R^{\prime}=PR$ . Considering the commutative diagram below:
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$\bigoplus_{j=1}^{n}f_{j}A\rightarrow^{p_{1}}\bigoplus_{i=1}^{m}e_{i}A\underline{p_{0}}M_{A}\rightarrow 0$ (exact)

$||$ $P\downarrow/$ $\Vert$

$\bigoplus_{j=1}^{n}f_{j}A\rightarrow^{p_{1}^{\prime}}\bigoplus_{i--1}^{m}g_{i}A\rightarrow^{p_{0}^{\prime}}M_{A}$ $0$ (exact),

$R^{\prime}$ is an $m$ . $s$ . $s$ . of $Kerp_{0^{\prime}}$ . So set respectively

$N_{A}=p_{0}^{\prime}(\bigoplus_{i=1}^{s}g_{i}A)$ and $L_{A}=p_{0^{\prime}}(\bigoplus_{i=s+1}^{m}g_{i}A)$ .

Then, since there follows $Kerp_{0^{\prime}}\subset\bigoplus_{i=1}^{\epsilon}g_{i}A$ from the form of $R^{\prime}$ , we have readily

$M_{A}=N_{A}\oplus L_{A}$ and $\bigoplus_{i=s+1}^{m}g_{i}A\approx L_{A}$ ; that is, $M_{A}\not\in mod_{p}A$ .

(ii) $\Leftrightarrow$ (iii): To prove this, we have only to show that row rank $R=m$ if

and only if $Kerp_{1}^{*}\subset\bigoplus_{j=1}^{n}f_{j}(radA)$ . However this is obvious by (2). Thus the

proof is completed.

It should be noted that, in case $M_{A}\in mod_{p}$ $A$ with a relation matrix $R=$

$(r_{1}, \cdots, r_{n})=\left(\begin{array}{l}s_{1}\\\vdots\\ s_{m}\end{array}\right)$ , we may regard as:

$M_{A}=\bigoplus_{i=1}^{m}e_{i}A/\sum_{j=1}^{n}r_{j}A$ and $TrM_{A}=\bigoplus_{j=1}^{n}Af_{j}/\sum_{i=1}^{m}As_{i}$ . (Cf. [11])

REMARK. If $M_{A}$ is a finitely presented non-projective module with a $1\times n$

relation matrix $R$ , then obviously $M_{A}$ is indecomposable and so $M_{A}\in mod_{P}A$ .
The following is useful to construct indecomposables, which is also observed

by H. Asashiba.

COROLLARY 3.3. Let $M_{A}$ be a finitely presented non-projective module with

an $m\times 1$ relation matrix $R=\left(\begin{array}{l}r_{!^{1}}\\r_{m1}\end{array}\right)$ . Then the conditions below are equivalent to

each other.
(i) $\Lambda I_{A}$ is an indecomposable module.
(ii) $M_{A}\in mod_{P}A$

(iii) ${}^{t}(r_{11}, \cdots, r_{m1})$ is left A-linearly independent.

PROOF. We have only to prove the equivalence $(i)\Leftarrow?(ii)$ . To do so, we first
assume that $M_{A}$ is decomposed such as:



132 Yutaka KAWADA

$M_{A}=N_{A}\oplus L_{A}$ ( $N\neq 0$ and $L\simeq O$).

Denote by $\bigoplus_{i=1}^{s}g_{i}A\rightarrow\sigma N_{A}(1\leqq s<m)$ and $\bigoplus_{i=\$+1}^{m}g_{i}A\rightarrow\rho L_{A}$ respectively the projective

covers of $N$ and $L$ . Then $\bigoplus_{i=1}^{m}g_{i}AM_{A}\underline{\sigma\oplus\rho}$ becomes a projective cover of $M$.
Since top $(Ker\sigma\oplus\rho)$ is simple and since $Ker\sigma\oplus\rho=Ker\sigma\oplus Ker\rho$ , we have
either $Ker\sigma=0$ or $Ker\rho=0$ ; that is, either of $N$ and $L$ must be projective;
$i.e$ . $M_{A}\not\in mod_{P}A$ .

