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1. Introduction

There is introduced in [3] an interesting theorem on maximal planar graphs,
due to Wagner [6], as follows:

THEOREM 1. (K. Wagner) Any two maximal planar graphs with the same
number of vertices are equivalent under diagnal transformations.

A maximal planar graph $G$ is a simple graph embedded in the plane such
that one can add no new edge to it in the plane, that is, such a one that each
region or face is three-edged. The diagonal transformation is to switch the
diagonal edge $ac$ in the union of two adjacent triangular faces $abc$ and $acd$ , as
shown in Figure 1. We however have to preserve the simpleness of graphs,
that is, the diagonal transformation cannot be applied if vertices $b$ and $d$ are
adjacent in $G$ .

Figure 1. Diagonal transformation

In fact, it has been that every maximal planar graph can be transformed
into the normal form given in Figure 2 by a finite sequence of diagonal trans-
formations and hence any two maximal planar graphs are transferable via this
normal form. The planarity of graphs ensures that the degree of an arbitrary

vertex can be decreased to 3 by switching edges incident to it.
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Figure 2. Normal form for maximal planar
graphs with $k+3$ vertices

Theorem 1 can be translated naturally into the theorem that any two trian-
gulations with $n$ vertices on the sphere are equivalent under diagonal trans-
formations. Dewdney [1] had already proved that any two triangulations with
$n$ vertices on the torus also are equivalent under diagonal transformations. Since
the triangulation on the torus with fewest vertices is the unique embedding of
the complete graph $K_{7}$ on seven vertices, we can take the triangulation given
in Figure 3 as a normal form of toroidal triangulations.

THEOREM 2. (A. K. Dewdney) Every triangulation of the torus can be trans-

formed into the normal form in Figure 3 by diagonal transformations.

Figure 3. Normal form for toroidal triangulations

In this paper, we shall deal with triangulations of other closed surfaces

and prove the following two theorems which imply that any two triangulations

Figure 4. Normal form for projective-planar triangulations
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with $n$ vertices of the projective plane and Klein bottle are equivalent under

diagonal transformations:

THEOREM 3. Every triangulation of the projective plane can be transformed
into the normal form in Figure 4 by diagonal transformations.

THEOREM 4. Every triangulation of the Klein bottle can be transformed into

the normal form in Figure 5 by diagonal transformations.

Figure 5. Normal form for Klein-bottlal triangulations

To get the actual triangulation of each normal form, we have to identify

the parallel pairs of edges on the boundary of each polygonal disk so that the

labels of vertices coincide, and have to add a suitable normal form of maximal
planar graphs (Figure 2) to each shaded face so that the result has the same
number of vertices as a given triangulation.

We shall use the terminology and notations in [2] for graph theory and

quite standard ones for topology.

2. General observations

Let $F^{2}$ be a closed surface, that is, a compact 2-manifold without boundary.

A simple graph $G$ embedded in $F^{2}$ is called a triangulation of $F^{2}$ if $G$ divides
$F^{2}$ into three-edged regions, called faces of $G$ . Since $G$ has no self-loop and

no multiple edges, such a triangulation $G$ induces a simplicial 2-complex structure

of $F^{2}$ unless $G$ is $K_{3}$ in the sphere. For each vertex $v$ of a triangulation $G$ ,

we define the star neighborhood $st(v, G)$ and the link $lk(v, G)$ of $v$ as the union
of triangular faces meeting $v$ and its boundary cycle, respectively. Two trian-
gulations $G_{1}$ and $G_{2}$ in $F^{2}$ are said to be isomorphic if there is a homeomorphism
$h:F^{2}\rightarrow F^{2}$ such that $h(G_{1})=G_{2}$ .

We define the diagonal trnsformation for triangulations in $F^{2}$ as the same
local modification as is mentioned in introduction. Two triangulations of $F^{2}$

are said to be equivalent (under diagonal transformations) if one can be trans-
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formed into the other, up to isomorphism, by a finite sequence of diagonal
transformations.

LEMMA 5. Let $G_{1}$ and $G_{2}$ be two triangulations in $F^{2}$ . If there are vertices
$v_{1}\in V(G_{1})$ and $v_{2}\in V(G_{2})$ of degree 3 such that $G_{1}-v_{1}$ and $G_{2}-v_{2}$ are isomophic,
then $G_{1}$ and $G_{2}$ are equivalent.

