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0. Introduction

A compact connected metric space is called a continuum. Let X be a con-
tinuum and d be a metric of X. A. Lelek [6], defined the span, semispan,
surjective span and surjective semispan by the following formulas (the map =;
denotes the projection map from XXX onto the 7-th factor).

T=0a, Gy, 0%, 0 *.
| there exists a continuum ZC XX X such that
T=sup § ¢=0|Z satisfies the condition z) and
d(x, y)=c for each (x, y)eZ

Where the condition 7) is

7 (Z)=m(Z) if r=¢

n(Z)Dry(Z) if =0,
T (Z)=rm(Z)=X if o=0%*
m(2)=X if 7=0,*

The property of having zero span (semispan, surjective span, surjective
semispan resp.) does not depend on the choice of metrics of X.

A continuum is said to be arc-like if it is represented as the limit of an inverse
sequence of arcs. It is known that each arc-like continuum has span zero. But
it is not known whether the converse implication is true or not. A continuum
X is said to be hereditarily indecomposable if each subcontinuum Y of X cannot be
represented as the union of two properksubcontinua of Y. Hereditarily inde-
composable arc-like continuum is topologically unique. It is called the pseudo-
arc and denoted by P in this paper. It is known to be a homogeneous plane
continuum and is also important in span theory. For example, each span zero
continuum is a continuous image of the pseudo-arc ([11] and [2]).

Received July 26, 1989. Revised October 25, 1989.



328 Kazuhiro KAWAMURA

The purpose of this paper is to study some roles of the pseudo-arc in span
theory. The paper is divided into three parts. In section 1, a uniformization
theorem of maps from the pseudo-arc onto span zero continua is proved. As
an application, we obtain a method of constructing maps from the pseudo-arc
onto span zero continua. In section 2 and 3, we study the (weak) confluency
of product maps. Using these results, we have an equivalent condition that a
map preserves the property of having zero span in terms of (weak) confluency
of product maps (cf. [10]). In section 4, we prove fixed point theorems for
span zero continua, which are generalizations of [13].

To obtain these results, we use some techniques of Oversteegen and
Oversteegen-Tymchatyn [11].

Notations and definitions

Throughout this paper, @ denoted the Hilbert cube with a fixed metric.
Let f, g: X—Y be maps and ¢>0. We say that f and g are e-near (denoted
by f=g) if sup {d(f(x), g(x))|x=X}<e. The map fAg: X—>Y XX is defined

by fag (x)=(f(x), g(x)).

A collection W={W,, ---, W,} is called a weak chain if W,N\W;.,#@ for
each 1</=n—1. Let U={U,, ---, Un,} be another weak chain and f: {1, ---, m}
—{1, ---, n} be a pattern (i.e. | f(?)—f(Z+1)| <1 for each 7). Then U is said to
follow f in W if U,CW;, for each 1<i<m. A continuum W is called weakly
chainable if there exists a sequence (%/,) of weak chain covers of W such that
mesh %,—0 as n—oo, and for each n, W,,, follows a pattern in 9,.

A continuum is weakly chainable if and only if it is a continuous image of
the pseudo-arc ([5]).

Let f: X—Y be an onto map between continua, The map f is called con-

fluent (weakly confluent resp.) if for each subcontinuum K of Y, each (some
resp.) component C of f-!(K) satisfies f(C)=K.

1. Uniformizations

The following proposition is proved by the same way as Theorem 1
and Lemma 6. We give an outline of the proof (cf. Lemma 2).

PROPOSITION 1. Let XCQ be a continum and suppose that ¢, X=<c (c=0).
Let Z be a subcontinuum of X.

1) For each ¢>0, there exists a 6>0 such that for each pair of maps h,k: I
—Q satisfying dy(h(I), Z), dxg(k(I), Z)<d, there exist onto maps a, b: I—1I such
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that hea = kob.

ct+e

2) Suppose that X is hereditarily indecomposable and z=Z. If the maps
h, k: I-Q in 1) further satisfy d(h(0), z), d(k(0), 2)<d, then the maps a and b
can be chosen so that a(0)=5b(0)=0.