Conversely, if $M_{A}\not\in mod_{p}A$ then evidently $M$ is decomposable. Thus we
obtain the corollary.

Next we want to characterize the indecomposability of modules in $mod_{P}A$

by using their relation matrices. For this purpose we need the next.

DEFINITION. An $nXn$ matrix $T=(t_{ij})_{i.j}$ with $t_{ij}\in e_{i}Ae_{j}$ is called idempotent
if $T^{2}=T$ .

LEMMA 3.4. Let $T=(t_{ij})_{i,j}$ with $t_{ij}\in e_{i}Ae_{j}$ be an $n\times n$ matrix. Then $T$ is
idempotent if and only if there exist an invertible $n\times n$ matrix $P=(p_{jk})_{j.k}$ with
$p_{jk}\in g_{j}Ae_{k}$ and a diagonal $n\times n$ matrix

$D=\left(\begin{array}{llllll}g_{1} & & & & & \\ & \ddots & & & & \\ & & g_{\iota} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0\end{array}\right)$

$(0\leqq s\leqq n)$ such that $T=P^{-1}DP$.

PROOF. We have only to prove the only if part. Let $T$ be an idempotent

matrix which is neither zero matrix nor identity matrix, and set $M_{A}=\bigoplus_{i=1}^{n}e_{i}A$ .
Then, since $T\in EndM_{A}$ we have

$M_{A}=TM_{A}\oplus(E-T)M_{A}$ ,

where $E$ denotes the identity matrix $\left(\begin{array}{lll}e_{1} & & \\ & \ddots & \\ & & e_{n}\end{array}\right)$ . Hence $TM$ as well as $(E-T)M$

is finitely generated projective, and so we get their projective covers below:

$\bigoplus_{j=1}^{l}g_{j}A\rightarrow^{\sim\sigma}TM_{A}(1\leqq s<n)$ and $\bigoplus_{j=s+1}^{n}g_{j}A\rightarrow^{\sim\rho}(E-T)M_{A}$
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Therefore there is an invertible matrix $P$ such that $P^{-1}=\sigma\oplus\rho:\bigoplus_{j=1}^{n}g_{j}A_{\rightarrow;}\sim M_{A}$ .

Set further $\left(\begin{array}{lll}g_{1} & & \\ & \ddots & \\ & & g_{n}\end{array}\right)=(g_{1}, \cdots, g_{n})$ . Then, for any $j(1\leqq j\leqq s)$ we have $P^{-1}g_{j}$

$\in TM$ and hence $TP^{-1}g_{j}=P^{-1}g_{j}$ because $T^{2}=T;i.e$ .

$PTP^{-1}g_{j}=g_{j}$ for every $j(j=1, \cdots, s)$ .
On the other hand, for any $j(s+1\leqq j\leqq n)$ we have $P^{-1}g_{j}\in(E-T)M$ and hence
$TP^{-1}g_{j}=0;i.e$ .

$PTP^{-1}g_{j}=0$ for every $j$ $(j=s+1, \cdots , n)$ .

Consequently it follows that

PTP $=(g_{1}, \cdots, g_{s}, 0, \cdots, 0)=(^{g_{1}}g_{\iota_{0}}.0$

which proves the lemma.
The following will be applied, in fact, to connected semiperfect rings. (Cf.

[12])

THEOREM 3.5. Let $M_{A}$ be a module in $mod_{p}A$ and $R$ an $m\times n$ relation
matrix of $M_{A}$ ( $m\geqq 2$ and $n\geqq 2$). Then $M_{A}$ is indecomposable if and only if the
condition below is satisfied: $(\circ)$ If $TR=RS$ for non-zero idempotent matrices $T$

and $S$ , then both $T$ and $S$ must be identity matrices.

