ON MINIMAL SPANNING SYSTEMS OVER SEMIPERFECT RINGS

By

Yutaka KAWADA

A ring A is called semiperfect in case A/rad A is semisimple and idempotents lift modulo rad A, or equivalently, every finitely generated right (resp. left) A-module has a projective cover, which is uniquely determined up to Aisomorphism (Cf. Bass [4]). The main purpose of this paper is to refine a version of Warfield [11] concerning Auslander-Bridger duality. (Cf. [2] and [3])

In Section 1, we first define a minimal spanning system for a finitely generated right (resp. left) A-module $M (\neq 0)$, and show that these minimal spanning systems of M have the properties analogous to bases of a finite-dimensional vector space over a field.

To more exact description of minimal spanning systems of M, in Section 2 we shall use a restricted matrix theory over A which is called the fit matrix theory, and show that any minimal spanning system of M is obtained from the one by applying finitely many times of "elementary substitutions".

Next in Section 3, for a finitely presented non-projective right (resp. left) *A*-module *M*, we shall define a relation matrix *R* of *M*, and by means of *R* provide characterizations of the properties that $M \in \text{mod}_P A$ (resp. $\text{mod}_P A^{op}$) in the sense of Auslander and Reiten [3] (Cf. [2] and [11]), and that *M* is indecomposable.

Finally in Section 4, we shall consider the following condition:

(TSF) The number of all the isomorphism classes of "top-simple" right Amodules is finite.

Then we shall show that, in case A satisfies (TSF), A has only a finite number of two-sided ideals. It should be noted that representationfinite artinian rings satisfy (TSF).

Throughout this paper, A is a semiperfect ring and rad A denotes the Jacobson radical of A, and also e, f, e_i, f_j, g_k and h_i mean always primitive (and hence local) idempotents of A.

Received April 11, 1990

1. Minimal spanning systems of finitely generated modules.

An element u in a right (resp. left) A-module M is called right (resp. left) local if u=ue (resp. u=eu) for some e. Throughout this paper we shall treat only right (or left) local elements in M. A finite sequence consisting of right (resp. left) local elements in M will be always expressed in the form of a row (resp. column) vector.

Let $M(\neq 0)$ be a finitely generated right A-module. Then, without loss of generality, we can express a projective cover of M in the form: $\bigoplus_{i=1}^{m} e_i A \xrightarrow{p} M_A$ (Cf. Mueller [9]).

DEFINITION. In the above, keeping the order of indices, $(p(e_1), \dots, p(e_m))$ is called a minimal spanning system (abbreviated m. s. s.) of M_A . Here m is uniquely determined by M_A , and so we define $m=\operatorname{rank} M_A$.

This denomination is justified by the considerations below:

DEFINITION. $(u_i = u_i e_i \in M_A | i = 1, \dots, m)$ is called a spanning system of M_A if $M = \sum_{i=1}^m u_i A$.

DEFINITION. $(u_i = u_i e_i \in M_A | i = 1, \dots, m)$ is called right A-linearly independent if the following condition is satisfied:

(*)
$$(u_1, \cdots, u_m) \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} = 0 \text{ with } \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \in \bigoplus_{i=1}^m e_i A \Rightarrow \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \in \bigoplus_{i=1}^m e_i (\operatorname{rad} A).$$

Then we have the next lemmas.

LEMMA 1.1. Let $M_A(\neq 0)$ be finitely generated, and $u_i = u_i e_i (i=1, \dots, m)$ elements of M. Then, (u_1, \dots, u_m) is an m.s.s. of M if and only if (u_1, \dots, u_m) is a spanning system of M and is right A-linearly independent.

PROOF. Define a map $p: \bigoplus_{i=1}^{m} e_i A \to M_A$ by putting $p(e_i) = u_i (i=1, \dots, m)$. Then p is a projective cover of M if and only if p is an epimorphism and Ker $p \subset \bigoplus_{i=1}^{m} e_i (\operatorname{rad} A)$, which proves the lemma.

LEMMA 1.2. Let $M_A(\neq 0)$ be finitely generated, and $(u_i = u_i e_i | i = 1, \dots, n)$ a spanning system of M. Then we can choose its subsequence $(u_{i_1}, \dots, u_{i_m}) (m \leq n)$ as an m.s.s. of M.

PROOF. Casting out, in turn, redundant elements (as a spanning system of M) from (u_1, \dots, u_n) , we get at last an irredundant spanning system $(u_{i_1}, \dots, u_{i_m})$ of M. The irredundance of $(u_{i_1}, \dots, u_{i_m})$ as a spanning system of M implies the right A-linear independence of $(u_{i_1}, \dots, u_{i_m})$. Because, assume that $\sum_{k=1}^{m} u_{i_k} a_{i_k} = 0$ with $a_{i_k} \in e_{i_k} A(k=1, \dots, m)$, and further that $a_{i_1} \notin e_{i_1}(\operatorname{rad} A)$. Then, since $e_{i_1}(\operatorname{rad} A)$ is the unique maximal (proper) submodule of $e_{i_1}A$, we have $a_{i_1}A = e_{i_1}A$, and so there is an element b in Ae_{i_1} such that $a_{i_1}b = e_{i_1}$. Then we see $u_{i_1} = -\sum_{k=2}^{m} u_{i_k}a_{i_k}b$, which contradicts the irredundance of $(u_{i_1}, \dots, u_{i_m})$. Therefore $(u_{i_1}, \dots, u_{i_m})$ must be right A-linearly independent. Thus the proof is completed by Lemma 1.1.

Accordingly, for a spanning system (u_1, \dots, u_n) of M, it becomes an m.s.s. of M if and only if it is "minimal" as a spanning system of M, in a sense that any proper subsequence of it is no spanning system of M.

Lemmas 1.1 and 1.2 show also that an m.s.s. of M_A has the properties analogous to a basis of a finite-dimensional vector space over a field. However it is invalid that, to a given right A-linearly independent system $(u_i=u_ie_i\in$ $M_A|i=1, \dots, l)$, we may always get an m.s.s. of M by adding some elements in M.

EXAMPLE 1. Let A be the trivial extension of \mathbf{R} by \mathbf{C} ; $A = \mathbf{R} \ltimes \mathbf{C}$, where \mathbf{R} and \mathbf{C} denote respectively the field of real numbers and of complex numbers. Then A is a commutative local artinian ring, and ((0, 1), (0, i)) is right A-linearly independent in A, but rank $A_A = 1$.