PROOF. Let $G$ be a triangulation in $F^{2}$ , isomorphic to $G_{1}-v_{1}$ and hence to
$G_{2}-v_{2}$ , and let $v$ be an extra vertex of degree 3 added to a face $abc$ of $G$ .
Figure 6 shows a transformation which carries $v$ to a neighboring face $acd$ . It
should be noticed that vertices $a$ and $c$ are not adjacent in the second stage.

By repeating this process, we can replace $v$ in suitable faces of $G$ to get $G_{1}$

and $G_{2}$ . Thus, there is a sequence of diagonal transformations which transforms
$G_{1}$ into $G_{2}$ . $\blacksquare$

Fig. 6.

LEMMA 6. Let $G_{1}$ and $G_{2}$ be two triangulations of a closed surface $F^{2}$ which
have vertices $v_{1}$ and $v_{2}$ of degree 3, respectively. If $G_{1}-v_{1}$ and $G_{2}-v_{2}$ are equi-
valent, then $G_{1}$ and $G_{2}$ are equivalent.

PROOF. We use induction on the length $n$ of a sequence of triangulations
$G_{1}-v_{1}=H_{0},$ $H_{1},$ $\cdots$ , $H_{n}=G_{2}-v_{2}$ such that $H_{i-1}$ is transformed into H. by a single
diagonal transformation. If $n=0$ , then $G_{1}$ and $G_{2}$ are equivalent by Lemma 5,
which is the first step of our induction.

Let $abc$ be the face of $G_{1}-v_{1}$ which contains $v_{1}$ and suppose that the first
diagonal transformation, applied to $H_{0}$ , in a sequence of length $n>0$ switches
an edge $a^{\prime}c^{\prime}$ to $b^{\prime}d^{\prime}$ in a rectangle $a^{\prime}b^{\prime}c^{\prime}d$ ‘.

If $a^{\prime}c^{\prime}$ is not an edge lying on the triangle $abc$ , the transformation can be
regarded as a diagonal transformation for $G_{1}$ directly. If $a^{\prime}c^{\prime}$ is one of edges
on $abc$, say $ac$, then the transformation can be translated into two consecutive
diagonal transformations for $G_{1}$ as shown in Figure 7, where $a,$ $b,$ $c,$

$d$ corres-
pond to $a^{\prime},$ $b^{\prime},$ $c^{\prime},$ $d^{\prime}$ in order.
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Figure 7.

In either case, $G_{1}$ is equivalent to a triangulation $G_{1}^{\prime}$ such that $G_{1}^{\prime}-v_{1}^{\prime}$ is
isomorphic to $H_{1}$ for a vertex $v_{1}^{\prime}$ of degree 3. By the induction hypothesis, $G_{1}^{\prime}$

is equivalent to $G_{2}$ and hence so is $G_{1}$ . $\blacksquare$

Let $G$ be a triangulation in $F^{2}$ and $v$ a vertex of $G$ with neighbors $u_{1},$ $u_{2}$ ,
... , $u_{n}(n\geqq 4)$ lying cyclically on the link $lk(v, G)$ in this order. Suppose that

no edges incident to $v$ can be switched by a diagonal transformation, and hence

that the degree of $v$ cannot be decreased by only deformation within the star

neighborhood $st(v, G)$ of $v$ . Then there must exist $n$ edges $u_{i}u_{i+2}(i=1,2,$ $\cdots$ ,

$n-2),$ $u_{n- 1}u_{1}$ and $u_{n}u_{2}$ (or two edges $u_{1}u_{3}$ and $u_{2}u_{4}$ if $n=4$ ). We define the

graph $F_{n}$ as the union of the wheel $st(v, G)$ with center $v$ and these $n$ ( $or$ two)

edges. In particular, $F_{4}$ and $F_{5}$ are isomorphic to the complete graph $K_{5}$ and
$K_{6}$ , respectively, but $F_{n}$ is not complete if $n\geqq 6$ .

Figure 8.