PROOF. We shall prove that $M_{A}$ is decomposable if and only if there exist
“proper” idempotent matrices $T$ and $S$ such that $TR=RS$ , where proper matrices
mean that they are neither zero matrices nor identity matrices.

Assume first that $M_{A}$ is decomposable; $i.e$ . $M=M_{1}\oplus M_{2}$ , and let $\bigoplus_{i=1}^{s}g_{i}A^{\sigma}\rightarrow M_{1}$

$(1\leqq s<m)$ and $\bigoplus_{i=s+1}^{m}g_{i}A\rightarrow\rho M_{2}$ be the projective covers of $M_{1}$ and $M_{2}$ respectively.

Since $Ker\sigma\neq 0$ and $Ker\rho\neq 0$ by the assumption that $M_{A}\in mod_{P}A$ , we get

further the projective covers of $Ker\sigma$ and $Ker\rho;i.e.\bigoplus_{j=1}^{t}h_{j}A-\succ\alpha Ker\sigma(1\leqq t<n)$

add $\bigoplus_{j=t+1}^{n}h_{j}A\rightarrow\beta Ker\rho$ .

Then the sequence below:
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$\bigoplus_{j=1}^{n}h_{j}A\rightarrow^{\alpha\oplus\beta}\bigoplus_{i=1}^{m}g_{i}A\rightarrow^{\sigma\oplus\rho}M_{A}\rightarrow 0$ (exact)

becomes a minimal projective presentation of $M_{A}$ . Let $R^{\prime}$ be the relation matrix
of $M_{A}$ associated with the above. Then we see easily

$R^{\prime}=\left(\begin{array}{ll}R_{1} & O\\O & R_{2}\end{array}\right)$ with $R_{1}\neq 0$ and $R_{2}\neq O$ ,

where $R_{1}$ and $R_{2}$ denote respectively an $s\times t$ matrix and an $(m-s)\times(n-t)$

matrix. On the other hand, by Lemma 3.1 there are invertible matrices $P=$

$(p_{ki})_{k.i}$ with $p_{ki}\in g_{k}Ae_{i}$ and $Q=(q_{jl})_{j.l}$ with $q_{jl}\in f_{j}Ah_{l}$ such that $R^{\prime}=PRQ$ , and
hence

$PRQ=\left(\begin{array}{ll}R_{1} & O\\O & R_{2}\end{array}\right)$ .

Take now the diagonal $mXm$ (resp. $n\times n$ ) matrix below:

$D_{1}=\left(\begin{array}{llllll}g_{1} & & & & & \\ & \ddots & & & & \\ & & g. & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0\end{array}\right)$ resp. $D,=\left(\begin{array}{llllll}h_{1} & & & & & \\ & \ddots & & & & \\ & & h_{\iota} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0\end{array}\right)$

Multiplying $PRQ$ by $D_{1}$ (resp. $D_{2}$ ) from the left (resp. the right), we have

$D_{1}PRQ=\left(\begin{array}{ll}R_{1} & O\\O & O\end{array}\right)=PRQD_{2}$ ,

whence it follows immediately that $(P^{-1}D_{1}P)R=R(QD_{2}Q^{-1})$ .
Conversely, assume that there exist proper idempotent matrices $T$ and $S$

such that $TR=RS$ . Then, by Lemma 3.4 $T$ and $S$ are expressed respectively
in the forms:

$T=P^{-1}D_{1}P$ and $S=QD_{2}Q^{-1}$ ,

where $P=(p_{ki})_{k.i}$ with $p_{ki}\in g_{k}Ae_{i}$ and $Q=(q_{jl})_{j.l}$ with $q_{jl}\in f_{j}Ah_{l}$ are invertible
matrices, and where
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$D_{1}=\left(\begin{array}{llllll}g_{1} & & & & & \\ & \ddots & & & & \\ & & g_{*} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0\end{array}\right)(1\leqq s<m)$

and

$D_{2}=\left(\begin{array}{llllll}h_{1} & & & & & \\ & \ddots & & & & \\ & & h_{t} & & & \\ & & & 0 & & \\ & & & & \ddots & \\ & & & & & 0\end{array}\right)(1\leqq t<n)$ .