More strongly than (*), we may also define as follows:

DEFINITION. $(u_i = u_i e_i \in M_A | i = 1, \dots, m)$ is called right A-independent if the condition below is satisfied:

$$(u_1, \cdots, u_m) \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} = 0 \quad \text{with} \quad \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} \in \bigoplus_{i=1}^m e_i A \Rightarrow \begin{pmatrix} a_1 \\ \vdots \\ a_m \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}.$$

this case, $\sum_{i=1}^m u_i A \approx \bigoplus_{i=1}^m e_i A.$

LEMMA 1.3. Let $M_A(\neq 0)$ be finitely generated. Then M is projective if and only if an (and every) m.s.s. of M is right A-independent.

PROOF. Trivial.

In

As for left A-modules, we need later similar definitions; e.g.

DEFINITION. Let $_{A}M(\neq 0)$ be finitely generated, and $\bigoplus_{i=1}^{m} Ae_{i} \xrightarrow{p} _{A}M$ a projective cover of M. Then, keeping the order of indices, $\begin{pmatrix} p(e_{1}) \\ \vdots \\ p(e_{m}) \end{pmatrix}$ is called an m.s. s. of $_{A}M$. In this case we further define $m=\operatorname{rank}_{A}M$.

DEFINITION. ${}^{\iota}(u_i = e_i u_i \in {}^{A}M | i = 1, \cdots, m)$ is called left A-linearly independent if the following condition is satisfied:

(*')
$$(a_1, \dots, a_m) \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix} = 0 \text{ with } (a_1, \dots, a_m) \in \bigoplus_{i=1}^m Ae_i \Rightarrow$$

 $(a_1, \dots, a_m) \in \bigoplus_{i=1}^m (\operatorname{rad} A)e_i.$

2. Fit matrix theory.

In Sections 2 and 3, we shall treat only matrices of the restricted form, which is as follows:

(1) $m \times n$ matrices $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$ for every (i, j), where m, $n, e_i (1 \le i \le m)$ and $f_j (1 \le j \le n)$ are arbitrarily variable.

(II) Matrix addition is defined only between matrices of the same type in the sense of (I); that is, $m \times n$ matrices $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$ and $Q = (q_{ij})_{i,j}$ with $q_{ij} \in e_i A f_j$.

(III) Matrix multiplication is defined only between an $l \times m$ matrix $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$ and an $m \times n$ matrix $Q = (q_{jk})_{j,k}$ with $q_{jk} \in f_j A g_k$. It should be noted that between P and Q common f_j 's $(j=1, \dots, m)$ appear in the same order. These products are sometimes called the fit products.

(IV) Scalar multiplication is not defined. However, an $m \times n$ matrix $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$ is regarded either as $P \in \operatorname{Hom}_A \left(\bigoplus_{j=1}^n f_j A, \bigoplus_{i=1}^m e_i A \right)$ or as $P \in \operatorname{Hom}_A \left(\bigoplus_{i=1}^m A e_i, \bigoplus_{j=1}^n A f_j \right)$. So, in spite of (I) and (III), we shall allow the (fit) products in the forms:

$$P\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix} \text{ for } \begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix} \in \bigoplus_{j=1}^n f_jA \text{ and } (a_1, \cdots, a_m)P \text{ for } (a_1, \cdots, a_m) \in \bigoplus_{i=1}^m Ae_i.$$

The matrix theory composed under the restrictions (I)-(IV) is called the fit matrix theory over A, which appeared partly in the literatures. (e. g. [9])

First of all we begin with the definition below.

DEFINITION. An $n \times n$ matrix $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$ is called invertible if there exists an $n \times n$ matrix $Q = (q_{ji})_{j,i}$ with $q_{ji} \in f_j A e_i$ such that

$$PQ = \begin{pmatrix} e_1 \\ \ddots \\ e_n \end{pmatrix}$$
 and $QP = \begin{pmatrix} f_1 \\ \ddots \\ f_n \end{pmatrix}$.

In this case, Q is uniquely determined by P, and so we define $Q=P^{-1}$. Also, the diagonal matrices above appeared are called $n \times n$ identity matrices.

REMARK. Let an $n \times n$ matrix $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$ be invertible, and assume that $e_i A f_j = g_i A h_j$ for every *i* and $j(i, j=1, \dots, n)$. Then we have readily GE = E, EG = G, FH = F and HF = H, where by *E*, *F*, *G* and *H* we denote respectively $n \times n$ identity matrices $(\delta_{ij}e_i)_{i,j}, (\delta_{ij}f_j)_{i,j}, (\delta_{ij}g_i)_{i,j}$ and $(\delta_{ij}h_j)_{i,j}$. Therefore, if *Q* is the inverse of $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$, we see that HQG just becomes the inverse of $P = (p_{ij})_{i,j}$ with $p_{ij} \in g_i A h_j$.

Then we have readily the next.

LEMMA 2.1. Assume that P and Q are invertible matrices and the product PQ is defined. Then PQ is invertible and $(PQ)^{-1}=Q^{-1}P^{-1}$.

DEFINITION. An element $a \in eAf$ is called invertible if the 1×1 matrix (a) is invertible.

As is readily seen, $a \in eAf$ is invertible if and only if $a \in eAf \setminus e(\operatorname{rad} A)f$.

Now by the analogy of matrices over a field, we want to define elementary matrices.

DEFINITION. The three kinds of $n \times n$ matrices below are called elementary matrices, where $\varepsilon_{ij}(1 \le i, j \le n)$ denote the ordinary matrix units and $f_i(1 \le i \le n)$ are arbitrarily variable.

(EM 1) $\rho_n(j, k) = \sum_{i \neq j, k} f_i \varepsilon_{ii} + f_j \varepsilon_{jk} + f_k \varepsilon_{kj} (j \neq k)$ and its transpose ${}^t \rho_n(j, k)$.

(EM 2)
$$\delta_n(j; a) = \sum_{i \neq j} f_i \varepsilon_{ii} + a \varepsilon_{jj}$$
 with $a \in f_j A g_j \setminus f_j (\operatorname{rad} A) g_j$.