LEMMA 7. Let $G$ be a triangulation in $F^{2}$ and $C$ a cycle of $G$ which bounds
a 2-cell $D^{2}$ in $F^{2}$ . Then $G\cap D^{2}$ can be deformed by a sequence of diagonal trans-
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formations and deletions of vertices of degree 3 so that afterward the neighbors

of each vertex in the interior of $D^{2}$ are contains in C. After such deformation,
the interior of $D^{2}$ contains at most $\lfloor(m-2)/2\rfloor$ vertices of $G$ if $C$ has length $m$ .

PROOF. Let $v$ be a vertex of $G$ in the interior of $D^{2}$ and apply diagonal
transformations to edges incident to $v$ as long as possible. If $deg(v)=3$ , we
remove $v$ out of $G$ and continue the following argument for another vertex.

Here we can assume that $v$ lies at the center of the graph $F_{n}(n\geqq 4)$ . If an
edge $u_{i}u_{i+2}$ were contained in $D^{2}$ , then the triangle $vu_{i}u_{i+2}$ would bound a 2-
cell in $D^{2}$ which contains $u_{i+1}$ but not $u_{i+3}$ . In this case, no edge could join
$u_{i+1}$ to $u_{i+3}$ , a contradiction. Thus, all of $u_{i}u_{i+2}\prime s$ are placed in $F^{2}-D^{2}$ . This
implies that each $u_{i}(i=1,2, \cdots, n)$ lies on $C$ , the boundary of $D^{2}$ .

Therefore, if $C$ has length 3, then $D^{2}$ cannot contain any vertex after the
deformation, which corresponds to that $\lfloor(m-2)/2\rfloor=0$ if $m=3$ . When some
vertices remain in the interior of $D^{2}$ with $m\geqq 4$ , we estimate the number of
them inductively as follows.

If $D^{2}$ contains two or more vertices, then it does not coincide with the star
neighborhoods $st(v, G)$ of any vertex $v$ and there is an edge on the link $lk(v, G)$

which divides $D^{2}$ into two 2-cells. Let $m_{1}$ and $m_{2}$ denote the length of their
boundary cycles, respectively. Then we have $m^{--}-m_{1}+\uparrow’\iota_{2}-2$ . By the induction
hypothesis, we can assume that those 2-cells contains at most $(m_{1}-2)/2$ and
$(m_{2}-2)/2$ , and hence $D^{2}$ contains at most $(m-2)/2=(m_{1}-2)/2+(m_{2}-2)/2$ vertices.

$\blacksquare$

3. Proofs of theorems

We shall prove Theorems 3 and 4 through this section. Our proofs of these
theorems will proceed in a common manner as follows.

A triangulation $G$ of $F^{2}$ is said to be pseudo-minimal if $G$ is equivalent to
no triangulation which has a vertex of degree 3. By Lemma 6, we can conclude
that any two triangulations with the same number of vertices are equivalent if
any two pseudo-minimal triangulations are equivalent. So our goal is to show
that any pseudo-minimal triangulation of the projective plane and Klein bottle
are equivalent to the normal forms in Figures 4 and 5, respectively.

Let $F^{2}$ be one of the projective plane and Klein bottle and $G$ a pseudo-
minimal triangulation in $F^{2}$ . Suppose that the minimum degree $\delta(G)$ of $G$ is
the smallest among the pseudo-minimal triangulations equivalent to $G$ and let $v$

be a vertex of $G$ such that $n=deg(v)=\delta(G)\geqq 4$ . Then $v$ lies at the center of
$F_{n}$ . By Euler’s formula, any triangulation of the projective plane (or of Klein
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bottle) has a vertex of degree at most 5 (or 6), so we have $n\leqq 5$ (or $n\leqq 6$ ) if $F^{2}$

is the projective plane (or the Klenin bottle).

We shall keep the situation in the previous paragraph hereafter and often

use the fact that any m-gonal region contains no vertex if $m<n$ , which follows

from Lemma 7.

Case of the projective plane:

Assume that $F^{2}$ is the projective plane and $n=4$ . Then the triangle $vu_{1}u_{8}$

is a non-trivial loop in $F^{2}$ and hence it is the center line of a Mobius band in
$F^{2}$ . Cut open $F^{2}$ along $vu_{1}u_{3}$ , then we get the hexagonal 2-cell as shown in

the left hand of Figure 9, where the vertex with label $i$ corresponds to $u_{i}$ .
If square 1243 (precisely $u_{1}u_{2}u_{4}u_{3}$ ) had a dianoal, then $G$ would have multiple

edges 14 or 23, contrary to the simpleness of $G$ . Thus, there $is$ a unique

vertex of degree 4 in square 1243 which is adjacent to 1, 2, 3, 4, by Lemma 7.