OUTLINE OF PROOF. We give an outline of the case 2). Give any subcon-
tinuum Z and any ¢>0. For each pair of maps 4, k: [-Q, we define

N(h, k; e)={(x, y)IXI| d(h(x), k(y))<c+e}.

As in the proof of Theorem 1 and Lemma 6, we have
a) there exists an ¢>0 which satisfies the following condition:
Let h, k: I-Q be any pair of maps satisfying

du(h(D), 2)<d,  du(k(), Z)<3
d(h(0), 2)<d and d(k(0), 2)<4.

Then each continuum KcIxI with KNIx0+=@+KN0XI intersects
N(h, k:¢).
This d is the required number. To prove this, we take maps h, k: [-Q
as in the hypothesis. Then as in Lemma 6 again,
b) there exists a component C(e) of N(h, k;¢) such that each continuum
KCIxI satisfying KNIx0+@+=KN0x I intersects C(e).
Let p; be the projection map from IXxI to the i-th factor. It is easy to see
that (0, 0)=C(e) and
Pi(C(e)=I or p(C(e)=I.

Assume that p,(C(e))=1. By the similar argument of Theorem 1, we see
that there exists a component D(¢) of N(h, k;¢) such that p.,(D(e))=I. But
clearly, C(e)N\D(e)#@ so, C(e)=D(e). |

Take a graph G C(e) such that (0, 0)=G and p(G)=1 i=1,2. Let f: -G
be an onto map such that f(0)=(0, 0). Then a=p,-f and b=p,f are the re-
Quired.

Let X; be continua and d; be a metric of X; (=1, 2). In this paper, the
metric of X;X X, is defined by d((x,, x2), (¥1, yz))=52§1}2c di(xi, ¥i)-

Using Proposition 1.1 and the same way as Theorem 3, we can prove
the following.

PROPOSITION 1.2. Let X; be continua in Q such that o,*X;<c (¢<0) i=1, 2.
Then each pair of onto maps f;:Y ;—X; =1 2) satisfies the following condition.
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For each subcontinuum KC XX X satisfying n;X(K)=X; (i=1, 2), there exists
a continuum LCY XY, such that =.¥*(L)=Y;, i=1, 2 and

du((f1X fXL), K)<c, where, the map m;X denotes the projection X; X X, to
the i-th factor etc.

REMARK. In the proof of Theorem 3, the weak conluency of each
factor of the product map is used. The map f; in the above proposition need
not be weakly confluent, but the same proof works in our situation.

THEOREM 1.3. Let XCQ be a continuum such that o,*X<c (¢=0).
1) For each pair of onto maps f, g:Y—X, there exists a continuum Z and
onto maps a, B: Z—Y such that f-a = g°B.
[

2) In particular, if Y =P, then for each ¢>0, there exists a homeomorphism
h: P—P such that f2: geh.
c+¢€

PrROOF. 1) Consider the map fXg:Y XY —XxX and the diagonal set AX
of X. By [Proposition 1.2, there exists a continuum ZCY XY such that =,(Z)=
n(Z)=Y and du(fxg(Z), X)<c. Let a=m,|Z and B=n,|Z: Z—Y, then a and
B are onto maps. For each (x, y)=Z, there exists a point (p, p)AX such that
d(f(x), p), d(g(»), p)<c. Hence d(f(x), g(»)=2c. This means f-a = g°B.

2) Give any £>0. There exists a >0 such that
for each x, ye P with d(x, y)<d, d(f(x), f(y)<e/2
and d(g(x), g(y)<e/2.
Consider the continuum Z as in 1). By [14], there exists a homeomorphism
h: P> P such that dz(G(h), Z)<d/2, where G(h)={x, h(x))|x< P}, the graph
of h.
For each p= P, there exists a point (x, y)=Z such that d(x, p), d(h(p), y)
<d. Since f(x)zfg(y), we have that

d(f(p), g-h(PN=d(f(P), f(xNF+d(f(x), g(y)N+d(g(y), geh(p))
<e/242¢+e/2<2¢c+¢€.

This completes the proof.

As an application of [Theorem 1.3, we obtain a characterization of span zero
continua as follows.

