SPAN ZERO CONTINUA AND THE PSEUDO-ARC

Dedicated to Professor Ryosuke Nakagawa on his 60th birthday

By

Kazuhiro Kawamura

0. Introduction

A compact connected metric space is called a continuum. Let X be a continuum and d be a metric of X. A. Lelek [6], [7] defined the span, semispan, surjective span and surjective semispan by the following formulas (the map π_{j} denotes the projection map from $X \times X$ onto the i-th factor).

$$
\begin{aligned}
& \tau=\sigma, \sigma_{0}, \sigma^{*}, \sigma_{0}^{*} . \\
& \tau=\sup \left\{\begin{array}{l}
c \geqq 0 \left\lvert\, \begin{array}{l}
\text { there exists a continuum } Z \subset X \times X \text { such that } \\
Z \text { satisfies the condition } \tau) \text { and } \\
d(x, y) \geqq c \text { for each }(x, y) \in Z
\end{array}\right.
\end{array}\right\} .
\end{aligned}
$$

Where the condition τ) is

$$
\begin{array}{ll}
\pi_{1}(Z)=\pi_{2}(Z) & \text { if } \tau=\sigma \\
\pi_{1}(Z) \supset \pi_{2}(Z) & \text { if } \tau=\sigma_{0} \\
\pi_{1}(Z)=\pi_{2}(Z)=X & \text { if } \sigma=\sigma^{*} \\
\pi_{1}(Z)=X & \text { if } \tau=\sigma_{0}^{*}
\end{array}
$$

The property of having zero span (semispan, surjective span, surjective semispan resp.) does not depend on the choice of metrics of X.

A continuum is said to be arc-like if it is represented as the limit of an inverse sequence of arcs. It is known that each arc-like continuum has span zero. But it is not known whether the converse implication is true or not. A continuum X is said to be hereditarily indecomposable if each subcontinuum Y of X cannot be represented as the union of two proper subcontinua of Y. Hereditarily indecomposable arc-like continuum is topologically unique. It is called the pseudoarc and denoted by P in this paper. It is known to be a homogeneous plane continuum and is also important in span theory. For example, each span zero continuum is a continuous image of the pseudo-arc ([11] and [2]).

[^0]The purpose of this paper is to study some roles of the pseudo-arc in span theory. The paper is divided into three parts. In section 1, a uniformization theorem of maps from the pseudo-arc onto span zero continua is proved. As an application, we obtain a method of constructing maps from the pseudo-arc onto span zero continua. In section 2 and 3 , we study the (weak) confluency of product maps. Using these results, we have an equivalent condition that a map preserves the property of having zero span in terms of (weak) confluency of product maps (cf. [10]). In section 4, we prove fixed point theorems for span zero continua, which are generalizations of [13].

To obtain these results, we use some techniques of Oversteegen [10] and Oversteegen-Tymchatyn [11].

Notations and definitions

Throughout this paper, \boldsymbol{Q} denoted the Hilbert cube with a fixed metric. Let $f, g: X \rightarrow Y$ be maps and $\varepsilon>0$. We say that f and g are ε-near (denoted by $f=g)$ if $\sup \{d(f(x), g(x)) \mid x \in X\}<\varepsilon$. The map $f \triangle g: X \rightarrow Y \times X$ is defined by $f \Delta g(x)=(f(x), g(x))$.

A collection $\mathscr{W}=\left\{W_{1}, \cdots, W_{n}\right\}$ is called a weak chain if $W_{i} \cap W_{i+1} \neq \varnothing$ for each $1 \leqq i \leqq n-1$. Let $\mathcal{U}=\left\{U_{1}, \cdots, U_{m}\right\}$ be another weak chain and $f:\{1, \cdots, m\}$ $\rightarrow\{1, \cdots, n\}$ be a pattern (i.e. $|f(i)-f(i+1)| \leqq 1$ for each i). Then U is said to follow f in \mathscr{W} if $U_{i} \subset W_{f(i)}$ for each $1 \leqq i \leqq m$. A continuum W is called weakly chainable if there exists a sequence $\left(\mathscr{W}_{n}\right)$ of weak chain covers of W such that mesh $\mathscr{W}_{n} \rightarrow 0$ as $n \rightarrow \infty$, and for each n, \mathscr{W}_{n+1} follows a pattern in \mathscr{W}_{n}.

A continuum is weakly chainable if and only if it is a continuous image of the pseudo-arc ([5]).

Let $f: X \rightarrow Y$ be an onto map between continua, The map f is called confluent (weakly confluent resp.) if for each subcontinuum K of Y, each (some resp.) component C of $f^{-1}(K)$ satisfies $f(C)=K$.

1. Uniformizations

The following proposition is proved by the same way as [11] Theorem 1 and [12] Lemma 6. We give an outline of the proof (cf. [10] Lemma 2).

Proposition 1. Let $X \subset \boldsymbol{Q}$ be a continum and suppose that $\sigma_{0} X \leqq c(c \geqq 0)$. Let Z be a subcontinuum of X.

1) For each $\varepsilon>0$, there exists $a \delta>0$ such that for each pair of maps $h, k: I$ $\rightarrow \boldsymbol{Q}$ satisfying $d_{H}(h(I), Z), d_{H}(k(I), Z)<\delta$, there exist onto maps $a, b: I \rightarrow I$ such
that $h \circ a \underset{c+\varepsilon}{=} k \circ b$.
2) Suppose that X is hereditarily indecomposable and $z \in Z$. If the maps $h, k: I \rightarrow \boldsymbol{Q}$ in 1) further satisfy $d(h(0), z), d(k(0), z)<\delta$, then the maps a and b can be chosen so that $a(0)=b(0)=0$.