Also square 1324 contains no diagonal but a unique vertex of degree 4. If we
switch the three edges $u_{1}u_{2},$ $u_{2}u_{3}$ and $u_{2}u_{4}$ , then the right hand of Figure 9

will be obtained. This contradicts that $G$ is pseudo-minimal since the resulting

triangulation has a vertex of degree 3.

Figure 9.

Now suppose that $n=5$ . The graph $F_{6}$ is isomorphic to $K_{6}$ and has the

unique embedding obtained in Figure 4. Since such an embedding of $F_{5}$ is

triangular, $G$ has to coincide with $F_{5}$ by Lemma 7.
The above argument concludes that there is a unique pseudo-minimal trian-

gulation of the projective plane, isomorphic to $K_{6}$ as a graph. By Lemm 6,

any triangulation is equivalent to $K_{6}$ with extra vertices of degree 3 added in

order. So we can choose Figure 4 as a normal form of projective-planar trian-
gulations. Now Theorem 3 has been proved. $\blacksquare$

Case of the Klein bottle:
Assume that $F^{2}$ is the Klein bottle. Each triangle $vu_{i}u_{i+2}(i=1,2, \cdots, n)$ is
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a non-trivial loop in $F^{2}$ and is the center line of an annulus or a Mobius band
in turn. In the former case (or latter case), such a loop is said to be 2-sided
(or l-sided). Note that any 2-sided loop given as $vu_{i}u_{i+2}$ cuts open the Klein
bottle into an annulus.

Case 1. First, suppose that at least one of them, say $vu_{2}u_{4}$ , is 2-sided.
Then $vu_{1}u_{3}$ is l-sided and $F^{2}$ can be cut open along the bouquet of $vu_{2}u_{4}$ and
$vu_{1}u_{3}$ into a rectangle with $v\prime s$ at four corners; otherwise, $F^{2}$ would be a torus.

Assume that $n=4$ under the above condition. Let $24x$ and 24$y(x\neq y)$ be the
two triangles adjacent to edge 24 (precisely $u_{2}u_{4}$ ) and let $13s$ and $13t(s\neq t)$ be
the such triangles for edge 13 (Figure $10(i)$). If $x$ and $y$ were not adjacent in
$G$ , we could replace the diagonal 24 with $xy$ in $2x4y$ and next lv with 24 so
that afterward $v$ has degree 3, contrary to $G$ being pseudo-minimal. Thus, $x$

and $y$ and also $s$ and $t$ are joined by an edge, respectively. Up to symmetry,
we have the two possibilities shown in Figures 10(ii) and (iii), where $x=s,$ $y=t$

and $x=s,$ $y\neq t$ , respectively.

Figure 10.

In either figure, if there is a vertex $z$ in rectangle $43xy$ or $14st$ , then $z$ has
degree 4 and we can replace the diagonal $xy$ or $st$ in rectangle $xzy*orszt*and$

carry out the same deformation as in the previous paragraph, a contradiction.
Thus, both $43xy$ and $14st$ contain no vertex and are divided into two triangles
by diagonals $3y$ and $4t$ , respectivly. It is however impossible in case of Figure
10(ii).

By Lemma 7, pentagon $23txy$ in Figure 10(iii) contains at most one vertex.
If there is no vertex in 23 $txy$ , then we get the normal form in Figure 5 after
adding diagonals $2t,$ $yt$ . If there is a vertex in 23 $txy$ , then we have the three
possibilities shown in Figures ll(i), (ii) and (iii). However, the diagonal trans-
formations indicated by dashed lines transform them into one that have vertices
of degree 3, contrary to $G$ being pseudo-minimal. Therefore, we conclude that
if $v$ has degree 4, then the pseudo-minimal triangulation $G$ is the normal form
in the Klein bottle.



Diagonal transformations of triangulations 163

Figure 11.

