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K. A. HARDIE

0. Introduction.

In his book [7] H. Toda computed the homotopy groups $\pi_{n+k}(S^{n})$ for $k\leqq 19$ .
Although he permitted himself to use any methods and insights that were
available to him at the time, his principal technique was to exploit his “com-
position method”. Very briefly the composition method is an inductive procedure

by which composition classes vanishing in a particular “stem” $k$ give rise to
secondary and higher order composition classes (Toda brackets) in stem $k+1$

that are ”detected by” ( $i$ . $e$ . shown to have a non-zero image under) a Hopf

invariant homomorphism, after which their orders and relations to other ele-
ments are determined. This paper is intended as a contribution toward an
analysis of the composition method and its development into a more generally
applicable technique for computing homotopy groups.

Let $i:A\rightarrow X$ be an inclusion map and let us suppose that the homotopy

groups of $X$ are less well known than those of A. (In Toda’s composition
method $i:S^{n}\rightarrow\Omega S^{n+1}$ is the suspension inclusion). Then we have available the
relative homotopy sequence

(0.1) $...-\pi_{n}(A)-\pi_{n}(X)-\pi_{n}(X, A)--\geq\pi_{n-1}(A)-\cdots$ .
In general $\pi_{n}(X, A)$ will not be known but we may be able to approximate it
via a map $h:X\rightarrow B$ with $h(A)=*$ (the base point) and where $B$ is a space
whose homotopy groups are (better) known. Then we can regard

(0.2) .. . $->\pi_{n}(A)$
$\pi_{n}(X)-\rightarrow\pi_{n}(B)\pi_{n-1}(A)i_{*}H\underline{\Delta}-\cdots$

(where $H=h_{*}$ ) as an approximation to 0.1. Of course if $h_{*}:$ $\pi_{n}(X, A)\rightarrow\pi_{n}(B)$

is not an isomorphism then 0.2 may not be exact. Indeed the operator $\Delta$ may
not be well-defined. However a partial function (defined on the kernel of $i_{*}$ )
$\Delta^{\leftarrow}:$ $\pi_{n-1}(A)\rightarrow\pi_{n}(B)$ can be defined (with a degree of indeterminacy) using Toda
brackets. If $\mu\in\pi_{n-1}(A)$ is such that $i_{*}\mu=0$ , let
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(0.3) $\Delta^{\leftarrow}(\mu)=-\{0\{h\}, \{i\}, \mu\}\subseteqq\pi_{n}(B)$ ,

where the little circle decorating the Toda bracket indicates that a “preferred
nullhomotopy” of $hi$ (in this case the trivial nullhomotopy) is called for. In
consequence, the indeterminacy of $\Delta^{\leftarrow}$ exactly coincides with the image of $H$.
(For conceptual detail see \S 2.)

Suppose now that we have classes $\alpha^{\prime}\in\pi(K, A),$ $\beta^{\prime}\in\pi_{k}(K),$ $\gamma^{\prime}\in\pi_{n-1}(S^{k})$

with $i_{*}(\alpha^{\prime}\circ\beta^{\prime})=0$ and $\beta^{\prime}\circ\gamma^{\prime}=0$ . Then the Toda bracket set $\{i_{*}\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\}\subseteqq\pi_{n}(X)$

is defined. We shall see (Proposition 3.4) that

(0.4) $H\{i_{*}\alpha^{\prime}, \beta^{r}, \gamma^{\prime}\}=\Delta^{\leftarrow}(\alpha^{\prime}\circ\beta^{\prime})\circ E\gamma^{\prime}$ ,

where $E$ denotes the suspension homomorphism. The reader will recognise 0.4
as a primitive form of [7; Proposition 2.6], a cornerstone of Toda’s composition

method.
The equality 0.4 indicates that $H$ has the power to detect new classes, but

this ability will have little practical value unless also it is possible to recognize
$\Delta^{\leftarrow}(\alpha^{\prime}\circ\beta^{\prime})$ as a specific class (coset) in $\pi_{k+1}(B)$ . This can be done if the inclusion
$i:A\rightarrow X$ factors through a principal cofibration so that we have a commutative
diagram

$j^{\prime}$
$i^{\prime}$

$A\rightarrow A\bigcup_{\lambda}CM\rightarrow X$

$\Sigma M^{q}B^{h}\underline{j}\downarrow$

where $\lambda\in\pi(M, A)$ and $q$ shrinks $A$ .

0.5. PROPOSITION. If $\alpha^{\prime}\circ\beta^{\prime}=\lambda 0\delta$ , where $\alpha^{\prime}\in\pi(K, A),$ $\beta^{\prime}\in\pi_{k}(K),$ $\delta\in\pi_{k}(M)$

then $\Delta^{\leftarrow}(\alpha^{\prime}\circ\beta^{\prime})\ni$ ] $*E\delta$ .

Although the sequence 0.2 need not be exact at $\pi_{n}(X)$ it gives rise to a
number of short differential sequences:

${\rm Im}(i_{*})-\pi_{n}(X)-{\rm Im}(H)$ .
The following result supplies information concerning the (group) extension as-
sociated with an element detected by $H$.