OUTLINE OF PROOF. We give an outline of the case 2). Give any subcontinuum Z and any $\varepsilon>0$. For each pair of maps $h, k: I \rightarrow \boldsymbol{Q}$, we define

$$
N(h, k ; \varepsilon)=\{(x, y) \in I \times I \mid d(h(x), k(y))<c+\varepsilon\} .
$$

As in the proof of [11] Theorem 1 and [12] Lemma 6, we have
a) there exists an $\varepsilon>0$ which satisfies the following condition:

Let $h, k: I \rightarrow \boldsymbol{Q}$ be any pair of maps satisfying

$$
\begin{array}{ll}
d_{H}(h(I), Z)<\boldsymbol{}, & d_{H}(k(I), Z)<\delta \\
d(h(0), z)<\boldsymbol{\delta} \quad \text { and } & d(k(0), z)<\boldsymbol{\delta}
\end{array}
$$

Then each continuum $K \subset I \times I$ with $K \cap I \times 0 \neq \varnothing \neq K \cap 0 \times I$ intersects $N(h, k: \varepsilon)$.
This δ is the required number. To prove this, we take maps $h, k: I \rightarrow \boldsymbol{Q}$ as in the hypothesis. Then as in [12] Lemma 6 again,
b) there exists a component $C(\varepsilon)$ of $N(h, k ; \varepsilon)$ such that each continuum $K \subset I \times I$ satisfying $K \cap I \times 0 \neq \varnothing \neq K \cap 0 \times I$ intersects $C(\varepsilon)$.
Let p_{i} be the projection map from $I \times I$ to the i-th factor. It is easy to see that $(0,0) \in C(\varepsilon)$ and

$$
p_{1}(C(\varepsilon))=I \quad \text { or } \quad p_{2}(C(\varepsilon))=I
$$

Assume that $p_{1}(C(\varepsilon))=I$. By the similar argument of [11] Theorem 1, we see that there exists a component $D(\varepsilon)$ of $N(h, k ; \varepsilon)$ such that $p_{2}(D(\varepsilon))=I$. But clearly, $C(\varepsilon) \cap D(\varepsilon) \neq \varnothing$ so, $C(\varepsilon)=D(\varepsilon)$.

Take a graph $G \subset C(\varepsilon)$ such that $(0,0) \in G$ and $p_{i}(G)=I \quad i=1,2$. Let $f: I \rightarrow G$ be an onto map such that $f(0)=(0,0)$. Then $a=p_{1} \circ f$ and $b=p_{2} \circ f$ are the required.

Let X_{i} be continua and d_{i} be a metric of $X_{i}(i=1,2)$. In this paper, the metric of $X_{1} \times X_{2}$ is defined by $d\left(\left(x_{1}, x_{2}\right),\left(y_{1}, y_{2}\right)\right)=\max _{i=1,2} d_{i}\left(x_{i}, y_{i}\right)$.

Using Proposition 1.1 and the same way as [10] Theorem 3, we can prove the following.

Proposition 1.2. Let X_{i} be continua in \boldsymbol{Q} such that $\sigma_{0}{ }^{*} X_{i} \leqq c(c \leqq 0) i=1,2$. Then each pair of onto maps $f_{i}: Y_{i} \rightarrow X_{i}(i=1 ' 2)$ satisfies the following condition.

For each subcontinuum $K \subset X \times X$ satisfying $\pi_{i}{ }^{X}(K)=X_{i}(i=1,2)$, there exists a continuum $L \subset Y_{1} \times Y_{2}$ such that $\pi_{i}{ }^{Y}(L)=Y_{i}, i=1,2$ and
$d_{H}\left(\left(f_{1} \times f_{2}\right)(L), K\right) \leqq c$, where, the map $\pi_{i}{ }^{X}$ denotes the projection $X_{i} \times X_{2}$ to the i-th factor etc.

Remark. In the proof of [10] Theorem 3, the weak conluency of each factor of the product map is used. The map f_{i} in the above proposition need not be weakly confluent, but the same proof works in our situation.

Theorem 1.3. Let $X \subset \boldsymbol{Q}$ be a continuum such that $\sigma_{0} * X \leqq c(c \geqq 0)$.

1) For each pair of onto maps $f, g: Y \rightarrow X$, there exists a continuum Z and onto maps $\alpha, \beta: Z \rightarrow Y$ such that $f \circ \alpha \underset{2 c}{=} g \circ \beta$.
2) In particular, if $Y=P$, then for each $\varepsilon>0$, there exists a homeomorphism $h: P \rightarrow P$ such that $f \underset{2 c+\varepsilon}{=} g \circ h$.

Proof. 1) Consider the map $f \times g: Y \times Y \rightarrow X \times X$ and the diagonal set ΔX of X. By Proposition 1.2, there exists a continuum $Z \subset Y \times Y$ such that $\pi_{1}(Z)=$ $\pi_{2}(Z)=Y$ and $d_{H}(f \times g(Z), X) \leqq c$. Let $\alpha=\pi_{1} \mid Z$ and $\beta=\pi_{2} \mid Z: Z \rightarrow Y$, then α and β are onto maps. For each $(x, y) \in Z$, there exists a point $(p, p) \in \Delta X$ such that $d(f(x), p), d(g(y), p) \leqq c$. Hence $d(f(x), g(y)) \leqq 2 c$. This means $f \circ \alpha \underset{2 c}{=} g \circ \beta$.
2) Give any $\varepsilon>0$. There exists a $\delta>0$ such that
for each $x, y \in P$ with $d(x, y)<\delta, d(f(x), f(y))<\varepsilon / 2$
and $d(g(x), g(y))<\varepsilon / 2$.
Consider the continuum Z as in 1). By [14], there exists a homeomorphism $h: P \rightarrow P$ such that $d_{H}(G(h), Z)<\delta / 2$, where $\left.G(h)=\{x, h(x)) \mid x \in P\right\}$, the graph of h.