THEOREM 1.4. Let XCQ be a tree-like continuum in Q. Then the follow-
ing are equivalent.
1) oX=0.
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2) For each subcontinuum Z of X and for each >0, there exists a 6>0
such that

for each pair of maps f, g: P—Q satisfying f(P)Dg(P) and
du(f(P), Z)<0, there exists a subcontinuum P,C P and an (onto)
homeomorphism h: P,—P such that g-h=f|P,.

We need the following lemma for the proof.

LEMMA 1.5. Let f: P->X be a map from the pseudo-arc into a weakly chain-
able continuum X. Then there exists an arc-like continuum P*DP and an exten-
ston F: P*~X of f such that F(P)=X.

PrROOF. Take a point p of P and let x=/f(p). Take another pseudo-arc
P’ and an onto map g: P’—X. Fix a point p’eg-'(x) and let P* be the one
point union of P and P’ identified at p and p’. Define F: P*-X by F|P=f
and F|P'=g. For each &>0, there exist a chain cover C (C’ resp.) of P (P’
resp.) such that mesh € (mesh €’ resp.)<<e and p (p’ resp.) is contained in the
first link of € (€’ resp.). Using this fact, it is easy to see that P* is arc-like.

PROOF OF THEOREM 1.4.
1)—2). Notice that ¢,X=0 by [2]. Fix any subcontinum Z and give any
e>0. As ¢,Z=0, there exists a 6>0 such that

each continuum KCQ with d4(K, Z)<0, satisfies a,K<e/4.

To prove that this  is the required number, take any pair of maps f, g: P—»Q
as in the hypothesis. Then g,f(P)<e/4 by the choice of §. By Lemma 1.5,
there exist an arc-like continuum P*2P and a surjective extension G : P*—f(P)
of g. Fix an onto map k: P—»P*. Applying to f and Gek: P—
f(P), there exists a homeomorphism h*: P—P such that f 5-7-2 Gokoh*,

Since P* is arc-like, it is in class W (i.e. each map onto P* is weakly con-
fluent). Hence there exists a continuum P,CP such that k-h*(P,)=P. Define
h'=Fkeh*|P,: P,.—P. Each onto map from P, onto P is a near-homeomorphism
by [14]. A homeomorphism A : P,—P which is sufficiently close to A’ satisfies
the required condition.

2)—1). Suppose that ¢ X=c>0. There exist maps a, §: C—X from a con-
tinuum C such that a(C)=pS(C) and d(a(p), B(p))=c for each p=C. We assume
that CC@Q and let Z=a(C)=p(C) and 0<e<c/4. Take 6 for ¢ as in 2). Let
X=lim X, be the inverse limit description of X by an inverse sequence of trees.
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We may assume that X\U\UX,CQ and the projection map p.: X—X, is 1/2"-
translation in Q. Take sufficiently large n, so that 1/2"<d and let T=p.(2).
Since T is a tree, ppca and p,°B has extensions A, B:@Q->T respectively.
There exists an >0 such that

for each x, yeQ with d(x, y)<7, d(A(x), A(y)<e/2
and d(B(x), B(y))<e/2.
Let E be the set of all end points of 7. For each p=E, take x,&(prca) ' (p).
It is easy to find a pseudo-arc PCQ such that dx(P, C)<7% and {x,|pEE}CP.
Then A(P)=T.
Applying 2) to A|P and B|P:P—T, we can find a subcontinuum P,CP
and a homeomorphism A : P,—P such that Both[Pl. There exists a point

pe P, such that A(p)=p. As dgz(C, P)<7, we can find a point x&C such that
d(p, x)<m. But then,
d(a(x), B(x)=d(A(x), B(x))
<d(A(x), A(p)+d(A(p), B-h(p)+d(B(p), B(x))
<e/2+ete/2=2e<c/2,
which is a contradiction.

This completes the proof.

The following theorem gives a method of constructing maps from P onto
span zero continua.

THEOREM 1.6. Let X be a continuum which is the limit of an inverse sequence
(Xny Prnsr: Xnsi—mXn). If 6 X=0, then X has the following property.