0.6. PROPOSITION. If $i:A\rightarrow X$ factors through $A\cup {}_{\lambda}CM$ and if $\gamma\in\pi_{n}(M)$

is such that $\lambda\circ\gamma=0$ , then there exists an element $\xi\in\pi_{n+1}(X)$ such that $ H\xi=j_{*}E\gamma$ .
Moreover if $m\gamma=0$ then $m\xi\in-i_{*}\{\{\lambda\}, \{\gamma\}, mc_{n}\}$ .



Approximating the homotopy sequence 87

The paradigmatic application of the theory outlined above is to the sus-
pension inclusion $S^{n}\rightarrow\Omega S^{n+1}$ or, equivalently, to the inclusion $S^{n}\rightarrow S_{\infty}^{n}$ into the
James reduced product space, with $B=S_{\infty}^{2n}$ and $h:S_{\infty}^{n}\rightarrow S_{\infty}^{2n}$ the James map [5].

Here the Whitehead square $[c_{n}, c_{n}]$ plays the role of the class $\lambda$ . However
Proposition 0.6 specialises to a result that appears to be new. The need for
such a formula in Toda’s book was avoided by relying on the calculus of Toda
brackets derived in the course of the computation.

The theory also gives rise to useful formulae in the case of the inclusion
$S_{l}^{n}\rightarrow S_{\infty}^{n}$ ( $t>1,$ $n$ even). ( $S_{l}^{n}$ is the tn-skeleton of $S_{\infty}^{n}$ ). In particular, for $t=p-1$

with $p$ an odd prime, a partial technique for computing unstable p-components
of the homotopy groups of spheres is obtained. The technique is only partial
because of the different behaviour of the odd and even dimensional spheres. It
needs to be complemented by a study of the inclusion $S^{n-1}\rightarrow\Omega S_{p-1}^{n}$ ( $n$ even). The
present paper considers only a selection of applications of the theory relevant
to the homotopy groups of spheres. Other possible applications, $e$ . $g$ . to the
study of unstable phenomena associated with the suspension of spaces other
than spheres may receive attention in due course.

The convenience of the category of homotopy pairs when dealing with
(ternary) Toda brackets has been demonstrated [4]. In \S 1 this approach is
further exploited to derive a number of standard properties of the brackets
making the treatment self-contained.

1. Some Toda bracket theory.

In this section we utilise homotopy pair theory to define the secondary ho-
motopy composition operation and to derive certain properties needed in the
sequel. Recall that the objects of the category of homotopy pairs [3], [4] are
(pointed) continuous maps and the morphisms from $f$ to $g$ are equivalence

classes of diagrams

$X\underline{\psi_{0}}E$

(1.1) $f$

$y^{h}$
$g$

$Y\overline{\phi_{0}}B$

where $h_{t}$ is a homotopy from $\phi_{0}f$ to $g\psi_{0}$ . Specifically the square 1.1 is \sim -

related to the composite ( $i$ . $e$ . outer) square
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$X\underline{\psi_{1}}E$

$X^{\underline{\emptyset y_{\psi_{0}}^{\iota}}}E||$

(1.2)
$f\underline{J_{\phi_{0}}}\downarrow gY^{h_{-1}}B$

$\phi_{1-l\nearrow ,\prime}$

$Y\overline{\phi_{1}}B$

where $\psi_{t}$ and $\phi_{t}$ are homotopies, and also to the square

$f_{Y^{h_{\underline{\phi_{0}}}}B}^{X\frac{\psi_{0}}{J^{\prime}t}E}\downarrow g$

if $h_{\iota}$ and $h_{t}^{\prime}$ belong to the same track ( $i$ . $e$ . relative homotopy class of homotopies).

Now let $f:X\rightarrow Y,$ $h:Y\rightarrow E,$ $g:E\rightarrow B$ be maps such that $/?f\simeq*andgh\simeq*$

and let $m_{l}$ : $X\rightarrow E,$ $n_{t}$ : $Y\rightarrow B$ be nullhomotopies of $hf,$ $gh$ respectively. Then
the composite square

(1.3)
$x^{\overline{J}}*\downarrow*BX_{m}\frac{f}{-1y^{-\iota}h}Y_{n_{l}}*$

$E\underline{g}B$
$*$

defines an elements $\xi$ of the homotopy pair set $\pi(X*, *B)$ . As discussed in [4],

the operator
$cP:\pi(X*, *B)-\pi(\Sigma X, B)$ ,

applied to the composite square 1.3 selects the homotopy class of the map in-
duced by 1.3 from the cofibre of $X*to$ the cofibre of $*B$ . The Toda bracket set