(EM 3) $\tau_n(j, k; a) = \sum_{i=1}^n f_i \varepsilon_{ii} + a \varepsilon_{jk}$ with $a \in f_j A f_k (j \neq k)$.

Obviously every elementary matrix is invertible and its inverse also becomes an elementary matrix.

For an $m \times n$ matrix $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$, we can define elementary column transformations on P, which are induced by multiplications of elementary matrices (except ${}^t\rho_n(j, k)$) from the right. In particular, applying in turn elementary column transformations to P such that $P \not\equiv O \mod (e_i(\operatorname{rad} A)f_j)_{i,j}$, we get at last the reduced column echelon form $\tilde{P} = (\tilde{p}_{ij})_{i,j}$; that is, there is an increasing sequence $1 \leq i_1 < i_2 < \cdots < i_r \leq m(1 \leq r \leq n)$ such that $\tilde{p}_{i_k,k} = e_{i_k}$, $\tilde{p}_{i_k,j} = 0$ $(j \neq k)$ for each $k (k=1, \cdots, r)$ and that $\tilde{p}_{ij} \in \operatorname{rad} A$ whenever (i, j) belongs to one of the following:

 $\{i < i_1, j \ge 1\}, \{i_{k-1} < i < i_k, j \ge k\}(k=2, \dots, r) \text{ and } \{i > i_r, j \ge r+1\}.$

By using this fact we have the next.

PROPOSITION 2.2. An invertible matrix is expressed as a product of a finite number of elementary matrices.

PROOF. Under the same notations as above (together with m=n), let P be an invertible $n \times n$ matrix, and \tilde{P} its reduced column echelon form. Then \tilde{P} is expressed in the form:

$$\tilde{P} = PE_1 \cdots E_t$$
,

where $E_k(1 \le k \le t)$ denote elementary matrices, and hence by Lemma 2.1 \tilde{P} is an invertible matrix. On the other hand, \tilde{P} must be the identity matrix $\begin{pmatrix} e_1 \\ \ddots \\ e_n \end{pmatrix}$; otherwise, r < n and so $\tilde{p}_{ij} \in \operatorname{rad} A$ for every $(i, j) \in \{i \ge 1, j \ge r+1\}$, and consequently $\tilde{P}^{-1}\tilde{P}$ is no identity matrix, a contradiction. Thus $P = E_t^{-1} \cdots E_1^{-1}$, which proves the lemma.

Turn next our attention to finitely generated right A-modules.

DEFINITION. Let $M_A(\neq 0)$ be finitely generated, and let (u_1, \dots, u_m) with $u_i = u_i e_i (i=1, \dots, m)$ be an m. s. s. of M. Then the three kinds of substitutions below are called elementary substitutions in M_A .

(ES 1) transposition: interchanging u_j and $u_k (j \neq k)$.

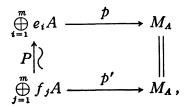
- (ES 2) dilatation: replacing u_j by $u_j a$ with $a \in e_i A g_j \setminus e_i (\operatorname{rad} A) g_j$.
- (ES 3) transvection: replacing u_j by $u_j+u_k a$ with $a \in e_k A e_j (j \neq k)$.

These are realized by multiplications of elementary matrices $\rho_m(j, k)$, $\delta_m(j; a)$ and $\tau_m(k, j; a)$ respectively from the right. Hence we obtain the following.

THEOREM 2.3. Let (u_1, \dots, u_m) and (v_1, \dots, v_m) be given two m.s.s.'s of a finitely generated module M_A . Then the one is obtained from the other by applying finitely many times of elementary substitutions in M_A .

PROOF. Assume that (u_1, \dots, u_m) and (v_1, \dots, v_m) are determined respec-

tively by the projective covers $\bigoplus_{i=1}^{m} e_i A \xrightarrow{p} M_A$ and $\bigoplus_{j=1}^{m} f_j A \xrightarrow{p'} M_A$. Then by the uniqueness of projective covers of M there is a commutative diagram below:



where $P = (p_{ij})_{i,j}$ with $p_{ij} \in e_i A f_j$ must be invertible. Since $p(e_i) = u_i$ and $p'(f_j) = v_j$, we have readily

$$(v_1, \cdots, v_m) = (u_1, \cdots, u_m)P$$

Hence the theorem follows from Proposition 2.2.

Finally we shall come back to the fit matrix theory over A.

DEFININION. Let $R = (r_{ij})_{i,j}$ with $r_{ij} \in e_i A f_j$ be an $m \times n$ matrix $(\neq 0)$ and set further $R = (r_1, \dots, r_n) = \begin{pmatrix} s_1 \\ \vdots \\ s_m \end{pmatrix}$. Then we define respectively

column rank $R = \operatorname{rank} \sum_{j=1}^{n} r_{j} A \left(\subset \bigoplus_{i=1}^{m} e_{i} A \right)$, and

row rank R=rank $\sum_{i=1}^{m} A s_i \left(\subset \bigoplus_{j=1}^{n} A f_j \right)$.

Obviously column rank $R \neq$ row rank R in general. Now the following is a direct consequence of Lemma 1.2.

LEMMA 2.4. Let
$$R = (\mathbf{r}_1, \dots, \mathbf{r}_n) = \begin{pmatrix} \mathbf{s}_1 \\ \vdots \\ \mathbf{s}_m \end{pmatrix}$$
 be an $m \times n$ matrix $(\neq O)$.

Then column rank R=t if and only if there exists a subsequence $(\mathbf{r}_{j_1}, \dots, \mathbf{r}_{j_t})$ of $(\mathbf{r}_1, \dots, \mathbf{r}_n)$ such that it becomes an m.s.s. of $\sum_{j=1}^n \mathbf{r}_j A$. Similarly,

row rank R = r if and only if there exists a subsequence ${}^{t}(\mathbf{s}_{i_{1}}, \dots, \mathbf{s}_{i_{r}})$ of ${}^{t}(\mathbf{s}_{1}, \dots, \mathbf{s}_{m})$ such that it becomes an m.s.s. of $\sum_{i=1}^{m} A\mathbf{s}_{i}$.

Moreover, these ranks remain invariable whenever we multiply R by invertible matrices. Namely,

PROPOSITION 2.5. Let $R = (r_{ij})_{i,j}$ with $r_{ij} \in e_i A f_j$ be an $m \times n$ matrix $(\neq 0)$ and let P and Q be invertible matrices. If the product PRQ is defined, then we have

column rank PRQ=column rank R, and row rank PRQ= row rank R.