For each $p \in P$, there exists a point $(x, y) \in Z$ such that $d(x, p), d(h(p), y)$ $<\delta$. Since $f(x) \underset{2 c}{=} g(y)$, we have that

$$
\begin{aligned}
d(f(p), g \circ h(p)) & \leqq d(f(p), f(x))+d(f(x), g(y))+d(g(y), g \circ h(p)) \\
& <\varepsilon / 2+2 c+\varepsilon / 2<2 c+\varepsilon .
\end{aligned}
$$

This completes the proof.
As an application of Theorem 1.3, we obtain a characterization of span zero continua as follows.

Theorem 1.4. Let $X \subset \boldsymbol{Q}$ be a tree-like continuum in \boldsymbol{Q}. Then the following are equivalent.

1) $\sigma X=0$.
2) For each subcontinuum Z of X and for each $\varepsilon>0$, there exists a $\delta>0$ such that
for each pair of maps $f, g: P \rightarrow \boldsymbol{Q}$ satisfying $f(P) \supset g(P)$ and $d_{H}(f(P), Z)<\delta$, there exists a subcontinuum $P_{1} \subset P$ and an (onto) homeomorphism $h: P_{1} \rightarrow P$ such that $g \circ h=f \mid P_{1}$.

We need the following lemma for the proof.
Lemma 1.5. Let $f: P \rightarrow X$ be a map from the pseudo-arc into a weakly chainable continuum X. Then there exists an arc-like continuum $P^{*} \supset P$ and an extension $F: P^{*} \rightarrow X$ of f such that $F(P)=X$.

Proof. Take a point p of P and let $x=f(p)$. Take another pseudo-arc P^{\prime} and an onto map $g: P^{\prime} \rightarrow X$. Fix a point $p^{\prime} \in g^{-1}(x)$ and let P^{*} be the one point union of P and P^{\prime} identified at p and p^{\prime}. Define $F: P^{*} \rightarrow X$ by $F \mid P=f$ and $F \mid P^{\prime}=g$. For each $\varepsilon>0$, there exist a chain cover \mathcal{C} (\mathcal{C}^{\prime} resp.) of $P\left(P^{\prime}\right.$ resp.) such that mesh \mathcal{C} (mesh \mathcal{C}^{\prime} resp.) $<\varepsilon$ and p (p^{\prime} resp.) is contained in the first link of \mathcal{C} (\mathcal{C}^{\prime} resp.). Using this fact, it is easy to see that P^{*} is arc-like.

Proof of Theorem 1.4.

$1) \rightarrow 2$). Notice that $\sigma_{0} X=0$ by [2]. Fix any subcontinum Z and give any $\varepsilon>0$. As $\sigma_{0} Z=0$, there exists a $\delta>0$ such that
each continuum $K \subset \boldsymbol{Q}$ with $d_{H}(K, Z)<\boldsymbol{\delta}$, satisfies $\sigma_{0} K<\varepsilon / 4$.
To prove that this δ is the required number, take any pair of maps $f, g: P \rightarrow \boldsymbol{Q}$ as in the hypothesis. Then $\sigma_{0} f(P)<\varepsilon / 4$ by the choice of δ. By Lemma 1.5, there exist an arc-like continuum $P^{*} \supset P$ and a surjective extension $G: P^{*} \rightarrow f(P)$ of g. Fix an onto map $k: P \rightarrow P^{*}$. Applying Theorem 1.3 to f and $G \circ k: P \rightarrow$ $f(P)$, there exists a homeomorphism $h^{*}: P \rightarrow P$ such that $f=G \circ k \circ h^{*}$.

Since P^{*} is arc-like, it is in class W (i. e. each map onto P^{*} is weakly confluent). Hence there exists a continuum $P_{1} \subset P$ such that $k \circ h^{*}\left(P_{1}\right)=P$. Define $h^{\prime}=k \circ h^{*} \mid P_{1}: P_{1} \rightarrow P$. Each onto map from P_{1} onto P is a near-homeomorphism by [14]. A homeomorphism $h: P_{1} \rightarrow P$ which is sufficiently close to h^{\prime} satisfies the required condition.
$2) \rightarrow 1$). Suppose that $\sigma X=c>0$. There exist maps $\alpha, \beta: C \rightarrow X$ from a continuum C such that $\alpha(C)=\beta(C)$ and $d(\alpha(p), \beta(p)) \geqq c$ for each $p \in C$. We assume that $C \subset \boldsymbol{Q}$ and let $Z=\alpha(C)=\beta(C)$ and $0<\varepsilon<c / 4$. Take δ for ε as in 2). Let $X=\lim X_{n}$ be the inverse limit description of X by an inverse sequence of trees.

We may assume that $X \cup \cup X_{n} \subset \boldsymbol{Q}$ and the projection map $p_{n}: X \rightarrow X_{n}$ is $1 / 2^{n}$ translation in \boldsymbol{Q}. Take sufficiently large n, so that $1 / 2^{n}<\delta$ and let $T=p_{n}(Z)$. Since T is a tree, $p_{n} \circ \alpha$ and $p_{n} \circ \beta$ has extensions $A, B: \boldsymbol{Q} \rightarrow T$ respectively. There exists an $\eta>0$ such that
for each $x, y \in \boldsymbol{Q}$ with $d(x, y)<\eta, d(A(x), A(y))<\varepsilon / 2$
and $d(B(x), B(y))<\varepsilon / 2$.
Let E be the set of all end points of T. For each $p \in E$, take $x_{p} \in\left(p_{n} \circ \alpha\right)^{-1}(p)$. It is easy to find a pseudo-arc $P \subset \boldsymbol{Q}$ such that $d_{H}(P, C)<\eta$ and $\left\{x_{p} \mid p \in E\right\} \subset P$. Then $A(P)=T$.