(1.4) $\{\{g\}, \{h\}, \{f\}\}\subseteqq\pi(\Sigma X, B)$

is defined to be the set { $cP(\xi)|$ nullhomotopies $m_{t},$ $n_{t}$ }, which turns out to be a
double coset of the subgroups $\pi(\Sigma Y, B)\circ\{\Sigma f\}$ and $\{g\}\circ\pi(\Sigma X, E)$ in $\pi(\Sigma X, B)$ .
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Toda [7] verifies that the coset 1.4 is independent of the choice of $f,$ $h,$ $g$

within their homotopy classes. We can note that these facts are implicit in the
definition above. For example, suppose $f_{l}$ is a homotopy from $f$ to $f^{\prime}$ then the
homotopy pair relation

$X-Y\rightarrow*$

$\Vert^{f_{t}}y$ $||$
$\Vert$

$X_{*^{\overline{m_{\iota_{-}}}}}\downarrow^{y^{t}}E_{\overline{g}}YI^{n}\overline{y\iota}B\downarrow*\sim x_{m}\downarrow^{\overline{J^{t}}}1-h_{E^{\vee}B}^{Y*}I^{n_{t}}\overline{\nearrow}\downarrow*$

indicates that the relevant brackets have a common element. Other standard
properties of the brackets can be derived in a rather simple way. We give two
examples. Let $k:W\rightarrow X$ be a map. Then the following diagram

$Wx_{Zm_{h}}\frac{f}{y^{1-l}}Y_{\overline{n_{l}}}*\underline{k}$

$*$ $*$ $E\overline{g}B$

$\Sigma W\vec{\Sigma k}\Sigma X$
$B$

in which the bottom line contains induced maps between respective cofibres
yields the inclusion

(1.5) $\{\{g\}, \{h\}, \{f\}\}\circ\{\Sigma k\}\subseteqq\{\{g\}, \{h\}, \{f\}0\{k\}\}$

(cf. [7], Proposition 1.2 $(i)$). Suppose next that $fk\simeq O$ and let $p_{t}$ : $W\rightarrow Y$ be a
nullhomotopy of $fk$ . Then the following composite squares clearly represent

elements of opposite sign in $\pi(W*, *B)$ .

$k$

$W-X-*-*$ $W=W\rightarrow*\rightarrow*$

$\downarrow^{p_{1-}}J^{\iota}\downarrow y_{\underline{h}\underline{g}}\downarrow\downarrow*$$Y^{m}EB$ $ WX^{\prime}\rightarrow Y||\underline{k}\downarrow^{p_{t\nearrow}}\downarrow\leftrightarrow|\rfloor$

$|_{*-*}|\downarrow^{n_{1}}-J^{\iota}\downarrow_{-,-}B||$ $\downarrow*-*^{\prime}-E^{n}-B\downarrow^{m_{1-\nearrow}}h\downarrow^{J}\iota\downarrow$
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If we bear in mind the $\sim$ relation this yields the identity

(1.6) $\{\{g\}, \{h\}, \{f\}\}\circ\{\Sigma k\}=-\{g\}\circ\{\{h\}, \{f\}, \{k\}\}$

(cf. [7], Proposition 1.4).

We now give two further results needed in the proof of Proposition 0.6.
Suppose that the maps $f,$ $h$ and $g$ are only known to satisfy

(1.7) $\{\Sigma g\}\circ\{\Sigma h\}=0,$ $\{\Sigma h\}\circ\{\Sigma f\}=0$ .

and let $i_{E}$ : $E-*\Omega\Sigma E$ denote the unit of the loop suspension adjunction. Then
equivalent to 1.7 we have

$\{\Omega\Sigma g\}\circ\{i_{E}h\}=0,$ $\{i_{E}h\}\circ\{f\}=0$ .

Let $\theta$ : $\pi(\Sigma^{2}X, \Sigma B)\rightarrow\pi(\Sigma X, \Omega\Sigma B)$ denote the adjunction isomorphism.

1.8. PROPOSITION. $\theta\{\{\Sigma g\}, \{\Sigma h\}, \{\Sigma f\}\}=-\{\{\Omega\Sigma g\}, \{i_{E}h\}, \{f\}\}$ .

1.9. REMARK. Proposition 1.8 is consistent with and can be regarded as
a variant of Toda’s Proposition 1.3 [7].

PROOF OF 1.8. It can be checked that the indeterminacies of the brackets
are equivalent under $\theta$ hence it remains to show that the subsets have an
element in common. An element of the left hand side is given by the composite

class on the top row of the following diagram

$\sum X-F_{Z\hslash}\rightarrow\Omega\sum B$

$\Sigma X\underline{\Sigma f}\Sigma Y\downarrow-\downarrow*$

$*^{m_{1}}-J^{t}$ $\Sigma h\Sigma E^{n_{\iota}}\underline{y_{\Sigma g}}\Sigma B\downarrow$

where $m_{l}$ and $n_{t}$ denote nullhomotopies and the top row contains the induced
maps between the respective homotopy fibres. An element of the right hand
bracket is given by the bottom row of the diagram
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$X-Y-*$
$*^{m}1-t\Omega\sum^{h\downarrow^{J_{\Omega\Sigma g}}}E^{n}\rightarrow\Omega\sum^{t}B\underline{y_{\Sigma f}^{\prime}i}_{B}\downarrow$