PROOF. We have only to show the first equality. Set now $R = (r_1, \dots, r_n)$ and assume column rank R = t. Then by Lemma 2.4 there is an m. s. s. $(r_{j_1}, \dots, r_{j_t})$ of $\sum_{j=1}^n r_j A$. Since the other $r_{j_k}(t+1 \le k \le n)$ becomes a right A-linear combination of $(r_{j_1}, \dots, r_{j_t})$ by Lemma 1.1, there is a $t \times (n-t)$ matrix B such that

$$(\mathbf{r}_{j_{t+1}}, \cdots, \mathbf{r}_{j_n}) = (\mathbf{r}_{j_1}, \cdots, \mathbf{r}_{j_t})B.$$

At first noting that $PR = (Pr_1, \dots, Pr_n), (Pr_{j_{l+1}}, \dots, Pr_{j_n}) = (Pr_{j_1}, \dots, Pr_{t_l})$ *B* and that, since $(r_{j_1}, \dots, r_{j_l})$ is right *A*-linearly independent, $(Pr_{j_1}, \dots, Pr_{j_l})$ is so, we get at once an m.s.s. $(Pr_{j_1}, \dots, Pr_{j_l})$ of $\sum_{j=1}^n (Pr_j)A$. This shows column rank PR = t.

To show next column rank RQ=t, by Proposition 2.2 we may assume that Q is an elementary matrix. However the right A-module $\sum_{j=1}^{n} r_{j}A$ remains invariable, as a whole, by applying an elementary column transformation to R. Hence from the definition of column ranks it follows that column rank RQ=t. Thus the lemma is proved.

EXAMPLE 2. Let $\Delta \supset \Gamma$ be a division ring extension such that $[\Delta_{\Gamma}: \Gamma]=2$; that is, $\Delta_{\Gamma}=\Gamma \oplus d_{\circ}\Gamma$. Set now respectively

$$A = \begin{pmatrix} \Delta & \Delta \\ 0 & \Gamma \end{pmatrix}, \quad e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad u = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ and } v = \begin{pmatrix} 0 & d_0 \\ 0 & 0 \end{pmatrix}.$$

Then A is an artinian ring with rad $A = \begin{pmatrix} 0 & \Delta \\ 0 & 0 \end{pmatrix}$, and we see $u = e_1 u e_2$ and $v = e_1 v e_2$. For the next 3×4 matrix:

$$R = \begin{pmatrix} e_1 & 0 & 0 & 0 \\ 0 & e_2 & 0 & 0 \\ 0 & 0 & u & v \end{pmatrix},$$

we get column rank R=4 but row rank R=3. Further remark that the sequence consisting of its column vectors is right A-independent and also that the sequence consisting of its row vectors is left A-independent.

3. Relation matrices.

We begin with the definition of relation matrices.

DEFINITION. Let M_A be a finitely presented non-projective module, and let (**) below denote a minimal projective presentation of M:

(**)
$$\bigoplus_{j=1}^{n} f_{j}A \xrightarrow{\not p_{1}} \bigoplus_{i=1}^{m} e_{i}A \xrightarrow{\not p_{0}} M_{A} \longrightarrow 0 \quad (\text{exact}),$$

where p_0 denotes a projective cover of M and p_1 induces a projective cover of Ker p_0 . Set now $p_1(f_j) = r_j = \binom{r_{1j}}{\vdots} (j=1, \dots, n)$. Then the $m \times n$ matrix $R = (r_{ij})_{i,j}$ with $r_{ij} \in e_i (\operatorname{rad} A) f_j$ may be regarded as an m. s. s. of Ker p_0 , which is called the relation matrix of M_A associated with (**).

In this case, of course (r_1, \dots, r_n) is right A-linearly independent, and further

(1)
$$p_1\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix} = R\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix}$$
 for every $\begin{pmatrix}a_1\\\vdots\\a_n\end{pmatrix} \in \bigoplus_{j=1}^n f_j A$.

For another minimal projective presentation (**') of M_A , we get the following commutative diagram:

$$\begin{array}{ccc} & & & & & & & & & & \\ \bigoplus_{j=1}^{n} f_{j}A & & & & & & & \\ & & & & & & & \\ (**') & & & & & & \\ Q^{-1} \bigg| \bigg\rangle & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

whence we have the next.

LEMMA 3.1. Let M_A be a finitely presented non-projective module, and R a relaton matrix of M. Then every relation matrix of M is expressed in the form: PRQ, where P and Q denote invertible matrices.

Taking now A-duals of (**), we get

 $\bigoplus_{i=1}^{m} Ae_{i} \xrightarrow{p_{1}^{*}} \bigoplus_{j=1}^{n} Af_{j} \xrightarrow{q} \text{Coker } p_{1}^{*} \to 0 \text{ (exact) ,}$

where $p_1^* = \text{Hom}_A(p_1, A)$ and q denotes the canonical epimorphism, and it follows readily that

(2)
$$p_1^*(a_1, \dots, a_m) = (a_1, \dots, a_m)R$$
 for every $(a_1, \dots, a_m) \in \bigoplus_{i=1}^m Ae_i$.

Hence Im p_1^* is a finitely generated module $(\neq 0)$ contained in $\bigoplus_{j=1}^n (\operatorname{rad} A) f_j$, and so q is a projective cover of Coker p_1^* and Coker p_1^* is a finitely presented nonprojective left A-module. After Auslander and Reiten [3], we shall adopt the next:

DEFINITION. $M_A \in \operatorname{mod}_P A$ implies that M_A is finitely presented and that M_A has no projective module ($\neq 0$) as its direct summand. Similarly $_A M \in \operatorname{mod}_P A^{op}$ is defined.

Such a property can be characterized by the fit matrix theory over A.

THEOREM 3.2. Let M_A be a finitely presented non-projective module, and $R = \begin{pmatrix} s_1 \\ \vdots \\ s_m \end{pmatrix}$ the relation matrix associated with (**). Then the conditions below are

equivalent to each other.

(i) $M_A \in \operatorname{mod}_P A$.

(ii) ${}^{t}(\mathbf{s}_{1}, \dots, \mathbf{s}_{m})$ is left A-linearly independent.