For each sequence (a,: P—X,) of onto maps, there exists a subsequence
(m,) and a sequence of homeorphism (hn n4,: P—P) such that the following
diagram is 1/2'-'-commutative.

hu
P<«——P
a"il la"f
an 4pn,,ng X,,i ) Dnynj an ki<,

Where, h;; denotes h; j41°his1 142°, =+, °hj-1 j, elc.
Hence an onto map a: P—X is induced [9].
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Again, we can assume that XUUX,.CQ and the projection p,: X—X, is
an 1/2"-translation in Q. For the proof, we need the following lemma.

LEMMA 1.7. Under the above notation, the following condition holds.
For each i=1 and for each >0, there exist an integer N>0 and a 0>0
such that
for each n=N and for any points x, ye X, with d(x, y)<0,
d(pia(x), pin(¥))<e.

PrROOF. Define =: XU \U X,—X; by n|X=p; and 7| Xp,=pin. Then m is
nz1

continuous. Hence for each ¢>0, there exists a 0>>0 such that for any points
x, yeXU U X, with d(x, )<30, d(n(x), n(y)<e/2. Take sufficiently large N

nat

such that for each n=N, p, is a d-translation in Q. It is easy to see that N

and!d are the required numbers.

PROOF OF THEOREM 1.6. Inductively we will construct the desired diagram.
Since lim ¢, X,=0,X=0 by ((3.1), (3.2)), and [2], taking a subsequence
ifInecessary, we may assume that 0o X,<1/2".

i=1; Let n,=1, a,,=a,, and 5,=1/2. Choose an & >0 so that 2(g,Xn,)
+¢,<0;.

;=2; Applying to i=1 and ¢=1/2?, we have an integer N,>0
such that 9,<1/2% and

for each n=N, and for each x, yeX, with d(x, )< 0s,
d(pin(%), p1n(y>)<1/22-

Take an n,>n;, N» such that ¢,X,,<d./2 and choose ¢,>0 such that
200Xn,)+e2<0:. Applying Theorem 1.3t0 €1, @n,, and Ha,n,°@n,, then we have
a homeomorphism h;,: P—P such that anlahml;; Pryny® Qnye

:=3; Applying to n, and 1/2¢, take N;*>0 and 0,'>>0. Apply-
ing again to n, and 1/2°, take N,°>0 and 85*>0.

Let N,>max (N:!, N;?) and 0<d;<min (84}, 85%), and take ny>n,, N, such
that ¢,X,,<ds/2. Choose an e,>0 such that 2(c,Xn,)+€:<ds. Apply Theorem
1.3 t0 €3, Gns ANd Pryng°Any,- Then, there exists a homeomorphism R e

such that @n,°ohes = Pn,n.°Qn,. OINCE 2, X)+e,<8,<1/2%, we have
2 52 273 3

an2°h28 = pn2n3°an3 and
1/22

DPryny®@ny° hgslﬁzpnlnzopn2n3°an3 .
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Continuing these steps, we have a subsequence (n;) and a sequence of
homeomorphisms (4; ;4 : P—P) such that

for each £<7i<7, Prpngo@n;ohy; 2——1- 1p,,kpivczninjean]..
1/2%-

This completes the proof.

2. (Weak) Confluency of product maps

PROPOSITION 2.1 (cf. [10] Theorem 3) Let Y be a continuum such that
oY =0.

1) For each map f: X—Y and for each continum Z, fXidz is weakly con-
fluent.

2) In particular, if Y is hereditarily indecomposable, then f Xidy is confluent.

PrROOF. The proof uses the method of Theorem 3. We prove only
the case 2). Let X=lim(X., pnns1: Xosi—mXn), Y=Um (Y., ¢n nsi: YY)
and Z=lim (Zn, "n n+1: Zns1—Z,) be inverse limit descriptions of X, Y and Z re-
spectively. Taking a subsequence if necessary, we may assume that f is in-
duced by the following diagram.

Xn X, < X
Y, < Y € Y, < Y.