Applying 2) to $A \mid P$ and $B \mid P: P \rightarrow T$, we can find a subcontinuum $P_{1} \subset P$ and a homeomorphism $h: P_{1} \rightarrow P$ such that $B \circ h=A \mid P_{1}$. There exists a point $p \in P_{1}$ such that $h(p)=p$. As $d_{H}(C, P)<\eta$, we can find a point $x \in C$ such that $d(p, x)<\eta$. But then,

$$
\begin{aligned}
d(\alpha(x), \beta(x)) & =d(A(x), B(x)) \\
& \leqq d(A(x), A(p))+d(A(p), B \circ h(p))+d(B(p), B(x)) \\
& <\varepsilon / 2+\varepsilon+\varepsilon / 2=2 \varepsilon<c / 2
\end{aligned}
$$

which is a contradiction.
This completes the proof.
The following theorem gives a method of constructing maps from P onto span zero continua.

Theorem 1.6. Let X be a continuum which is the limit of an inverse sequence $\left(X_{n}, p_{n+1}: X_{n+1} \rightarrow X_{n}\right)$. If $\sigma X=0$, then X has the following property.

For each sequence ($a_{n}: P \rightarrow X_{n}$) of onto maps, there exists a subsequence $\left(m_{n}\right)$ and a sequence of homeorphism $\left(h_{n+1}: P \rightarrow P\right)$ such that the following diagram is $1 / 2^{i-1}$-commutative.

Where, $h_{i j}$ denotes $h_{i+1} \circ h_{i+1 i+2^{\circ}}, \cdots, \circ h_{j-1 j}$, etc.
Hence an onto map $a: P \rightarrow X$ is induced [9].

Again, we can assume that $X \cup \cup X_{n} \subset \boldsymbol{Q}$ and the projection $p_{n}: X \rightarrow X_{n}$ is an $1 / 2^{n}$-translation in \boldsymbol{Q}. For the proof, we need the following lemma.

Lemma 1.7. Under the above notation, the following condition holds.
For each $i \geqq 1$ and for each $\varepsilon>0$, there exist an integer $N>0$ and $a \delta>0$ such that

> for each $n \geqq N$ and for any points $x, y \in X_{n}$ with $d(x, y)<\delta$, $d\left(p_{i n}(x), p_{i n}(y)\right)<\varepsilon$.

Proof. Define $\pi: X \cup \bigcup_{n \geq i} X_{n} \rightarrow X_{i}$ by $\pi \mid X=p_{i}$ and $\pi \mid X_{n}=p_{i n}$. Then π is continuous. Hence for each $\varepsilon>0$, there exists a $\delta>0$ such that for any points $x, y \in X \cup \bigcup_{n \Sigma i} X_{n}$ with $d(x, y)<3 \delta, d(\pi(x), \pi(y))<\varepsilon / 2$. Take sufficiently large N such that for each $n \geqq N, p_{n}$ is a δ-translation in \boldsymbol{Q}. It is easy to see that N and δ are the required numbers.

Proof of Theorem 1.6. Inductively we will construct the desired diagram. Since $\lim \sigma_{0} X_{n}=\sigma_{0} X=0$ by [8] ((3.1), (3.2)), [4] and [2], taking a subsequence if necessary, we may assume that $\sigma_{0} X_{n}<1 / 2^{n}$.
$i=1$; Let $n_{1}=1, a_{n_{1}}=a_{1}$, and $\delta_{1}=1 / 2$. Choose an $\varepsilon_{1}>0$ so that $2\left(\sigma_{0} X_{n_{1}}\right)$ $+\varepsilon_{1}<\boldsymbol{\delta}_{1}$.
$i=2$; Applying Lemma 1.5 to $i=1$ and $\varepsilon=1 / 2^{2}$, we have an integer $N_{2}>0$ such that $\delta_{2}<1 / 2^{2}$ and
for each $n \geqq N_{2}$ and for each $x, y \in X_{n}$ with $d(x, y)<\delta_{2}$,

$$
d\left(p_{1 n}(x), p_{1 n}(y)\right)<1 / 2^{2} .
$$

Take an $n_{2}>n_{1}, N_{2}$ such that $\sigma_{0} X_{n_{2}}<\delta_{2} / 2$ and choose $\varepsilon_{2}>0$ such that $2\left(\sigma_{0} X_{n_{2}}\right)+\varepsilon_{2}<\delta_{2}$. Applying Theorem 1.3 to $\varepsilon_{1}, a_{n_{1}}$, and $力_{n_{1} n_{2}}{ }^{\circ} a_{n_{2}}$, then we have a homeomorphism $h_{12}: P \rightarrow P$ such that $a_{n_{1}} \circ h_{12}=p_{n_{1} n_{2}}{ }^{\circ} a_{n_{2}}$.
$i=3$; Applying Lemma 1.5 to n_{1} and $1 / 2^{3}$, take $N_{3}{ }^{1}>0$ and $\delta_{3}{ }^{1}>0$. Applying Lemma 1.5 again to n_{2} and $1 / 2^{3}$, take $N_{3}{ }^{2}>0$ and $\delta_{3}{ }^{2}>0$.

Let $N_{3}>\max \left(N_{3}{ }^{1}, N_{3}{ }^{2}\right)$ and $0<\delta_{3}<\min \left(\delta_{3}{ }^{1}, \delta_{3}{ }^{2}\right)$, and take $n_{3}>n_{2}, N_{3}$ such that $\sigma_{0} X_{n_{3}}<\delta_{3} / 2$. Choose an $\varepsilon_{3}>0$ such that $2\left(\sigma_{0} X_{n_{3}}\right)+\varepsilon_{3}<\delta_{3}$. Apply Theorem 1.3 to $\varepsilon_{2}, a_{n 3}$ and $p_{n_{2} n_{3}} a_{n_{2}}$. Then, there exists a homeomorphism $h_{23}: P \rightarrow P$ such that $a_{n_{2}}{ }^{\circ} h_{23}=p_{n_{2} n_{3}} \circ a_{n_{3}}$. Since $2\left(\sigma_{0} X\right)+\varepsilon_{2}<\delta_{2}<1 / 2^{2}$, we have

$$
\begin{aligned}
& a_{n_{2}} \circ h_{23}=p_{1 / 2^{2}} p_{n_{2} n_{3}} \circ a_{n_{3}} \text { and } \\
& p_{n_{1} n_{2}} \circ a_{n_{2}} \circ h_{23}=p_{1 / 22}=p_{n_{1} n_{2}} \circ p_{n_{2} n_{3}} \circ a_{n_{3}} .
\end{aligned}
$$