(iii) (***) expressed above becomes a minimal projective presentation of Coker p_1^* .

In these cases, further R also becomes the relation matrix of Coker p_1^* associated with (***); that is, Coker $p_1^* = TrM_A \in \text{mod}_P A^{\text{op}}$ after Auslander and Reiten [3].

PROOF. (i) \Leftrightarrow (iii) is well known (Cf. [2] and [11]).

(i) \Leftrightarrow (ii): To prove this, we have only to show that $M_A \notin \operatorname{mod}_P A$ if and only if row rank R < m. Assume first $M_A = N_A \oplus L_A$ with a projective module $L(\neq 0)$. Let $\bigoplus_{i=1}^{s} g_i A \xrightarrow{\sigma} N_A (1 \le s < m)$ and $\bigoplus_{i=s+1}^{m} g_i A \xrightarrow{\rho} L_A$ be the projective covers of N_A and L_A respectively. Then we have a projective cover of $M_A : \bigoplus_{i=1}^{m} g_i A$ $\xrightarrow{\sigma \oplus \rho} M_A$, and since Ker $\sigma \oplus \rho = \operatorname{Ker} \sigma \subset \bigoplus_{i=1}^{s} g_i A$ the relation matrix R' of Ker $\sigma \oplus \rho$ is of the form: ${}^{s} {\binom{*}{O}}$, i. e. row rank R' < m. On the other hand, by Lemma 3.1 we see R' = PRQ with invertible matrices P and Q. Therefore row rank R =row rank R' < m by Proposition 2.5.

Conversely assume row rank R < m. In view of Lemma 2.4, by applying elementary row transformations to R we may reach to an matrix $R' = {}^{s} {\binom{*}{O}}$ $(1 \le s < m)$. By Proposition 2.2 there is an invertible matrix $P = (p_{ij})_{i,j}$ with $p_{ij} = g_i A e_j$ such that R' = PR. Considering the commutative diagram below:

On minimal spanning systems over semiperfect rings

$$\begin{array}{c} \bigoplus_{j=1}^{n} f_{j}A \xrightarrow{p_{1}} \bigoplus_{i=1}^{m} e_{i}A \xrightarrow{p_{0}} M_{A} \longrightarrow 0 \text{ (exact)} \\ \\ \parallel & P \downarrow \rangle \qquad \qquad \parallel \\ \bigoplus_{j=1}^{n} f_{j}A \xrightarrow{p_{1}'} \bigoplus_{i=1}^{m} g_{i}A \xrightarrow{p_{0}'} M_{A} \longrightarrow 0 \text{ (exact)}, \end{array}$$

R' is an m. s. s. of Ker p_0' . So set respectively

$$N_A = p_0' \left(\bigoplus_{i=1}^s g_i A \right)$$
 and $L_A = p_0' \left(\bigoplus_{i=s+1}^m g_i A \right).$

Then, since there follows Ker $p_0' \subset \bigoplus_{i=1}^s g_i A$ from the form of R', we have readily

$$M_A = N_A \oplus L_A$$
 and $\bigoplus_{i=s+1}^m g_i A \approx L_A$; that is, $M_A \notin \operatorname{mod}_P A$.

(ii) \Leftrightarrow (iii): To prove this, we have only to show that row rank R=m if and only if Ker $p_1^* \subset \bigoplus_{j=1}^n f_j$ (rad A). However this is obvious by (2). Thus the proof is completed.

It should be noted that, in case $M_A \in \operatorname{mod}_P A$ with a relation matrix $R = (\mathbf{r}_1, \dots, \mathbf{r}_n) = \begin{pmatrix} \mathbf{s}_1 \\ \vdots \\ \mathbf{s}_m \end{pmatrix}$, we may regard as: $M_A = \bigoplus_{i=1}^m e_i A / \sum_{j=1}^n \mathbf{r}_j A \quad \text{and} \quad Tr M_A = \bigoplus_{j=1}^n A f_j / \sum_{i=1}^m A \mathbf{s}_i. \quad (Cf. [11])$

REMARK. If M_A is a finitely presented non-projective module with a $1 \times n$ relation matrix R, then obviously M_A is indecomposable and so $M_A \in \operatorname{mod}_P A$.

The following is useful to construct indecomposables, which is also observed by H. Asashiba.

COROLLARY 3.3. Let M_A be a finitely presented non-projective module with an $m \times 1$ relation matrix $R = \begin{pmatrix} r_{11} \\ \vdots \\ r_{m1} \end{pmatrix}$. Then the conditions below are equivalent to each other.

- (i) M_A is an indecomposable module.
- (ii) $M_A \in \operatorname{mod}_P A$
- (iii) ${}^{t}(r_{11}, \dots, r_{m1})$ is left A-linearly independent.

PROOF. We have only to prove the equivalence (i) \Leftrightarrow (ii). To do so, we first assume that M_A is decomposed such as:

$$M_A = N_A \oplus L_A$$
 $(N \neq 0 \text{ and } L \neq 0)$.

Denote by $\bigoplus_{i=1}^{s} g_i A \xrightarrow{\sigma} N_A$ $(1 \le s < m)$ and $\bigoplus_{i=s+1}^{m} g_i A \xrightarrow{\rho} L_A$ respectively the projective covers of N and L. Then $\bigoplus_{i=1}^{m} g_i A \xrightarrow{\sigma \oplus \rho} M_A$ becomes a projective cover of M. Since top (Ker $\sigma \oplus \rho$) is simple and since Ker $\sigma \oplus \rho =$ Ker $\sigma \oplus$ Ker ρ , we have either Ker $\sigma = 0$ or Ker $\rho = 0$; that is, either of N and L must be projective; i.e. $M_A \notin \operatorname{mod}_P A$.

Conversely, if $M_A \notin \operatorname{mod}_P A$ then evidently M is decomposable. Thus we obtain the corollary.

Next we want to characterize the indecomposability of modules in $\text{mod}_P A$ by using their relation matrices. For this purpose we need the next.

DEFINITION. An $n \times n$ matrix $T = (t_{ij})_{i,j}$ with $t_{ij} \in e_i A e_j$ is called idempotent if $T^2 = T$.