Therefore we have $D_{1}(PRQ)=(PRQ)D_{2}$ , whence it readily follows that

$PRQ=\left(\begin{array}{ll}R_{1} & O\\O & R_{2}\end{array}\right)$ ,

where $R_{1}$ and $R_{2}$ denote respectively an $s\times t$ matrix and an $(m-s)\times(n-t)$

matrix. Considering now the commutative diagram below:

$\bigoplus_{j=1}^{n}f_{j}A\rightarrow^{p_{1}}\bigoplus_{i=1}^{m}e_{i}A\underline{p_{0}}M_{4}1\rightarrow 0$ (exact)

$(**^{\prime})$

$Q^{-J}\downarrow|_{j}\bigoplus_{j=1}^{n}hA\rightarrow^{p_{1}^{\prime}}\bigoplus_{i=1}^{m}gAP\downarrow l_{i}\underline{p_{0}^{\prime}}M_{A}||\rightarrow 0$

(exact),

$PRQ$ is the relation matrix associated with $(**^{;})$ . From the above form of $PRQ$

it readily follows that

$Kerp_{0}^{\prime}=Kerp_{0^{1}}^{\prime}/\eta(\bigoplus_{i=1}^{s}g_{i}A)\oplus Kerp_{0}^{\prime}\cap(\bigoplus_{i=s+1}^{m}g_{i}A)$ ,

whence we have

$M_{A}=p_{0}^{\prime}(\bigoplus_{i=1}^{s}g_{i}A)\oplus p_{0}^{\prime}(\bigoplus_{i=s+1}^{m}g_{i}A)$ .

Hence $M_{A}$ is decomposable.

Accordingly we have proved that $M_{A}$ is indecomposable if and only if the
condition below is satisfied:
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$(\circ^{\prime})$ If $TR=RS$ for non-zero idempotent matrices $T$ and $S$ , then either of $T$

and $S$ must be an identity matrix.

But, by the assumption that $M_{A}\in mod_{p}A$ , if $S$ (resp. $T$ ) is the identity matrix
then $T$ (resp. $S$ ) must be the identity matrix. Because, if $R=TR$ with a proper

idempotent matrix $T=P^{-1}D_{1}P$ expressed above, then $PR=D_{1}(PR)=^{s\{}\left(\begin{array}{l}*\\O\end{array}\right)$ and

row rank $PR=m$ by Proposition 2.5 and by Theorem 3.2, a contradiction.
Similarly, if $R=RS$ with a proper idempotent matrix $S=QD_{2}Q^{-1}$ expressed

above, then we are again led to a contradiction. Thus the proof is completed.

4. Semiperfect rings satisfying (TSF).

As is well known, in a representation-finite artinian ring its two-sided
ideals constitute always a distributive lattice (Cf. [6]), and so from the repre-

sentation theory of distributive lattices it follows that the number of its two-

sided ideals is finite (Cf. [5]).

In this section we want to show that such a property holds good under
a weaker condition than the above. We first adopt the next.

DEFINITION. A right A-module $\Lambda I$ is called top-simple if top $M_{A}$ is a simple

module.

Then, as was stated in the introduction, we consider the following con-
dition:

(TSF) The number of all the isomorphism classes of top-simple right

A-modules is finite.

THEOREM 4.1. Let $A$ be a semiperfect ring satisfying (TSF). Then $A$ has
only a finite number of two-sided ideals.

PROOF. First of all, by Morita equivalence we may assume that $A$ itself
is a basic ring, and let

$1=\sum_{k=1}^{t}e_{k}$

be the decomposition of 1 into pairwise orthogonal primitive idempotents. It
should be noted that $e_{i}A\approx e_{j}A$ only if $i=$ ]. We shall distinguish two steps.