Continuing these steps, we have a subsequence $\left(n_{i}\right)$ and a sequence of homeomorphisms ($h_{i+1}: P \rightarrow P$) such that

$$
\text { for each } k \leqq i \leqq j, \quad p_{n_{k} n_{i}} \circ a_{n_{i}} \circ h_{i j} \underset{1_{1 / 2 i-1}}{=} p_{n_{k}} p_{i} \circ a_{n_{i} n_{j}} \circ a_{n_{j}}
$$

This completes the proof.

2. (Weak) Confluency of product maps

Proposition 2.1 (cf. [10] Theorem 3) Let Y be a continuum such that $\sigma Y=0$.

1) For each map $f: X \rightarrow Y$ and for each continum $Z, f \times i d_{z}$ is weakly confluent.
2) In particular, if Y is hereditarily indecomposable, then $f \times i d_{z}$ is confluent.

Proof. The proof uses the method of [10] Theorem 3. We prove only the case 2). Let $X=\lim \left(X_{n}, p_{n+1}: X_{n+1} \rightarrow X_{n}\right)$, $Y=\lim \left(Y_{n}, q_{n n+1}: Y_{n+1^{-}} Y_{n}\right)$ and $Z=\lim \left(Z_{n}, r_{n+1}: Z_{n+1} \rightarrow Z_{n}\right)$ be inverse limit descriptions of X, Y and Z respectively. Taking a subsequence if necessary, we may assume that f is induced by the following diagram.

Where $\varepsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Further we assume that $X \cup \cup X_{n}, Y \cup \cup Y_{n}$ and $Z \cup \cup Z_{n} \subset \boldsymbol{Q}$ and projection maps $p_{n}: X \rightarrow X_{n}, q_{n}: Y \rightarrow Y_{n}$ and $r_{n}: Z \rightarrow Z_{n}$ are $1 / 2^{n}$-translations in \boldsymbol{Q}. The map $F: X \cup \cup X_{n} \rightarrow Y \cup \cup Y_{n}$ defined by $F|X=f, F| X_{n}=f_{n}$ is continuous.

To prove that $f \times i d_{Z}$ is confluent, we take any continuum $K \subset Y \times Z$ and choose a point $(x, z) \in\left(f \times i d_{z}\right)^{-1}(K)$. It suffices to construct a continuum $C \subset$ $X \times Z$ such that $f \times i d_{z}(C)=K$ and $(x, z) \in C$. By an induction, we take a suitable subsequence $\left(m_{n}\right)$ and a sequence $\left(C_{n}\right)$ of continua such that
a) $C_{n} \subset X_{m_{n}} \times Z_{m_{n}}$
b) $d_{H}\left(f_{m_{n}} \times i d_{z_{m_{n}}}\left(C_{n}\right), K\right)<1 / n$.
c) $d\left((x, z), C_{n}\right)<1 / n$.

Let π_{Y} and π_{z} be the projection from $Y \times Z$ to Y and Z respectively. Define $K^{Y}=\pi_{Y}(K), K^{z}=\pi_{z}(K)$ and $(y, z)=f \times i d_{z}(x, z)$.

Let $m_{0}=0$ and $C_{0}=X \times Z$ and assume that m_{n-1} and C_{n-1} have been defined. Since Y is hereditarily indecomposable and $\sigma Y=0$, by Proposition 1.1, there exists a $\delta>0$ such that $0<\delta<1 / 2 n$ and
d) for each pair of maps $h, k: I \rightarrow \boldsymbol{Q}$ which satisfy $d_{H}\left(h(I), K^{Y}\right)<\delta$ and $d_{H}\left(k(I), K^{Y}\right)<\delta$, there exist maps $a, b: I \rightarrow \boldsymbol{Q}$ such that $h \circ a=\frac{1 / 2 n}{=} k \circ b$ and $a(0)=b(0)=0$.

Since f is a confluent map, there exists a continuum C of X such that
e) $x \in C$ and $f(C)=K^{Y}$.

We use the following notation;
f) $K_{m}=q_{m} \times r_{m}(K), \quad K_{m}{ }^{Y}=q_{m}\left(K^{Y}\right), \quad K_{m}{ }^{Z}=r_{m}\left(K^{Z}\right)$, $C_{m}{ }^{x}=p_{m}(C), \quad C_{m}{ }^{z}=K_{m}{ }^{z}$.

Take sufficiently large m such that
g) $m>m_{n-1}, \quad d_{H}\left(K_{m}, K\right)<\boldsymbol{\delta} / 3, \quad d_{H}\left(f_{m}\left(C_{m}{ }^{X}\right), K_{m}{ }^{Y}\right)<\boldsymbol{\delta} / 3$ and $\varepsilon_{m}<\delta / 3$.
Now we define maps $\alpha_{1}: I \rightarrow Y_{m}, \beta_{1}: I \rightarrow X_{m}, \alpha_{2}, \beta_{2}: I \rightarrow Z_{m}$ as follows;
h) $d\left(\alpha_{1}(0), y\right)<\delta$ and $d_{H}\left(\alpha_{1}(I), K_{m}{ }^{Y}\right)<\delta / 3$.
i) $\quad d\left(\beta_{1}(0), x\right)<1 / n, \quad d\left(f_{m} \beta_{1}(0), y\right)<\delta \quad$ and $\quad d_{H}\left(f_{m} \beta_{1}(I), K_{m}{ }^{Y}\right)<\delta / 3$.
j) $d\left(\alpha_{2}(0), z\right)<\delta$ and $d_{H}\left(\alpha_{2}(I), K_{m}{ }^{Z}\right)<\delta / 3$.
k) The map $\alpha=\alpha_{1} \Delta \alpha_{2}: I \rightarrow Y_{m} \times Z_{m}$ satisfies $d_{H}\left(\alpha(I), K_{m}\right)<1 / 2 n$.