LEMMA 3.4. Let $T = (t_{ij})_{i,j}$ with $t_{ij} \in e_i A e_j$ be an $n \times n$ matrix. Then T is idempotent if and only if there exist an invertible $n \times n$ matrix $P = (p_{jk})_{j,k}$ with $p_{jk} \in g_j A e_k$ and a diagonal $n \times n$ matrix

$$D = \begin{pmatrix} g_1 & & \\ \ddots & & \\ & g_s & \\ & & 0 \\ & & \ddots \\ & & & 0 \end{pmatrix}$$

 $(0 \leq s \leq n)$ such that $T = P^{-1}DP$.

PROOF. We have only to prove the only if part. Let T be an idempotent matrix which is neither zero matrix nor identity matrix, and set $M_A = \bigoplus_{i=1}^n e_i A$. Then, since $T \in \text{End } M_A$ we have

$$M_A = T M_A \oplus (E - T) M_A$$
,

where E denotes the identity matrix $\begin{pmatrix} e_1 \\ & \ddots \\ & e_n \end{pmatrix}$. Hence TM as well as (E-T)M is finitely generated projective, and so we get their projective covers below:

$$\bigoplus_{j=1}^{s} g_{j}A \xrightarrow{\sigma} TM_{A} \ (1 \leq s < n) \quad \text{and} \quad \bigoplus_{j=s+1}^{n} g_{j}A \xrightarrow{\rho} (E-T)M_{A}$$

Therefore there is an invertible matrix P such that $P^{-1} = \sigma \oplus \rho : \bigoplus_{j=1}^{n} g_j A \simeq M_A$.

Set further $\begin{pmatrix} g_1 \\ \ddots \\ g_n \end{pmatrix} = (g_1, \cdots, g_n)$. Then, for any $j \ (1 \le j \le s)$ we have $P^{-1}g_j \in TM$ and hence $TP^{-1}g_j = P^{-1}g_j$ because $T^2 = T$; i.e.

$$PTP^{-1}\boldsymbol{g}_j = \boldsymbol{g}_j$$
 for every j $(j=1, \dots, s)$.

On the other hand, for any j $(s+1 \le j \le n)$ we have $P^{-1}g_j \in (E-T)M$ and hence $TP^{-1}g_j = 0$; i.e.

 $PTP^{-1}\boldsymbol{g}_{j}=\boldsymbol{0}$ for every j $(j=s+1, \dots, n)$.

Consequently it follows that

$$PTP^{-1} = (\boldsymbol{g}_1, \cdots, \boldsymbol{g}_s, 0, \cdots, 0) = \begin{pmatrix} g_1 & & \\ \ddots & & \\ g_s & & \\ & 0 & \\ & \ddots & \\ & & 0 \end{pmatrix}$$

which proves the lemma.

The following will be applied, in fact, to connected semiperfect rings. (Cf. [12])

THEOREM 3.5. Let M_A be a module in $\operatorname{mod}_P A$ and R an $m \times n$ relation matrix of M_A ($m \ge 2$ and $n \ge 2$). Then M_A is indecomposable if and only if the condition below is satisfied: (\circ) If TR=RS for non-zero idempotent matrices Tand S, then both T and S must be identity matrices.

PROOF. We shall prove that M_A is decomposable if and only if there exist "proper" idempotent matrices T and S such that TR=RS, where proper matrices mean that they are neither zero matrices nor identity matrices.

Assume first that M_A is decomposable; i.e. $M = M_1 \bigoplus M_2$, and let $\bigoplus_{i=1}^s g_i A \xrightarrow{\sigma} M_1$ $(1 \le s < m)$ and $\bigoplus_{i=s+1}^m g_i A \xrightarrow{\rho} M_2$ be the projective covers of M_1 and M_2 respectively. Since Ker $\sigma \ne 0$ and Ker $\rho \ne 0$ by the assumption that $M_A \equiv \operatorname{mod}_P A$, we get further the projective covers of Ker σ and Ker ρ ; i.e. $\bigoplus_{j=1}^t h_j A \xrightarrow{\alpha} \operatorname{Ker} \sigma$ $(1 \le t < n)$ add $\bigoplus_{i=t+1}^n h_j A \xrightarrow{\beta} \operatorname{Ker} \rho$.

Then the sequence below:

$$\bigoplus_{j=1}^{n} h_{j}A \xrightarrow{\alpha \oplus \beta} \bigoplus_{i=1}^{m} g_{i}A \xrightarrow{\sigma \oplus \rho} M_{A} \to 0 \quad (\text{exact})$$

becomes a minimal projective presentation of M_A . Let R' be the relation matrix of M_A associated with the above. Then we see easily

$$R' = \begin{pmatrix} R_1 & O \\ O & R_2 \end{pmatrix}$$
 with $R_1 \neq O$ and $R_2 \neq O$,

where R_1 and R_2 denote respectively an $s \times t$ matrix and an $(m-s) \times (n-t)$ matrix. On the other hand, by Lemma 3.1 there are invertible matrices $P=(p_{ki})_{k,i}$ with $p_{ki} \in g_k Ae_i$ and $Q=(q_{jl})_{j,l}$ with $q_{jl} \in f_j Ah_l$ such that R'=PRQ, and hence

$$PRQ = \begin{pmatrix} R_1 & O \\ O & R_2 \end{pmatrix}.$$

Take now the diagonal $m \times m$ (resp. $n \times n$) matrix below:

$$D_{1} = \begin{pmatrix} g_{1} & & \\ \ddots & & \\ & g_{2} & & \\ & & 0 & \\ & & \ddots & \\ & & & 0 \end{pmatrix} \quad \text{resp. } D_{2} = \begin{pmatrix} h_{1} & & \\ \ddots & & \\ & h_{t} & & \\ & & 0 & \\ & & \ddots & \\ & & & 0 \end{pmatrix}$$

٠

Multiplying PRQ by D_1 (resp. D_2) from the left (resp. the right), we have

$$D_1 PRQ = \begin{pmatrix} R_1 & O \\ O & O \end{pmatrix} = PRQD_2,$$

whence it follows immediately that $(P^{-1}D_1P)R = R(QD_2Q^{-1})$.