Where ¢,—0 as n—oo,

Further we assume that XU\UX,, Y UUY, and ZU\UZ,CQ and projection maps
pn: X>Xn, ¢n:Y-Y, and r,: Z—Z, are 1/2"-translations in @. The map
F: XUUX,—»Y UUY, defined by F|X=f, F|X,=/f, is continuous.

To prove that fXid; is confluent, we take any continuum KCY xXZ and
choose a point (x, z)=(f Xidz)"'(K). It suffices to construct a continuum CC
XXZ such that fXidz(C)=K and (x, z)C. By an induction, we take a suita-
ble subsequence (m,) and a sequence (C,) of continua such that

a) CoCXpn,XZn, b) du(fm,Xidz, (Cr), K)<1/n.
¢) d((x, z), Ca)<1l/n.

Let my and m; be the projection from Y XZ to Y and Z respectively. Define
K¥=ry(K), KZ=r4K) and (¥, z)=f Xidz(x, z).
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Let m,=0 and C,=XXZ and assume that m,-, and C,-, have been defined.
Since Y is hereditarily indecomposable and ¢Y =0, by Proposition 1.1, there

exists a >0 such that 0<d<1/2n and
d) for each pair of maps h, k: I-Q which satisfy dx(h(I), K¥)<o

and dgx(k(I), K¥)<d, there exist maps a, b: I-»Q such that
hoa”fnkob and a(0)=5(0)=0.

Since f is a confluent map, there exists a continuum C of X such that

e) x=C and f(C)=KY?.

We use the following notation;

f) Km:(Imxrm(K); KmYZQm(KY); KmZ:rm(Kz)y

mezpm(c>; CmZ:KmZ .
Take sufficiently large m such that
g) m>mu-y,  du(Kn, K)<8/3, da(fn(Cn®), Kn¥)<d8/3
and &,<0/3.

Now we define maps a,: [=Y n, Bi: [->Xn, @, B2 I—>Z, as follows;

h) d(ax(0), y)<d and dnlau(]), Kn¥)<d/3.

1) d(B.0), x)<1/m, d(fnP:0), y)<d and du(fupi(I), Kn*)<d/3.

i) d(ax0), 2)<é and dgxla(l), Kn%)<d/3.
k) The map a=a,Aa,: [-Y , XZ, satisfies dgla(l), K,)<1/2n.
1) ﬁzzaz.

Then by h), i) and d), there exist maps a;, b, : [—1 such that apa; = fmeBioby
/2n

and a,(0)=b,(0)=0. Let w=p:°bAas-a,: [-XnXZ,. Then we have

m) d(w(0), (x, z))<1/n.

n) d(faXidz, (@), ala,())<1/n.
Let m,=m. As a, is an onto map, we see that C,=w(l) is the required

continuum.
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T
2
S

We may assume that C,) converges to a continuum CCXXZ. Then (x, 2)
&C and fXidz(C)=K.

XZm

THEOREM 2.2. Let f:Y—Y be an onto map between continua. The follow-
ing are equivalent respectively.
1) The map fXidp: XXP—-Y XP is weakly confluent (confluent resp.).
2) For each continuum Z with aZ=0 (for each hereditarily indecomposable
continuum Z with ¢Z=0 resp.), [Xidz: XXZ—Y XZ is weakly confluent

(confluent resp.).
3) There exists a hereditarily indecomposable continum Z such that fXidy
is weakly confluent (confluent resp.).

ProoF. We prove the confluent case. Another case is similarly proved.
1)-2). Since Z is weakly chainable, there exists an onto map ¢: P—Z.
Clearly,
fXo=(f Xidz)-(idx X ¢)

=(idy X @)°(f Xidp) .

By Theorem 2.1, idy X ¢ is confluent and by the assumption, f Xidp is confluent,
so fX¢ is confluent. Hence fXid; is confluent.

2)—>1)—3). These are trivial.

3)—1). By [1], there exists an onto map ¢: Z—P. Then fX¢=(fXidp)
(fdx XP)=(idy X¢p)°(f Xidz). The similar argument as above implies the con-

clusion.