Step 1. $AI_{A}\subset radA$ .
Let us set $F=\{_{A}I_{A}|I\subset radA\}$ . At first remark that, for each $I$ in $F$,



On minimal spanning systems over semiperfect rings 137

$e_{k}A/e_{k}I(k=1, \cdots, t)$ are not isomorphic to each other; because, top $ e_{k}A/e_{k}I\approx$

$e_{k}A/e_{k}(radA)$ ( $k=1,$ $\cdots$ , t) and they are not isomorphic to each other. Secondly
remark that, for any (I, $J$ ) $(I\neq J)$ in $F\times F$, there exists at least one, say $k$

$(1\leqq k\leqq t)$ , such that $e_{k}A/e_{k}I\neq e_{k}A/e_{k}J$ ; because, if $e_{k}A/e_{k}I\approx e_{k}A/e_{k}J$ for every $k$

$(k=1, \cdots, t)$ then

$[A/I]_{A}=\bigoplus_{k=1}^{t}e_{k}A/e_{k}I\approx\bigoplus_{k=1}^{t}e_{k}A/e_{k}J=[A/J]_{A}$ and so $I=J$ ,

a contradiction.
Now, for a right A-module $M$, denote by $\ovalbox{\tt\small REJECT} M_{A}\ovalbox{\tt\small REJECT}$ the isomorphism class of

$M_{A}$ , and set respectively

$G=\{\ovalbox{\tt\small REJECT} e_{k}A/e_{k}I\ovalbox{\tt\small REJECT}|1\leqq k\leqq t, I\in F\}$ and $s=\# G$ .
Then by the assumption (TSF) and by the first remark we have $ t\leqq s<\infty$ . For
each $\ovalbox{\tt\small REJECT} M_{A}\ovalbox{\tt\small REJECT}\in G$ we shall assign a natural number 1 $(1\leqq l\leqq s)$ ; that is, there is a
bijection $\varphi:G_{\rightarrow}^{\sim}\{1, \cdots, s\}$ .

To count $\# F$ we shall define the map $\psi:F\rightarrow\{1, \cdots, s\}^{(t)}$ as follows:

$\psi(I)=(\varphi([e_{1}A/e_{1}I\ovalbox{\tt\small REJECT}), \cdots, \varphi([e_{t}A/e_{t}I\ovalbox{\tt\small REJECT}))$ for each $I\in F$ .
By the second remark $\psi$ becomes an injective map. From the first remark
again it follows that

$\# F\leqq {}_{s}P_{t}<\infty$ .
Step 2. $AI_{A}\subset A$ .
Set now $H=\{_{A}I_{A}|I\subset A\}$ . For each $I$ in $H$, since $I=\sum_{k=1}^{t}e_{k}Ie_{k}+\sum_{i\neq j}e_{i}Ie_{j}$ , we

can express it as follows:
$I=\sum_{k\in\Lambda}e_{k}Ae_{k}+I\cap radA$ ,

where $\Lambda=\Lambda(I)=\{k|e_{k}\in I, 1\leqq k\leqq t\}$ , and this expression is uniquely determined
by $I$ . Since $I\cap radA\in F$ we can conclude that $\# H\leqq 2^{t}{}_{s}P_{t}<\infty$ . Thus the theo-
rem is proved.

The next will be required to illustrate examples later.

LEMMA 4.2. Let $\mathfrak{m}$ and $\mathfrak{n}$ be right ideals contained in $e(radA)$ . Then, $eA/\mathfrak{m}$

$\approx eA/\mathfrak{n}$ if and only if there exists an invertible element $a$ in $eAe$ such that
$\mathfrak{n}=a\mathfrak{m}$ .