’

$\Sigma X-C_{t_{B}h}-\Omega\Sigma B$ ,

the bottom row consisting of the induced maps between the respective mapping

cones. Comparing the homotopies $(\Omega\Sigma g)m_{1-t}^{\prime}+n_{l}^{\prime}f:X-\not\simeq\Omega\Sigma B$ and $(\Sigma g)m_{1-t}+$

$n_{l}(\Sigma f):\Sigma X\rightarrow\Sigma B$ , note that these coincide (under adjoint correspondence) if we
choose $m_{t}^{\prime}x(s)=m_{t}(x, s)$ and $n_{t}^{\prime}y(s)=n_{t}(y, s)(x\in X, y\in Y, s\in I, t\in I)$ . The sign
in 1.8 arises from the choice of orientation involved in the standard representa-

tion of $\Sigma X$ as the mapping cone of $X\rightarrow*$ .

1.9.1. REMARK. The equality in Proposition 1.8 remains valid if $\Sigma_{g}$ is
replaced by a non-suspension.

If, instead of 1.7, the maps $f,$ $h$ and $g$ satisfy

(1.10) $\{\Sigma_{g\}\circ}\{\Sigma h\}=0$ , $\{h\}\circ\{f\}=0$

then we have:

1.1.1. COROLLARY. $\theta\{\{\Sigma g\}, \{\Sigma h\}, \{\Sigma f\}\}\supseteqq-\{\{i_{B}g\}, \{h\}, \{f\}\}$

PROOF. By Proposition 1.8,

$\theta\{\{\Sigma g\}, \{\Sigma h\}, \{\Sigma f\}\}=-\{\{\Omega\Sigma g\}, \{i_{E}h\}, \{f\}\}\supseteqq-\{\{\Omega\Sigma g\}0\{i_{E}\}, \{h\}, \{f\}\}$

(by [7; Proposition 1.2 (iii)]) $=-\{\{i_{B}g\}, \{h\}, \{f\}\}$ .

1.12. REMARK. The coset $-\theta^{-1}\{\{i_{B}g\}, \{h\}, \{f\}\}$ coincides with $\{\{\Sigma g\}$ ,
$\{\Sigma h\},$ $\{\Sigma f\}\}_{1}$ in the sense of Toda’s notation [7; page 9]. Moreover if $f,$ $h,$ $g$

satisfy $\{g\}\circ\{h\}=0$ and $\{h\}\circ\{f\}=0$ we can recover from 1.11 Toda’s inclusion
[7; Proposition 1.3]:

(1.13) $-\Sigma\{\{g\}, \{h\}, \{f\}\}\subseteqq\{\{\Sigma g\}, \{\Sigma h\}, \{\Sigma f\}\}$ .

2. Preferred nullhomotopies.

Let $h,$ $h^{\prime}$ : $Y\rightarrow E$ and $g,$ $g^{\prime}$ : $E\rightarrow B$ be maps and let $n_{l}(respectivelyn_{t}^{\prime})$ be a
a nullhomotopy of $gh$ (respectively of $g^{\prime}h^{\prime}$ ). Then the squares
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$Y-*$ $Y-*$
\langle $21$ )

$h_{E^{-J_{\overline{g}}}B}n_{t}$

and
$h^{\prime I^{n_{t}^{\prime}}\downarrow}EBJ_{g}\overline,$

are coherent there exists a homotopy $h_{l}$ from $h$ to $h^{\prime}$ such that

$Y-Y-*$ $Y-*$
$h_{E--E}^{h_{t}n^{\prime}}J_{h^{\prime}\bigvee_{g}^{\nearrow}}\overline,$

$ B\downarrow$

$=$
$ h_{E^{n_{\iota}}}^{\prime}\nearrow$

$ B\downarrow$

in $\pi(h, *B)$ . (If the condition is satisfied, note that $g$ and $g^{\prime}$ are necessarily
homotopic.) If the squares are coherent then we also say (with some abuse)

that the nullhomotopies $n_{t}$ and $n_{t}^{\prime}$ are coherent. Systematic use of coherent
nullhomotopies enables some sharpening of the secondary composition operation.
For example, let $C$ denote the coherence class of the nullhomotopy $n_{t}^{\prime}$ . Then,
given also $f:X\rightarrow Y$ with $hf\cong*$ , we define

(2.2) $\{^{c}\{\{g\}, \{h\}, \{f\}\}=\{cP(\xi)|m_{t} ; hf\simeq*, n_{\ell}\in C\}$ ,

where $\xi$ is the element referred to in 1.3. Note that the indeterminacy of the
bracket 2.2 is the subgroup $\{g\}0\pi(\Sigma X, E)$ . When the coherence class in ques-
tion is clearly understood it is convenient to use the nonspecific notation $t^{0}\{g\}$ ,
$\{h\},$ $\{f\}\}$ . For example (as occurred in the introduction) if for particular
representative maps $g$ and $h$ it is known that $gh=*then$ the coherence class
of the trivial homotopy may be understood. Another situation giving rise to a
preferred homotopy is the composition