1) $\beta_{2}=\alpha_{2}$.

Then by h), i) and d), there exist maps $a_{1}, b_{1}: I \rightarrow I$ such that $\alpha_{1} \circ a_{1 / 2 n}=f_{m} \circ \beta_{1} \circ b_{1}$ and $a_{1}(0)=b_{1}(0)=0$. Let $\omega=\beta_{1} \circ b_{1} \Delta \alpha_{2} \circ a_{1}: I \rightarrow X_{m} \times Z_{m}$. Then we have
m) $d(\omega(0),(x, z))<1 / n$.
n) $d\left(f_{m} \times i d_{Z_{m}}(\omega(t)), \alpha\left(a_{1}(t)\right)\right)<1 / n$.

Let $m_{n}=m$. As a_{1} is an onto map, we see that $C_{n}=\omega(I)$ is the required continuum.

We may assume that C_{n}) converges to a continuum $C \subset X \times Z$. Then (x, z) $\in C$ and $f \times i d_{z}(C)=K$.

Theorem 2.2. Let $f: Y \rightarrow Y$ be an onto map between continua. The following are equivalent respectively.

1) The map $f \times i d_{P}: X \times P \rightarrow Y \times P$ is weakly confluent (confluent resp.).
2) For each continuum Z with $\sigma Z=0$ (for each hereditarily indecomposable continuum Z with $\sigma Z=0$ resp.), $f \times i d_{Z}: X \times Z \rightarrow Y \times Z$ is weakly confluent (confluent resp.).
3) There exists a hereditarily indecomposable continum Z such that $f \times i d_{z}$ is weakly confluent (confluent resp.).

Proof. We prove the confluent case. Another case is similarly proved.
$1) \rightarrow 2$). Since Z is weakly chainable, there exists an onto map $\varphi: P \rightarrow Z$. Clearly,

$$
\begin{aligned}
f \times \varphi & =\left(f \times i d_{Z}\right) \circ\left(i d_{X} \times \varphi\right) \\
& =\left(i d_{Y} \times \varphi\right)^{\circ}\left(f \times i d_{P}\right) .
\end{aligned}
$$

By Theorem 2.1, $i d_{Y} \times \varphi$ is confluent and by the assumption, $f \times i d_{P}$ is confluent, so $f \times \varphi$ is confluent. Hence $f \times i d_{Z}$ is confluent.
$2) \rightarrow 1) \rightarrow 3$). These are trivial.
$3) \rightarrow 1)$. By [1], there exists an onto map $\psi: Z \rightarrow P$. Then $f \times \psi=\left(f \times i d_{P}\right)$ 。 $\left(i d_{X} \times \psi\right)=\left(i d_{Y} \times \psi\right) \circ\left(f \times i d_{Z}\right)$. The similar argument as above implies the conclusion.

3. The preservation of the property of having zero span

Lemma 3.1. Let $f: X \rightarrow Y$ be an irreducible map (i.e. no proper subcontinuum of X can be mapped onto Y). If $f \times i d_{P}: X \times P \rightarrow Y \times P$ is weakly confluent, then
f has the following property;
(*) for each onto map $\alpha: P \rightarrow Y$, there exists a continuum $Z \subset X \times P$
such that $\pi_{X}(Z)=X, \pi_{P}(Z)=P$, and $f \circ \pi_{X}\left|Z=\alpha \circ \pi_{P}\right| Z$.
Where π_{X} and π_{P} is the projections from $X \times P$ to X and P respectively.
Proof. Let $H_{\alpha}=\{(\alpha(p), p) \mid p \in P\}$. Then $\pi_{P}\left(H_{\alpha}\right)=P$ and $\pi_{Y}\left(H_{\alpha}\right)=Y$. Since $f \times i d_{P}$ is weakly confluent, there exists a continuum $Z \subset X \times P$ such that $f \times i d_{P}(Z)$ $=H_{\alpha}$. Then $f\left(\pi_{Y}(Z)\right)=\pi_{Y}\left(H_{\alpha}\right)=Y$, so by the irreducibility of $f, \pi_{X}(Z)=X$. It is easy to see that Z satisfies the other conditions which are required.

Theorem 3.2. Let $f: X \rightarrow Y$ be a map which satisfies the following conditions.

1) f satisfies (*) 2) $f \times f: X \times X \rightarrow Y \times Y$ is weakly confluent. If $\sigma X=0$, then $\sigma^{*} Y=0$.

Proof. We first show that
a) for each pair of onto maps $\alpha, \beta: P \rightarrow Y$ from the pseudo-arc, there exists a point $p \in P$ such that $\alpha(p)=\beta(p)$.