$\alpha$

PROOF. Assume first that $eA/\mathfrak{m}\rightarrow\sim eA/\mathfrak{n}$ . By the uniqueness of projective
covers, we get the next commutative diagram:
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$0--*\mathfrak{m}->eA-eA/\mathfrak{m}-0$ (exact)

$\downarrow l$ $a\downarrow l$ $\alpha\downarrow\{$

$0-\mathfrak{n}-eA-\rightarrow eA/\mathfrak{n}\rightarrow 0$ (exact);

that is, there is an invertible element $a$ in $eAe$ such that $\mathfrak{n}=a\mathfrak{m}$ . Hence the
only if part is proved. Whereas the if part is obvious, and thus the lemma is
proved.

EXAMPLE 1. (Already appeared.) $A=R\ltimes C$ . The number of the two-sided
ideals of $A$ is infinite, but that of the isomorphism classes of its two-sided
ideals is finite.

EXAMPLE 2. (Already appeared.) $A=\left(\begin{array}{ll}\Delta & \Delta\\ 0 & \Gamma\end{array}\right)$ with $[\Delta_{\Gamma} : \Gamma]=2$ . As for

(TSF), in view of the structure of $A$ the following right ideals $\left(\begin{array}{ll}0 & d\Gamma\\ 0 & 0\end{array}\right)$ with

$ 0\neq d\in\Delta$ only give rise to discussion. But, for such two right ideals $\left(\begin{array}{ll}0 & d_{1}\Gamma\\ 0 & 0\end{array}\right)$

and $\left(\begin{array}{ll}0 & d_{2}\Gamma\\ 0 & 0\end{array}\right)$ , there is an invertible element $\left(\begin{array}{ll}d_{2}d_{1}^{-l} & 0\\0 & 0\end{array}\right)$ in $e_{1}Ae_{1}$ such that

(
$0$

$00$) $\left(\begin{array}{ll}0 & d_{1}\Gamma\\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & d_{2}\Gamma\\ 0 & 0\end{array}\right)$ . Hence by Lemma 4.2 $A$ satisfies (TSF). Of

course, the number of the two-sided ideals of $A$ is five.

EXAMPLE 3. (Rosenberg and Zelinsky [10])

Let $F$ be a field and $K=F(x_{1}, x_{2}, \cdots)$ the rational function field in countably

infinite indeterminates $x_{1},$ $x_{2},$ $\cdots$ over $F$. We define the ring monomorphism:
$ K\rightarrow K\sigma$ by $\sigma(x_{i})=x_{i+1}(i=1,2, \cdots)$ and $\sigma|F=1_{F}$ . Further define the $K$-K-
bimodule $N$ as follows:

$KK$ and $N_{K}$ is defined by $n*k=n\sigma(k)$ for $n\in N$ and $k\in K$.
Let then $A$ be the trivial extension of $K$ by $N;i.e$ . $A=K\ltimes N$. $A$ is a

local left artinian ring, but is not right artinian, and $A$ has only three two-

sided ideals. But $A$ does not satisfy (TSF), which is shown as follows:
Obviously $[$rad $A]_{A}=(0, N_{K})$ . So if $A/(O, \mathfrak{m})\approx A/(O, \mathfrak{n})$ for $\mathfrak{m}_{K}$ and $\mathfrak{n}_{K}\subset N_{K}$ ,

then by Lemma 4.2 there exists an invertible element $(k, n)(k\neq 0)$ in $A$ such
that $(k, n)(O, \mathfrak{m})=(0, \mathfrak{n})$ ; $i.e$ . $\mathfrak{n}=k\mathfrak{m}$ , and hence $\dim \mathfrak{m}_{K}=\dim \mathfrak{n}_{K}$ . But, since
$[N_{K} : K]=[K:\sigma(K)]\geqq\aleph_{0}$ , there exist right K-submodules $\mathfrak{m}_{i}$ of $N_{K}$ such that
$\dim[\mathfrak{m}_{i}]_{K}=i(i=1,2, \cdots)$ . Accordingly, by Lemma 4.2 $A/(O, \mathfrak{m}_{1})(i=1,2, \cdots)$

are not isomorphic to each other.
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