$XY\underline{f}\rightarrow YL^{\prime}{}_{f}CXPf$

of a map with the inclusion of codomain into mapping cone. A standard null-
homotopy of $(Pf)f$ is available which defines a coherence class. Note that a
bracket $\{\{g\}, \{h\}, \{f\}^{0}\}$ is defined whenever a preferred nullhomotopy of $hf$ is
understood and that it’s indeterminacy is the subgroup $\pi(\Sigma Y, B)\circ\{\Sigma f\}$ . Versions
of the standard inclusion properties of Toda brackets [7; Proposition 1.2] can
be derived for brackets involving preferred nullhomotopies. For example, cor-
responding to 1.6, and respectively to [7; Proposition 1.2 (ii)] the following

can be proved.
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(2.3) $\{\{g\}, \{h\}, \{f\}^{0}\}0\{\Sigma k\}=-\{g\}\circ\{^{0}\{h\}, \{f\}, \{k\}\}$ .

(2.4) $\{^{0}\{g\}, \{h\}\circ\{f\}, \{k\}\}=\{0\{g\}, \{h\}, \{f\}\circ\{k\}\}$ .

3. The operator $\Delta^{\leftarrow}$ .
Recall that an element $\eta\in\pi_{n}(X, A)$ is a pair-homotopy equivalence class of

a commutative diagram

$S^{n-1}\rightarrow^{f}A$

$j$

$V^{n}\rightarrow X$ ,

where $V^{n}$ is the n-dimensional ball bounded by $S^{n-1}$ .
Equivalently we may regard $\eta$ as the homotopy pair class of a homotopy

commutative diagram

$S^{n-1}A\underline{f}$

(3.1) $m_{l}y$
$i$

$*$ X.

The boundary operator $\partial:\pi_{n}(X, A)\rightarrow\pi_{n-1}(A)$ has the property that $\partial\eta=\pm\{f\}$ ,

the sign depending on orientation conventions. The homomorphism $h_{*}:$ $\pi_{n}(X$,
$A)\rightarrow\pi_{n}(B)$ determined by a map $h:(X, A)\rightarrow(B, *)$ is that which associates with
$\eta$ the composite square

$S^{n-1}\rightarrow^{f}A\rightarrow*$

(3.2)
$*^{\prime}m_{l}\nearrow$ $ X^{i^{*}}\rightarrow J_{h}B\downarrow$

regarded as an element of $\pi_{n}(B)$ via the bijection $cP:\pi(S^{n-1}*, *B)\rightarrow\pi_{n}(B)$ .
(Note that the right hand square in 3.2 commutes via the trivial homotopy).

An immediate consequence of the definition of the operator $\Delta^{\leftarrow}:$ $\pi_{n-1}(A)\rightarrow\pi_{n}(B)$

is the following result.

3.3. PROPOSITION. $\Delta^{\leftarrow}\partial\eta=\pm h_{*}\eta+H\pi_{n}(X)\in\pi_{n}(B)/H\pi_{n}(X)$ .
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Proposition 3.3 may be regarded as providing some justification for the
notation $\Delta^{\leftarrow}$ . We now also state:

3.4. PROPOSITION. If $\alpha^{\prime}\in\pi(K, A),$ $\beta^{\prime}\in\pi_{k}(K),$ $\gamma^{\prime}\in\pi_{n-1}(S^{k})$ are such that
$i_{*}(\alpha^{\prime}\circ\beta^{\prime})=0$ and $\beta^{\prime}\circ\gamma^{\prime}=0$ then $H\{i_{*}\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\}=\Delta^{\leftarrow}(\alpha^{\prime}\circ\beta^{\prime})\circ E\gamma^{\prime}$ .

PROOF. By [7; Proposition 1.2 (iii)] we have $\{\{i\}\circ\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\}\subseteqq\{\{i\}, \alpha^{\prime}\circ\beta^{\prime}, \gamma^{\prime}\}$

and hence $H\{i_{*}\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\}=\{h\}\circ\{\{i\}, \alpha^{\prime}\circ\beta^{\prime}, \gamma^{\prime}\}$ , since the respective indetermi-
nacies coincide. Applying 1.6 we have

$H\{i_{*}\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\}=-\{\{h\}, \{i\}, \alpha^{\prime}\circ\beta^{\prime}\}\circ E\gamma^{\prime}\supseteqq-\{^{0}\{h\},$ $\{i1, \alpha^{\prime}\circ\beta^{\prime}\}\circ E\gamma^{\prime}$ ,

but again the indeterminacies coincide, yielding the required result.