To prove a), we apply the property (*) to α and β respectively. There exist continua Z_{α} and Z_{β} such that $f \circ \pi_{X^{\alpha}}=\alpha \circ \pi_{P}{ }^{\alpha}$ and $f \circ \pi_{X}{ }^{\beta}=\beta \circ \pi_{P}{ }^{\beta}$, where $\pi_{X}{ }^{\alpha}=\pi_{X} \mid Z_{\alpha}$ etc. By Theorem 1.3, there exist a continuum W and onto maps $f_{\alpha}: W \rightarrow Z_{\alpha}$ and $f_{\beta}: W \rightarrow Z_{\beta}$ such that $\pi_{P}{ }^{\alpha} \circ f_{\alpha}=\pi_{P}{ }^{\beta} \circ f_{\beta}$. Since $\pi_{X}{ }^{\alpha} \circ f_{\alpha}$ and $\pi_{X}{ }^{\beta} \circ f_{\beta}: W \rightarrow X$ are onto maps and $\sigma X=0$, there exists a point $w \in W$ such that $\pi_{X}{ }^{\alpha} \circ f_{\alpha}(w)=\pi_{X}{ }^{\beta} \circ f_{\beta}(w)$. Then we can see that $\alpha \circ \pi_{P}{ }^{\alpha} \circ f_{\alpha}(w)=\beta \circ \pi_{P}{ }^{\beta} \circ f_{\beta}(w)$. So $p=\pi_{P}{ }^{\alpha} \circ f_{\alpha}(w)=\pi_{P}{ }^{\beta} \circ f_{\beta}(w)$ satisfies the conclusion of a).

Using a), it is easy to see that
b) for each pair of onto maps $\alpha, \beta: W \rightarrow Y$ from any weakly chainable continuum W onto X, there exists a point $w \in W$ such that $\alpha(w)=\beta(w)$.

Next we prove that
c) for each subcontinuum $Z \subset Y \times Y$, there exists a sequence (W_{n}) of weakly
chainable continua such that
$W_{n} \subset Y \times Y, \quad \operatorname{Lim} W_{n}=Z \quad$ and $\quad p_{i}\left(W_{n}\right)=p_{i}(Z)$,
where p_{i} denotes projection from $Y \times Y$ to the i-th factor.
To see this, we note that $\sigma X=0$ and hence X is weakly chainable. Take an onto map $\varphi: P \rightarrow X$, then $\varphi \times \varphi: P \times P \rightarrow X \times X$ is weakly confluent ([10], Theorem 3). From this fact and condition 2), there exists a continuum $C \subset P \times P$ so that $f \varphi \times f \varphi(C)=Z$. Let $P_{i}=\pi_{P}{ }^{i}(C) i=1,2$, where each $\pi_{P}{ }^{i}$ denotes projection from $P \times P$ to the i-th factor. By [14], there exist a sequence of homeomorphism ($\left.h_{n}: P_{1} \rightarrow P_{2}\right)_{n \geq 0}$ such that $G\left(h_{n}\right)$'s, the graphs of h_{n} 's $(\subset P \times P)$, converges to C. Define W_{n} by $W_{n}=f \varphi \times f \varphi\left(G\left(h_{n}\right)\right)$, which is clearly weakly chainable. Moreover, $W_{n} \rightarrow f \varphi \times f \varphi(C)=Z$, and for $i=1,2$,

$$
\begin{aligned}
p_{i}\left(W_{n}\right) & =f \varphi\left(\pi_{P}{ }^{i}\left(G\left(h_{n}\right)\right)\right) \\
& =f \varphi\left(P_{i}\right)==p_{i}(f \varphi \times f \varphi)(C)=p_{i}(Z)
\end{aligned}
$$

This prove c).
Now we prove that $\sigma^{*} Y=0$. Take any continuum $Z \subset Y \times Y$ satisfying $p_{i}(Z)=Y \quad i=1,2 . \quad$ By c), there exists a sequence $\left(W_{n}\right)$ of weakly chainable continua such that $p_{i}\left(w_{n}\right)=Y$ and $W_{n} \rightarrow Z$. By b), $W_{n} \cap \Delta Y \neq \varnothing$ for each n. So we have $Z \cap \Delta Y \neq \varnothing$. This completes the proof.

Using Theorem 3.2, we have

Theorem 3.3 (cf. [10] Theorem 7). Let $f: X \rightarrow Y$ be an onto map between continua and suppose that $\sigma X=0$.

1) The following are equivalent.
a) $\sigma Y=0$.
b) For each subcontinuum K of X.

$$
(f \mid K) \times i d_{P}: K \times P \longrightarrow f(K) \times P \quad \text { and } \quad(f \mid K) \times i d_{Y}: K \times Y \longrightarrow f(K) \times Y
$$

are weakly confluent.
2) Suppose that X is hereditarily indecomposable and f is confl:ient. Then the following are equivalent.
a) $\sigma Y=0$.
b) $f \times i d_{Y}: X \times Y \rightarrow X \times Y$ is confluent.
c) $f \times f: X \times X \rightarrow Y \times Y$ is confluent.

Proof. 1) a) $\rightarrow \mathrm{b}$). This follows for [10] Theorem 3.
b) $\rightarrow \mathrm{a}$). Take any subcontinuum Z in Y. There exists a contituum $K \subset X$
such that $f \mid K: K \rightarrow Z$ is an irreducible map. By the assumption and Theorem 2.2, we see that $(f \mid K) \times i d_{X}$ is, and hence $(f \mid K) \times(f \mid K)$ is weakly confluent. Hence by Theorem 3.2 and Lemma 3.1, we have $\sigma^{*} Z=0$. So $\sigma Y=0$.
2) a) \rightarrow b). This follows from [10] Theorem 3 .
b) \rightarrow c). Since Y is hereditarily indecomposable (Notice that confluent maps preserve hereditary indecomposability), it follows that $f \times i d_{X}$ is confluent by Theorem 2.2. Then $f \times f=\left(i d_{Y} \times f\right) \circ\left(f \times i d_{X}\right)$ is confluent.
$\mathrm{c}) \rightarrow \mathrm{a}$). This follows from [10] Theorem 7 .

4. Fixed points for multi-valued map on span zero continua

We prove some fixed point theorem for multi-valued map of span zero continua, which generalize some results of Rosen [14]. Also in this section, [10] Theorem 3 is used.