Conversely, assume that there exist proper idempotent matrices T and S such that TR=RS. Then, by Lemma 3.4 T and S are expressed respectively in the forms:

$$T = P^{-1}D_1P$$
 and $S = QD_2Q^{-1}$,

where $P=(p_{ki})_{k,i}$ with $p_{ki} \in g_k A e_i$ and $Q=(q_{jl})_{j,l}$ with $q_{jl} \in f_j A h_l$ are invertible matrices, and where

134

$$D_1 = \begin{pmatrix} g_1 \\ \ddots \\ g_s \\ 0 \\ \ddots \\ 0 \end{pmatrix} \quad (1 \leq s < m)$$

and

$$D_{2} = \begin{pmatrix} h_{1} & & \\ \ddots & & \\ & h_{t} & \\ & & h_{t} & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & 0 \end{pmatrix} (1 \le t < n) \,.$$

Therefore we have $D_1(PRQ) = (PRQ)D_2$, whence it readily follows that

$$PRQ = \begin{pmatrix} R_1 & O \\ O & R_2 \end{pmatrix},$$

where R_1 and R_2 denote respectively an $s \times t$ matrix and an $(m-s) \times (n-t)$ matrix. Considering now the commutative diagram below:

$$(**') \qquad \begin{array}{c} \bigoplus_{j=1}^{n} f_{j}A \xrightarrow{p_{1}} \bigoplus_{i=1}^{m} e_{i}A \xrightarrow{p_{0}} M_{A} \longrightarrow 0 \text{ (exact)} \\ Q^{-1} \downarrow \swarrow \qquad P \downarrow \swarrow \qquad H \\ \bigoplus_{j=1}^{n} h_{j}A \xrightarrow{p_{1}'} \bigoplus_{i=1}^{m} g_{i}A \xrightarrow{p_{0}'} M_{A} \longrightarrow 0 \text{ (exact)}, \end{array}$$

PRQ is the relation matrix associated with (**'). From the above form of PRQ it readily follows that

$$\operatorname{Ker} p_0' = \operatorname{Ker} p_0' \cap \left(\bigoplus_{i=1}^{s} g_i A \right) \oplus \operatorname{Ker} p_0' \cap \left(\bigoplus_{i=s+1}^{m} g_i A \right),$$

whence we have

$$M_A := p'_0 \left(\bigoplus_{i=1}^s g_i A \right) \oplus p'_0 \left(\bigoplus_{i=s+1}^m g_i A \right).$$

Hence M_A is decomposable.

Accordingly we have proved that M_A is indecomposable if and only if the condition below is satisfied:

(•') If TR=RS for non-zero idempotent matrices T and S, then either of T and S must be an identity matrix.

But, by the assumption that $M_A \in \operatorname{mod}_P A$, if S (resp. T) is the identity matrix then T (resp. S) must be the identity matrix. Because, if R = TR with a proper idempotent matrix $T = P^{-1}D_1P$ expressed above, then $PR = D_1(PR) = {}^{s} \left({* \atop O} \right)$ and row rank PR = m by Proposition 2.5 and by Theorem 3.2, a contradiction. Similarly, if R = RS with a proper idempotent matrix $S = QD_2Q^{-1}$ expressed above, then we are again led to a contradiction. Thus the proof is completed.

4. Semiperfect rings satisfying (TSF).

As is well known, in a representation-finite artinian ring its two-sided ideals constitute always a distributive lattice (Cf. [6]), and so from the representation theory of distributive lattices it follows that the number of its two-sided ideals is finite (Cf. [5]).

In this section we want to show that such a property holds good under a weaker condition than the above. We first adopt the next.

DEFINITION. A right A-module M is called top-simple if top M_A is a simple module.

Then, as was stated in the introduction, we consider the following condition:

(TSF) The number of all the isomorphism classes of top-simple right A-modules is finite.

THEOREM 4.1. Let A be a semiperfect ring satisfying (TSF). Then A has only a finite number of two-sided ideals.

PROOF. First of all, by Morita equivalence we may assume that A itself is a basic ring, and let

$$1 = \sum_{k=1}^{t} e_k$$

be the decomposition of 1 into pairwise orthogonal primitive idempotents. It should be noted that $e_i A \approx e_j A$ only if i=j. We shall distinguish two steps.

Step 1. ${}_{A}I_{A} \subset \operatorname{rad} A$. Let us set $F = \{{}_{A}I_{A} \mid I \subset \operatorname{rad} A\}$. At first remark that, for each I in F, e_kA/e_kI $(k=1, \dots, t)$ are not isomorphic to each other; because, top $e_kA/e_kI \approx e_kA/e_k(\operatorname{rad} A)$ $(k=1, \dots, t)$ and they are not isomorphic to each other. Secondly remark that, for any (I, J) $(I \neq J)$ in $F \times F$, there exists at least one, say k $(1 \leq k \leq t)$, such that $e_kA/e_kI \approx e_kA/e_kJ$; because, if $e_kA/e_kI \approx e_kA/e_kJ$ for every k $(k=1, \dots, t)$ then

$$[A/I]_{A} = \bigoplus_{k=1}^{t} e_{k}A/e_{k}I \approx \bigoplus_{k=1}^{t} e_{k}A/e_{k}J = [A/J]_{A} \text{ and so } I = J,$$

a contradiction.

Now, for a right A-module M, denote by $\llbracket M_A \rrbracket$ the isomorphism class of M_A , and set respectively

$$G = \{ \llbracket e_k A / e_k I \rrbracket \mid 1 \leq k \leq t, I \in F \}$$
 and $s = \#G$.

Then by the assumption (TSF) and by the first remark we have $t \leq s < \infty$. For each $[M_A] \in G$ we shall assign a natural number l $(1 \leq l \leq s)$; that is, there is a bijection $\varphi: G \cong \{1, \dots, s\}$.

To count #F we shall define the map $\psi: F \rightarrow \{1, \dots, s\}^{(t)}$ as follows:

 $\psi(I) = (\varphi(\llbracket e_1 A/e_1 I \rrbracket), \cdots, \varphi(\llbracket e_t A/e_t I \rrbracket))$ for each $I \in \mathbf{F}$.

By the second remark ϕ becomes an injective map. From the first remark again it follows that

$$\#F \leq P_t < \infty$$
.

Step 2. ${}_{A}I_{A} \subset A$.

