A REMARK ON R. POL'S THEOREM COMCERNING A-WEAKLY INFINITE-DIMENSIONAL SPACES

By

Zhu JIAN-PING

For notations and relevant definitions we refer to [1].

THEOREM (MA). There is no universal space in the class of all metrizable separable A-weakly infinite-dimensional spaces.

R. Pol proved this theorem in [1] under CH. The proof we shall give is similar with the one given in [1] but a little more direct.

LEMMA 1. Let $S \subset I^{\omega}$ be a countable union of zero-dimensional subsets. If $C \subset I^{\omega}$ satisfies that for any open neighbourhood U of $S |C \setminus U| < c$, then $C \cup S$ is A-weakly infinite-dimensional.

The proof is parallel to the proof of Lemma 1 in [1], noting that in I^{ω} every subset with cardinality less than c is zero-dimensional.

LEMMA 2 (MA). Let $\{G_{\alpha}: \alpha < \lambda\}$ be a family of open neighbourhoods of Σ in I^{ω} and $\lambda < c$, where $\Sigma = \{x \in I^{\omega}: all but finitely many coordinates of x are$ $equal to zero\}$. Then there exist positive numbers $a_i \in I(i \in \omega)$ such that $\bigcup_i [0, a_i]$ $\subset \cap \{G_{\alpha}: \alpha < \lambda\}$. Therefore, if $E \subset I^{\omega}$ can be embedded in an A-weakly infinitedimensional space, then $\cap \{G_{\alpha}: \alpha < \lambda\} \setminus E \neq 0$.

PROOF. Let $\mathscr{B} = \{[0, 1/n] : n > 0\}$. We define $P = \{(a, b): a \text{ is a finite sequence in } \mathscr{B} \& b \in [\lambda]^{<\omega}\}$ and for any $(a', b'), (a, b) \in P$, where $a = (I_0, I_1, \dots, I_n)$ and $a' = (I'_0, I'_1, \dots, I'_{n'}), (a', b') \leq (a, b)$ iff $b' \supset b$, $n \leq n'$, $I_i = I'_i$ for any $i \leq n$ and if n < n', $\prod_{i \leq n'} I'_i \times \prod_{i > n'} I \subset \cap \{G_\alpha : \alpha \in b\}$. It is obvious that \leq is a partial order on P. Since all of first components of elements of P are countable, P is *ccc* (in fact σ -centred).

Let $D_{\alpha} = \{(a, b) \in \mathbf{P} : \alpha \in b\}$ and $F_n = \{(a, b) :$ the length of a is larger than $n\}$. It is easily seen that D_{α} is dense in \mathbf{P} for any $\alpha < \lambda$. Now we want to

Received September 14, 1989. Revised November 22, 1989.

show that F_n is dense for any $n \in \omega$. Take any $(a, b) \in P$. If the length of a is larger than n, then $(a, b) \in F_n$. So we suppose that $a = (I_0, I_1, \dots, I_m)$, where m < n. Since $\bigcap \{G_\alpha : \alpha \in b\}$ is an open neighbourhood of Σ , we can find $a' = (I_0, \dots, I_m, I_{m+1}, \dots, I_n)$ such that $\prod_{i \le n} I_i \times \prod_{i > n} I \subset \bigcap \{G_\alpha : \alpha \in b\}$. Therefore, $(a', b) \le (a, b)$ and $(a', b) \in F_n$.

By MA, we have a filter G in P such $G \cap D_{\alpha} \neq 0$ $G \cap F_n \neq 0$ for any $\alpha < \lambda$ and $n < \omega$. Let $\cup \{a : \text{ there is a } (a, b) \in G\} = \{I_n : n \in \omega\}$. Then $\prod_{n < \omega} I_n \subset \cap \{G_{\alpha} : \alpha < \lambda\}$.

PROOF OF THEOREM. Let $E \subset I^{\omega}$ be any A-weakly infinite-dimensional space. Let $\{(H_{\alpha}, h_{\alpha}): \alpha < c\}$ be the family of all pairs such that H_{α} is a G_{δ} -set in I^{ω} containing Σ and $h_{\alpha}: H_{\alpha} \to I^{\omega}$ is an embedding which maps Σ onto a subset of E. Let $\{G_{\alpha}: \alpha < c\}$ be all of the open sets which contain Σ . Take $x_{\alpha} \in \bigcap \{G_{\beta}: \beta \leq \alpha\} \setminus h_{\alpha}^{-1}(E)$. Then by an argument paralleled to the one in the end of [1], we have $M = \Sigma \cup \{x_{\alpha}: \alpha < c\}$ can not be embedded in E.

REMARK 3. It is easily seen from the proof of Lemma 2 that the theorem is true under $MA_{\sigma\text{-centred}}$, i.e. p=c, which is strictly weaker than MA.

The author wishes to express his gratitude to Professor Y. Kodama and all of the members in his seminar for their stimulating discusions.

References

[1] Pol, R., A remark on A-weakly infinite-dimensional spaces, Topology and its applications 13 (1982), 97-101.

> Zhu Jian-Ping Institute of Mathematics University of Tsukuba Ibaraki 305, Japan

436