PROOF OF PROPOSITION 0.5. Since $-\Delta^{\leftarrow}(\alpha^{\prime}\circ\beta^{\prime})=\{^{0}\{h\}, \{i\}, \alpha^{\prime}\circ\beta^{\prime}\}=\{^{0}\{h\}$ ,

$\{i\},$ $\lambda\circ\delta$ } $\supseteqq\{^{0}\{h\}, \{i\}, \lambda\}\circ E\delta$ , we need to show that $-]_{*\Sigma M}1\in t^{0}\{h\},$ $\{i\},$ $\lambda$ }. Now
we have

$\{^{0}\{h\}, \{i\}, \lambda\}=\{^{0}\{h\}, \{i^{\prime\prime}\}\circ\{i^{\prime}\}, \lambda\}\supseteqq t^{0}\{h\}\circ\{i^{\prime\prime}\},$ $\{i^{\prime}\},$ $\lambda$ }

$=\{0\{j\}\circ\{q\}, \{i^{\prime}\}, \lambda\}\supseteqq j_{*}\{0\{q\}, \{i^{\prime}\}, \lambda\}$ ,

(we note that the preferred nullhomotopies are compatible).

But $\{^{0}\{q\}, \{i^{\prime}\}, \lambda\}\ni\{^{0}\{q\}, \{i^{\prime}\}, \lambda^{0}\}$ and hence the desired result is a conse-
quence of the following lemma.

3.5. LEMMA. Let $f:X\rightarrow Y$ be a map, let $Pf:Y\rightarrow Y\bigcup_{f}CX$ be the inclusion

of $Y$ into the $co$fibre of $f$ and let $Qf:Y\bigcup_{f}CX\rightarrow\Sigma X$ be the projection shrinking
Y. Then $(Pf)f\simeq*and(Qf)(Pf)\simeq*via$ standard nulhomotopies and

$\{^{0}\{Qf\}, \{Pf\}, \{f\}^{0}\}=$ $1_{\Sigma X}$ .

PROOF. The reader may first check that the element of $\pi(X*, *\Sigma X)$ , defined
by the composite diagram

$X\underline{f}Y$
$*$

$J$ $PfJ$
$*\rightarrow Y\bigcup_{f}CX\rightarrow\Sigma X$

$Qf$

in which the standard homotopies are used, coincides with the element defined
by the square
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$X$ $*$

$(-,t)J$

$*-\Sigma X$ .

The desired result is now a consequence of the definition of $P$ as a functor [3],

essentially going back to [6].

When applicable, a rather efficient detection technique can be based on the
following result which can be regarded as a slightly more general version of
Proposition 0.6.

3.6. THEOREM. If $i:A\rightarrow X$ factors through $A\cup {}_{\lambda}CM$ and if $\gamma\in\pi(W, M)$ is
such that $\lambda\circ\gamma=0$ then $j_{*}E\gamma=H\{0\{i\}, \lambda, \gamma\}$ . The coset $\{^{0}\{i\}, \lambda, \gamma\}$ is contained in
$ i_{*}^{\prime\prime}\pi$ ( $\Sigma W,$ $A\bigcup_{\lambda}$ CM) and its indeterminancy is $i_{*}\pi(\Sigma W, A)$ . Moreover if $\delta\in$

$\pi(V, W)$ is such that $\gamma 0\delta=0$ and if $\xi\in\{^{0}\{i\}, \lambda, \gamma\}$ then $\xi\circ E\delta\in i_{*}\{\lambda, \gamma, \delta\}$ .

PROOF. Applying 2.3, we have $H\{0\{i\}, \lambda, \gamma\}=-\{\{h\}, \{i\}, \{\lambda\}^{0}\}\circ E\gamma=-$

$\{^{0}\{h\}, \{i\}, \{\lambda\}^{0}\}\circ E\gamma$ , since the respective indeterminacies are trivial. But argue-
ing as in the proof of 0.5 we find that $\{^{0}\{h\}, \{i\}, \{\lambda\}^{0}\}=-J*1\Sigma M$ so that $j_{*}E\gamma=$

$H\{0\{i\}, \lambda, \gamma\}$ . Moreover, applying 1.6 we have

$\{^{0}\{i\}, \lambda, \gamma\}\circ E\delta\subseteqq-i_{*}\{\lambda, \gamma, \delta\}$ ,

hence the result.

4. The $E_{t}-H_{t}-\Delta_{t}$ sequence

For a pointed, locally countable CW-complex $A$ , I. M. James [5] has des-
cribed a space $A_{\infty}$ and a homotopy equivalence $A_{\infty}\rightarrow\Omega\Sigma A$ which induces a
canonical isomorphism

(4.1) $\Omega_{1}$ : $\pi_{n+1}(\Sigma A)-\pi_{n}(A_{\infty})$ .
The suspension inclusion $A\rightarrow\Omega\Sigma A$ is equivalent via 4.1 to a natural inclusion
$i:A\rightarrow A_{\infty}$ . In the case $A=S^{n}$ the homotopy sequence

$...\rightarrow\pi_{r}(S^{n})-\pi$ . $(S_{\infty}^{n})-\pi_{r}(S_{\infty}^{n}, S^{n})-\pi_{r-1}(S^{n})\cdots$

in which the James map $h:(S_{\infty}^{n}, S^{n})\rightarrow(S_{\infty}^{2n}, *)$ is used to approximate $\pi_{r}(S_{\infty}^{n}, S^{n})$

gives rise (via the isomorphism 4.1) to the $ E-H-\Delta$ sequence
E $H$ $\Delta$

(4.2) $...\rightarrow\pi_{r}(S^{n})-\pi_{r+1}(S^{n+1})-\pi_{r+1}(S^{2n+1})-\pi_{r-1}(S^{n})\rightarrow$ .