Set now $H = \{_A I_A \mid I \subset A\}$. For each I in H, since $I = \sum_{k=1}^{t} e_k I e_k + \sum_{i \neq j} e_i I e_j$, we can express it as follows:

$$I = \sum_{k \in A} e_k A e_k + I \cap \operatorname{rad} A,$$

where $\Lambda = \Lambda(I) = \{k \mid e_k \in I, 1 \leq k \leq t\}$, and this expression is uniquely determined by *I*. Since $I \cap \text{rad } A \in F$ we can conclude that $\#H \leq 2^t P_t < \infty$. Thus the theorem is proved.

The next will be required to illustrate examples later.

LEMMA 4.2. Let \mathfrak{m} and \mathfrak{n} be right ideals contained in $e(\operatorname{rad} A)$. Then, $eA/\mathfrak{m} \approx eA/\mathfrak{n}$ if and only if there exists an invertible element a in eAe such that $\mathfrak{n}=a\mathfrak{m}$.

PROOF. Assume first that $eA/\mathfrak{m} \xrightarrow{\alpha} eA/\mathfrak{n}$. By the uniqueness of projective covers, we get the next commutative diagram:

$$0 \longrightarrow \mathfrak{m} \longrightarrow eA \longrightarrow eA/\mathfrak{m} \longrightarrow 0 \quad (\text{exact})$$
$$\downarrow \wr \qquad a \downarrow \wr \qquad \alpha \downarrow \wr$$
$$0 \longrightarrow \mathfrak{n} \longrightarrow eA \longrightarrow eA/\mathfrak{n} \longrightarrow 0 \quad (\text{exact});$$

that is, there is an invertible element a in eAe such that n=am. Hence the only if part is proved. Whereas the if part is obvious, and thus the lemma is proved.

EXAMPLE 1. (Already appeared.) $A = \mathbf{R} \ltimes \mathbf{C}$. The number of the two-sided ideals of A is infinite, but that of the isomorphism classes of its two-sided ideals is finite.

EXAMPLE 2. (Already appeared.) $A = \begin{pmatrix} \Delta \\ 0 \\ \Gamma \end{pmatrix}$ with $[\Delta_{\Gamma}: \Gamma] = 2$. As for (TSF), in view of the structure of A the following right ideals $\begin{pmatrix} 0 & d\Gamma \\ 0 & 0 \end{pmatrix}$ with $0 \neq d \in \Delta$ only give rise to discussion. But, for such two right ideals $\begin{pmatrix} 0 & d_{1}\Gamma \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & d_{2}\Gamma \\ 0 & 0 \end{pmatrix}$, there is an invertible element $\begin{pmatrix} d_{2}d_{1}^{-1} & 0 \\ 0 & 0 \end{pmatrix}$ in $e_{1}Ae_{1}$ such that $\begin{pmatrix} d_{2}d_{1}^{-1} & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & d_{1}\Gamma \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & d_{2}\Gamma \\ 0 & 0 \end{pmatrix}$. Hence by Lemma 4.2 A satisfies (TSF). Of course, the number of the two-sided ideals of A is five.

EXAMPLE 3. (Rosenberg and Zelinsky [10])

Let F be a field and $K=F(x_1, x_2, \cdots)$ the rational function field in countably infinite indeterminates x_1, x_2, \cdots over F. We define the ring monomorphism: $K \xrightarrow{\sigma} K$ by $\sigma(x_i)=x_{i+1}$ (i=1, 2, ...) and $\sigma | F=1_F$. Further define the K-Kbimodule N as follows:

 $_{K}N = _{K}K$ and N_{K} is defined by $n * k = n\sigma(k)$ for $n \in N$ and $k \in K$.

Let then A be the trivial extension of K by N; i.e. $A = K \ltimes N$. A is a local left artinian ring, but is not right artinian, and A has only three two-sided ideals. But A does not satisfy (TSF), which is shown as follows:

Obviously $[\operatorname{rad} A]_{A} = (0, N_{K})$. So if $A/(0, \mathfrak{m}) \approx A/(0, \mathfrak{n})$ for \mathfrak{m}_{K} and $\mathfrak{n}_{K} \subset N_{K}$, then by Lemma 4.2 there exists an invertible element (k, n) $(k \neq 0)$ in A such that $(k, n)(0, \mathfrak{m}) = (0, \mathfrak{n})$; i.e. $\mathfrak{n} = k\mathfrak{m}$, and hence dim $\mathfrak{m}_{K} = \dim \mathfrak{n}_{K}$. But, since $[N_{K}: K] = [K: \sigma(K)] \ge \aleph_{0}$, there exist right K-submodules \mathfrak{m}_{i} of N_{K} such that dim $[\mathfrak{m}_{i}]_{K} = i$ $(i=1, 2, \cdots)$. Accordingly, by Lemma 4.2 $A/(0, \mathfrak{m}_{i})$ $(i=1, 2, \cdots)$ are not isomorphic to each other.

References

- [1] F.W. Anderson and K.R. Fuller, Rings and categories of modules, G.T.M. 13, Springer-Verlag (1973).
- [2] M. Auslander and M. Bridger, Stable module theory, Mem. Amer. Math. Soc. 94, (1969).
- [3] M. Auslander and I. Reiten, Representation theory of artin algebras III, Comm. in Algebra 3(3), 239-294 (1975).
- [4] H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95, 466-488 (1960).
- [5] G. Birckhoff, Lattice theory, Amer. Math. Soc. Colloq. Publ. 25, 3rd Ed. (1966).
- [6] J.P. Jans, On the indecomposable representation of algebras, Ann. of Math. (2)
 66, 418-429 (1957).
- [7] Y. Kawada, On dominant modules and dominant rings, J. Algebra 56, 409-435 (1979).
- [8] K. Morita, Duality of modules and its application to the theory of rings with minimum condition, Sci. Rep. Tokyo Kyoiku Daigaku, Sect. A, 6, 85-142 (1958).
- [9] B.J. Mueller, On semiperfect rings, Illinois J. Math. 14, 464-467 (1970).
- [10] A. Rosenberg and D. Zelinsky, Finiteness of the injective hull, Math. Z. 70, 372-380 (1959).
- [11] R.B. Warfield, Jr., Serial rings and finitely presented modules, J. Algebra 37, 187-222 (1975).
- [12] J. Waschbusch, Uber Bimoduln in Artinringen vom endlichen Modultyp, Comm. in Algebra 8, 105-151 (1980).
- [13] W. Zimmermann, Existenz von Auslander-Reiten-Folgen, Arch. Math. 40, 40-49 (1983).

Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606, Japan