3. The preservation of the property of having zero span

LeMMA 3.1. Let f: X—Y be an irreducible map (i. e. no proper subcontinuum
of X can be mapped onto Y). If fXidp: XXP—-Y XP is weakly confluent, then
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f has the following property;

(%) for each onto map a: P—Y, there exists a continuum ZC XX P
such that nx(Z)=X, np(Z)=P, and fonx|Z=a-np|Z.

Where mx and mp is the projections from XXP to X and P respectively.

ProOF. Let H,={(a(p), p)|p=P}. Then np(H,)=P and ny(H,)=Y. Since
f xXidp is weakly confluent, there exists a continuum ZC XX P such that f Xids(Z)
=H,. Then f(ny(Z))=rny(H,)=Y, so by the irreducibility of f, z#x(Z)=X. It
is easy to see that Z satisfies the other conditions which are required.

THEOREM 3.2. Let f: X—Y be a map which satisfies the following conditions.
1) f satisfies (x) 2) fXf:XXX->Y XY is weakly confluent. If oX=0,
then o*Y =0.

PROOF. We first show that

a) for each pair of onto maps «, 8: P—Y from the pseudo-arc, there exists
a point p& P such that a(p)=pg(p).

To prove a), we apply the property (x¥) to a and 8 respectively. There
exist continua Z, and Zs such that ferx®=aemp® and fomx’=femp?, where
Ttx®=nx|Z, etc. By there exist a continuum W and onto maps
fa:W—Z, and fg:W—Zg such that zp®ef,=mpfefs. Since mx*f. and
nxPofs: W-—X are onto maps and ¢X=0, there exists a point wEW such that
Tx* fo(w)=mxPofs(w). Then we can see that aszp®efo(w)=Peomwplofg(w). So
p=np®f (w)=mrplefs(w) satisfies the conclusion of a).

Using a), it is easy to see that

b) for each pair of onto maps @, §: W—Y from any weakly chainable con-
tinuum W onto X, there exists a point w=W such that a(w)=p(w).

Next we prove that

¢) for each subcontinuum ZCY XY, there exists a sequence (W,) of weakly
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chainable continua such that

W,cYxY, LimW,=Z and p,W,)=p«(2Z),
where p; denotes projection from Y XY to the i-th factor.

To see this, we note that ¢ X=0 and hence X is weakly chainable. Take
an onto map ¢:P—X, then ¢X¢:PXP->XXX is weakly confluent ([10],
Theorem 3). From this fact and condition 2), there exists a continuum CCPX P
so that foX f@e(C)=Z. Let Pi=mnp(C) i=1, 2, where each mp' denotes projec-
tion from PxP to the i-th factor. By [14], there exist a sequence of homeo-
morphism (h,: Pi—>P;),z, such that G(h,)’s, the graphs of h,’s (CPXP), con-
verges to C. Define W, by W.=feXfe(G(h,)), which is clearly weakly
chainable. Moreover, W, — foX f¢(C)=Z, and for i=1, 2,

piWa)=fp(zwp'(G(hn)))

=fe(P)=p«f X feXC)=1:«(Z).
This prove c¢).

Now we prove that ¢*Y=0. Take any continuum ZCY XY satisfying
p«(Z)=Y i=1, 2. By c), there exists a sequence (W,) of weakly chainable con-
tinua such that p,(w,)=Y and W,—Z. Byb), W,NAY #@ for each n. So we
have ZNAY +@. This completes the proof.

Using [Theorem 3.2, we have

THEOREM 3.3 (cf. [10] Theorem 7). Let f: X—Y be an onto map between
continua and suppose that o X=0.

1) The following are equivalent.

a) oY=0.

b) For each subcontinuum K of X.

(f1K)Xidp: KXP—> f(K)XP and (f|K)Xidy: KXY — f(K)XY

are weakly confluent.

2) Suppose that X is hereditarily indecomposable and [ is confluent. Then
the following are equivalent.

a) oY=0.

b) fXidy: XXY—-XXY is confluent.

c) fXf: XXX-=>YXY is confluent.