A little more generally, starting instead with the inclusion
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$i:S_{l-1}^{n}\rightarrow S_{\infty}^{n}(t\geqq 2)$

and utilising the James map $h_{t}$ : $(S_{\infty}^{n}, S_{t-1}^{n})\rightarrow(S_{\infty}^{ln}, *)$ , one obtains the sequence

(4.3)
$...\rightarrow\pi_{r}(S_{t-1}^{n})\pi_{r+1}(S^{n+1})>\pi_{r+1}(S^{ln+1})\pi_{r-1}(S_{l-1}^{n})\underline{E_{l}}H_{t}\underline{\Delta_{t}}\rightarrow$ .

As in the case of the sequence 0.2 the operator $\Delta_{t}$ is imperfectly defined and
the sequence fails to be exact (to the extent that $h_{t*}$ fails to be an isomorphism).

However
$\Delta_{t}^{\leftarrow}(\mu)=-\Omega_{1}^{-1}\{0\{h_{t}\}, \{i\}, \mu\}\subseteqq\pi_{r+1}(S^{tn+1})$

is defined, with indeterminacy $H_{t}\pi_{r+1}(S^{n+1})$ , whenever $\mu\in\pi_{r-1}(S_{l-1}^{n})$ belongs to

the kernel of $E_{t}$ . Since the generalized Whitehead product $[c_{n}]^{t}$ is the attach-
ing class of the tn-cell of $S_{\infty}^{n}$ the general theory of \S 3 is applicable with $[c_{n}]^{l}$

playing the role of the class $\lambda$ . Interpreting Proposition 3.4 in this case and
taking into account Remark 1.12, we obtain the following.

4.4. COROLLARY. If $\alpha\in\pi(K, S_{t-1}^{n}),$ $\beta\in\pi_{k}(K),$ $\gamma\in\pi_{r}(S^{k})$ are such that
$E_{l}(\alpha\circ\beta)=0$ and $\beta\circ\gamma=0$ then $ H_{t}\{E_{t}\alpha, E\beta, E\gamma\}_{1}=-\Delta_{t}^{\leftarrow}(\alpha\circ\beta)\circ E^{2}\delta$ .

In the case $t=2$ we recover [7; Proposition 2.6]. For $t>2$ , however, the
formula appears to be new. The corresponding version of Proposition 0.5 is
as follows.

4.5. COROLLARY. If $\alpha\in\pi(K, S_{t-1}^{n}),$ $\beta\in\pi_{k}(K)$ are such that $\alpha\circ\beta=[c_{n}]^{t}\circ\delta$ ,

where $\delta\in\pi_{k}(S^{tn-1})$ , then $\Delta_{t}^{\leftarrow}(\alpha\circ\beta)\ni E^{2}\delta$ .

The following two examples show that the corollaries can indeed be used to

detect elements if $t>2$ .

4.6. EXAMPLE. $(t=4)$ Toda’s generator $\overline{\epsilon}\in\pi_{18}(S^{3}$ ; 2 $)$ is an element of the

bracket $\{\epsilon_{3},2c_{11}, \nu_{11}^{2}\}_{6}$ . To see that $\overline{\epsilon}_{3}$ can be detected by $H_{4}$ via Corollary 4.4
we state the following lemma.

4.7. LEMMA. $\epsilon_{3}=E_{4}\hat{\epsilon}$ , where $\hat{\epsilon}\in\pi_{10}(S_{3}^{2}),$ $8\hat{\epsilon}=0$ and $2\hat{\epsilon}=[\iota_{2}]^{4}\circ\nu_{7}$ .

Applying 4.4, 4.5 and 4.7 we find $H_{4}\{E_{4}\hat{\epsilon}, E2\iota_{10}, \nu_{11}^{2}\}_{1}\ni-\nu_{9}^{3}\neq 0$ , as required.

PROOF OF LEMMA 4.7. In the truncated $ EH\Delta$ sequence

$\pi_{10}(S^{2})-\pi_{10}(S_{3}^{2})\rightarrow\pi_{10}(S^{4})-\pi_{9}(S^{2})$

the 2-components of $\pi_{10}(S^{2})$ and $\pi_{9}(S^{2})$ are trivial. Hence there is an isomorphism
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$\pi_{10}(S_{3}^{2} ; 2)\approx\pi_{10}(S^{4} ; 2)=\{\nu_{4}^{2}\}\approx Z_{8}$ . In the $E_{4}-H_{4}-\Delta_{4}$ sequence