Let X be a continuum. The space of all nonempty compact subsets of X (the space of all nonempty subcontinua of X resp.) with the Hausdorff metric is denoted by $2^{X}\left(C(X)\right.$ resp.). Let $f: X \rightarrow 2^{Y}$ be a (not necessarily continuous) function. The set $G(f)=\bigcup_{x \in X}\{x\} \times f(x) \subset X \times Y$ is called the graph of f. The image of f, denoted by $f(X)$, is defined by $\bigcup_{x \in X} f(x)$. A function f is uppersemi-(lowersemi- resp.) continuous. abbreviated u.s.c. (1.s.c. resp.), if for each open set U of $Y,\{x \in X \mid f(x) \subset U\}(\{x \in X \mid f(x) \cap U \neq \varnothing\}$ resp.) is open. A function $f: X \rightarrow 2^{Y}$ is continuous if and only if f is both upper- and lower- semi- continuous. We say that f is onto if $f(X)=X$,

Theorem 4.1 (cf. [13] Theorem 1). Let $f, g: X \rightarrow 2^{Y}$ be u.s.c. functions. Suppose that

1) $\sigma X=\sigma Y=0$
2) $G(f)$ and $G(g)$ are connected and
3) f is onto.

The there exists a point $x \in X$ such that $f(x) \cap g(x) \neq \varnothing$.
Proof. Since X and Y are weakly chainable by 1), there exist irreducible onto maps $a: P \rightarrow X$ and $b: P \rightarrow Y$. By the uppersemicontinuity and 2), $G(f)$, $G(g) \subset X \times Y$ are continua. By [10] Theorem 3, there exist subcontinua K and L of $P \times P$ such that $a \times b(K)=G(f)$ and $a \times b(L)=G(g)$. Let p_{i} 's (π_{i} 's resp.) denote the projection maps from $P \times P(X \times Y$ resp. $)$ to the i-th factor, $i=1,2$. Then $a\left(p_{1}(K)\right)=\pi_{1}(G(f))=X$, and by the irreducibility of $a, p_{1}(K)=P$. Similarly, $p_{1}(L)=P, p_{2}(K)=P$.

Since P is arc-like, it is easy to see that $K \cap L \neq \varnothing$, hence $G(f) \cap G(g) \neq \varnothing$.

Take $(x, y) \subseteq G(f) \cap G(g)$. The point x satisfies the conclusion.
Corollary 4.2. Let $f, g: X \rightarrow 2^{Y}$ be u.s.c. functions and suppose that

1) $\sigma X=\boldsymbol{\sigma} Y=0$
2) f is onto and $G(f)$ is connected, and
3) g is continuous.

Then there exists a point $x \in X$ such that $f(x) \cap g(x) \neq \varnothing$.
Proof. By [13] Lemma 1, there exists an u.s.c. function $h: X \rightarrow 2^{Y}$ such that $h(x) \subset g(x)$ for each $x \in X$ and $G(h)$ is connected.

Theorem 4.3 (cf. [13] Theorem 2). Let $f, g: X \rightarrow C(Y)$ be u.s.c. functions. Suppose that
2) $\sigma Y=0 \quad$ and 2) f is onto.

Then there exists a point $x \in X$ such that $f(x) \cap g(x) \neq \varnothing$.
Proof. Define a subset $G(f, g)$ of $Y \times Y$ by $\bigcup_{x \in X} f(x) \times g(x)$. Since $f(x)$ and $g(x)$ are continua for each $x \in X$, and f and g are uppersemicontinuous, $G(f, g)$ is a subcontinuum of $Y \times Y$, and $\pi_{1}(G(f, g))=Y$ (π_{1} is the projection to the first factor). By [2], $\sigma_{0} Y=0$, so $G(f, g) \cap \Delta Y \neq \varnothing$. This means the conclusion.

Let $f: X \rightarrow 2^{x}$ be a function. A point $x \in X$ is called a fixed point of f if $x \in f(x)$.

Corollary 4.4. Let X be a continuum with $\sigma X=0$. Then X has the fixed point property for the following classes of multi-valued functions.

1) $\left\{f: X \rightarrow 2^{X} \mid f\right.$ is u.s.c. and $G(f)$ is connected $\}$.
2) $\left\{f: X \rightarrow 2^{X} \mid f\right.$ is continuous $\}$.
3) $\{f: X \rightarrow C(X) \mid f$ is u.s.c. $\}$.

References

[1] Bellamy, D., Mapping hereditarily indecomposable continua, Lecture Notes in Math. Springer, Berlin 375, Topology Conference, Virginia Polytechique Institute and State University, March 1973, 22-24.
[2] Davis, J.F., The equivalence of zero span and zero semispan, Proc. A.M.S. 96 (1984), 135-138.
[3] Ingram, W.T., Positive span and inverse limits, Topology Proc. 9 (1984), 313-317.
[4] Kawamura, K., On span and inverse limits, Tsukuba J. of Math. 12 (1988), 333-340.
[5] Lelek, A., On weakly chainable continua, Fund. Math. 51 (1962-3), 271-282.
[6] -, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-
214.
[7] - On surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), 35-45.
[8] -, The span and the width of continua, Fund. Math. 98 (1978), 181-199.
[9] Mioduszewski, J., Mappings of inverse limits, Colloq. Math. 10 (1964), 39-44.
[10] Oversteegen, L.G., On products of confluent and weakly confluent mappings related to span, Houston J. of Math. 12 (1986), 109-116.
[11] Oversteegen, L.G. and Tymchatyn, E.D., On span and weakly chainable continua, Fund. Math. 122 (1984), 159-174.
[12] and - On span and chainable continua, Fund. Math. 123 (1984), 137-149.
[13] Rosen, R., Fixed points for multi-valued functions on snake-like continua, Proc. A.M.S. 10 (1959), 167-173.
[14] Smith, M., Concerning the homeomorphisms of the pseudoarc X as a subspace of $C(X \times X)$, Houston J. Math. 12 (1986), 431-440.

Institute of Mathematics
University of Tsukuba
Ibaraki 305, Japan

[^0]: Received July 26, 1989. Revised October 25, 1989.