PrROOF. 1) a)—b). This follows for Theorem 3.
b)—a). Take any subcontinuum Z in Y. There exists a contituum KX
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such that f|K: K-—Z is an irreducible map. By the assumption and
2.2, we see that (f|K)Xidy is, and hence (f|K)xX(f|K) is weakly confluent.
Hence by [Theorem 3.2 and Cemma 3.1, we have ¢*Z=0. So ¢} =0.

2) a)—b). This follows from Theorem 3.

b)—c). Since Y is hereditarily indecomposable (Notice that confluent maps
preserve hereditary indecomposability), it follows that fXidy is confluent by
Theorem 2.2. Then fXf=(idyX f)(f Xidx) is confluent.

c)—a). This follows from Theorem 7.

4. Fixed points for multi-valued map on span zero continua

We prove some fixed point theorem for multi-valued map of span zero con-
tinua, which generalize some results of Rosen [14]. Also in this section, [10]
Theorem 3 is used.

Let X be a continuum. The space of all nonempty compact subsets of X
(the space of all nonempty subcontinua of X resp.) with the Hausdorff metric
is denoted by 2% (C(X) resp.). Let f: X—2Y be a (not necessarily continuous)
function. The set G(f)= UX{x}Xf(x)CXxY is called the graph of f. The

e

image of f, denoted by f(X), is defined by \U f(x). A function f is uppersemi-

reX
(lowersemi- resp.) continuous. abbreviated u.s.c. (l.s.c. resp.), if for each open

set Uof YV, {xeX|f(x)CU} ({xeX|f(x)"NU+@} resp.) is open. A function
f: X—2%¥ is continuous if and only if f is both upper- and lower- semi- con-
tinuous. We say that f is onto if f(X)=X,

THEOREM 4.1 (cf. [13] Theorem 1). Let f, g: X—2Y be u.s.c. functions.
Suppose that

1) 6 X=0Y=0 2) G(f) and G(g) are connected and

3) f is onto.

The there exists a point x=X such that f(x)Ng(x)+*@.

PROOF. Since X and Y are weakly chainable by 1), there exist irreducible
onto maps a: P—X and b: P-Y. By the uppersemicontinuity and 2), G(f),
G(g)c XXY are continua. By Theorem 3, there exist subcontinua K and
L of PXP such that e Xb(K)=G(f) and aXb(L)=G(g). Let p;’s (m;’s resp.)
denote the projection maps from PXP (XXY resp.) to the i-th factor, /=1, 2.
Then a(p,(K))=r(G(f))=X, and by the irreducibility of a, p,(K)=P. Similarly,
P(L)=P, p(K)=P.

Since P is arc-like, it is easy to see that KN\ L= @, hence G(f/)NG(@)#D.
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Take (x, y)=G(f)NG(g). The point x satisfies the conclusion.

COROLLARY 4.2. Let f, g: X—2Y be u.s.c. functions and suppose that
1) 6X=0¢Y=0

2) f is onto and G(f) is connected, and

3) g is continuous.

Then there exists a point x< X such that f(x)Ng(x)+D.

PrROOF. By Lemma 1, there exists an u.s.c. function h: X—2¥ such
that A(x)Cg(x) for each x< X and G(h) is connected.

THEOREM 4.3 (cf. [13] Theorem 2). Let f, g: X—=C(Y) be u.s.c. functions.
Suppose that

2) oY =0 and 2) f is onto.
Then there exists a point x X such that f(x)Ngx)*@.

PROOF. Define a subset G(f, g) of YXY by U f(x)xg(x). Since f(x)
zeX

and g(x) are continua for each x&X, and f and g are uppersemicontinuous,
G(f, g) is a subcontinuum of Y XY, and #,(G(f, g)=Y (=, is the projection
to the first factor). By [2], ¢,Y =0, so G(f, g)NAY #@. This means the con-
clusion.

Let f:X—2¥ be a function. A point x&JX is called a fixed point of f if
xe f(x).

COROLLARY 4.4. Let X be a continuum with ¢ X=0. Then X has the fixed
point property for the following classes of multi-valued functions.

D {f:X-2%|f is u.s.c. and G(f) is connected}.

2) {f: X-2%|f is continuous}.

3) {f: X—>C(X)|f s u.s.c.}.
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