$H_{4}$ $\Delta_{4}$ $E_{4}$

$\pi_{12}(S^{3})-\pi_{12}(S^{9})-\rightarrow\pi_{10}(S_{3}^{2})\rightarrow\pi_{11}(S^{3})$

it is known that $\mu_{3}\in\pi_{12}(S^{3})$ is such that $H_{4}\mu_{3}=4\nu_{9}[2;4.3]$ . It follows that the
kernel of $E_{4}=\{\Delta_{4}\nu_{9}\}=\{[i_{2}]^{4}\circ\nu_{7}\}\approx Z_{4}$ . Moreover $H_{4}(\epsilon_{3})=H(H\epsilon_{3})=0$ so that $\epsilon_{3}\in$

$E_{4}(\pi_{10}(S_{3}^{2}))$ and the existence of $\hat{\epsilon}$ , as claimed, is assured.

4.8. EXAMPLE. ( $t=p$ , an odd prime) As discovered by J. P. Serre, there
is an element $\alpha\in\pi_{2p}(S^{3})$ of order $p$ . The facts stated in the following lemma
are well known.

4.9. LEMMA. $\alpha=E_{p}\overline{\alpha}$, where $\overline{\alpha}\in\pi_{2p-1}(S_{p-1}^{2})$ is of infnite order and $p\overline{\alpha}=[f_{2}]^{p}$ .

Let $\gamma\in\pi_{r-1}(S^{2p-1})$ be an element of order $p$ (for example we may take $\gamma=$

$E^{2p-2}\alpha)$ then
$H_{p}\{E_{p}\overline{\alpha},$ $p\iota_{2p},$ $ E\gamma\{1=-E^{2}\gamma$ .

Corollaries 4.4 and 4.5 offer a useful detection technique but to extract a
maximum of information it is preferable to utilize the sharper construction (with

insight into the group extension problem) offered by the following $appIication_{*}\neq_{up}$

of Theorem 3.6. We use 1 to denote the identity class $S_{l-1}^{n}\rightarrow S_{l-1}^{n}$ .

4.10. COROLLARY. If $\gamma\in\pi_{k}(S^{ln-1})$ is such that $[\iota_{n}]^{l}\circ\gamma=0$ then $H_{l}$ $\{^{0}E_{l}(1)$ ,
$E[\iota_{n}]^{l},$ $ E\gamma\}_{1}=-E^{2}\gamma$ . Moreover if $\delta\in\pi_{r}(S^{k})$ is such that $\gamma\circ\delta=0$ and if $\xi\in$

$\{^{0}E_{l}(1), E[c_{n}]^{l}, E\gamma\}_{1}$ then $\xi oE^{2}\delta\in E_{l}\{[c_{n}]{}^{t}\gamma, \delta\}$ .

4.11. REMARK. The indeterminacy of the bracket $\{^{0}E_{l}(1), E[c_{n}]^{l}, E\gamma\}_{1}$ is
the subgroup $\Omega_{1}i_{*}\pi_{k+1}(S_{l}^{n_{-1}})$ of $\pi_{k+2}(S^{n+1})$ . Note that this is precisely the sub-
group of James filtration $t-1[5]$ . Since $[c_{n}]^{l}$ is the attaching class of the tn-
cell of $S_{l}^{n}$ , each element $\xi$ detected in this way has James filtration $t$ . This
fact can be used to determine the James filtrations of many of Toda’s generators.
For example it can be shown in this way that the James filtration of $\overline{\epsilon}_{3}$ is 4.
The first assertion of Corollary 4.10 has much overlap with [2; Theorem 3.3].

Indeed the bracket can be regarded as a generalization of the Hopf construction,
$c$ . $f$ . $[1],$ $[2]$ .

4.12. EXAMPLE. To illustrate the use that can be made of Corollary 4.10
to determine group extensions, let us study the element $\nu^{\prime}\in\pi_{6}^{3}$ . (We recall that
$\pi_{r}^{n}=\pi_{r}(S^{n}$ ; 2 $)$ unless $r=n$ or $r=2n-1$ in which cases $\pi_{r}^{n}=\pi_{r}(S^{n}).)$ It is known
(from an earlier stage in the systematic computation) that $[c_{2}, c_{2}]\circ\eta_{3}=0$ and that
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$\pi_{6}^{5}\approx Z/2$ , generated by $\eta_{5}$ . Applying 4.10 (with $t=2$ ) we obtain, for $\xi\in t^{0}E(1)$ ,
$E[\iota_{2}]^{2},$ $E\eta_{3}\}_{1},$ $H\xi=-\eta_{5}$ and $\xi\circ 2c_{6}=E\{[c_{2}, c_{2}], \eta_{3},2\iota_{4}\}$ , which has trivial indeter-
minacy. But

$\{[\iota_{2}, \iota_{2}], \eta_{3},2_{f_{4}}\}\supseteqq\eta_{2^{\circ}}\{2c_{2}, \eta_{3},2_{f_{4}}\}=\eta_{2}\circ\eta_{3}$ .

It follows that $\xi$ is of order 4 and is the element $\nu^{\prime}$ .
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