Now suppose that $v$ has degree 5. In this case, we have Figure 12(i) as
the rectangle obtained from $F^{2}$ by cutting it open along the bouquet of $vu_{2}u_{4}$

and $vu_{1}u_{3}$ , and consider triangles $24x,$ $24y,$ $13s$ and $13t$ . As in the previous case,
we may assume that there are edges $xy$ and $st$ in $G$ . The simpleness of $G$

implies that $x\neq 2,3,4;y\neq 1,2,3,4,5;s\neq 1,2,3,5;t\neq 1,2,3,4$ . The vertex $x$

might be equal to one of vertices 1 and 5. We shall consider the three cases
below, depending on it. Now any rectangle region in $F^{2}$ contains no vertex

and is divided into two triangles by a diagonal, by Lemma 7.

Figure 12.

If $x=1$ (Figure 12(ii)), then we have to draw the edges indicated by dashed
lines but no more edge can be added to the rectangle $145s$ which also contains
no vertex. Thus, it is impossible to construct the whole of $G$ in this case.

When $x=5$ (Figure 12(iii)), we add first edges 14, 53 and next $3y$ in the
rectangle $532y$ and finally a vertex $z$ of degree 5 in the pentagon 125$y4$ to com-
plete the triangulation. The resulting triangulation (Figure $13(i)$ ) is another
pseudo-minimal triangulation of the Klein bottle with 8 vertices. However, it
can be transformed into one that which has a vertex of degree 4 by switching
$5y(=ty)$ . This implies that $G$ is equivalent to the previous normal form with
a vertex of degree 4.

When $x\neq 1,5$ , we have $5=t$ and $4=s$ after adding 52, 53 and 14 to Figure
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12(i). The rectangle containing $xy$ as its diagonal must be $1x5y$ to forbid the
switching of $xy$ . Then the triangulation in Figure 13(ii) will be obtained. It
is also pseudo-minimaI, but we can decrease the degree of $v$ to 4, replacing 25
with $3y$ and next lv with 25. Thus, $G$ is equivalent to the normal form in
Figure 5.

Figure 13.

Finally, suppose that $v$ has degree 6. Then $F_{6}$ with $v$ at the center is
embedded in $F^{2}$ as shown in Figure 14. Since any rectangle contains no vertex
now, the whole of $G$ has to be obtained by adding diagonals to 1245, 3564 and
6132. It is however impossible; first add 36 to 3564, then there is no diagonal
which can be added to 6132.

Figure 14.

Case 2. Now suppose that all of $vu_{i}u_{i+2}(i=1,2, \cdots, n)$ are l-sided loops in
the Klein bottle $F^{2}$ , and cut open $F^{2}$ along $vu_{1}u_{3}$ (Figure $15(i)$). Then one of

$v$

$v$ (i) $\nu$ (ii) $v$ (iii)

Figure 15.
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cycles 1324(56) and 1243 bounds a cross cap ( $=M\dot{o}bius$ band) and the other bounds
a 2-cell.

First suppose that $v$ has degree 4 (Figure 15(ii)). Then we may assume
that 1243 bounds a 2-cell and 1324 bounds a cross cap, up to symmetry. Since
1243 cannot contains a diagonal, there is a unique vertex $x$ of degree 4 in 1243.
Let $2v3y$ be the rectangle containing 23 as its diagonal. Now $y$ coincides with
neither 1 nor 4 since multiple edges would arise if not. So we can replace the
diaonal 23 with $vy$ and next $4x$ with 23 in $243x$ so that $deg(x)=3$ afterward,

contrary to $G$ being pseudo-minimal.

Now suppose that 1243 bounds a cross cap and that $deg(v)=5$ or 6. If
$deg(v)=6$ , then 64 and 51 could not be placed simultaneously in the 2-cell bounded
by 132456. If $deg(v)=5$ , then the 2-cell bounded by 13245 is triangulated by

edges 53, 52 and the cross cap contains edge 14 (Figure 15(iii)). In this case,
if the cycle 124 did not bound a face, we could switch the diagonal 24 in 254*

and next $3v$ in $34v2$ to decrease the degree of $v$ , contrary to the assumption of
$v$ . Thus, triangles 124 and similarly 134 have to bound faces, but this implies
that $F^{2}$ would be a projective plane, a contradiction.

Therefore, $deg(v)=5$ or 6 and 1243 has to bound a 2-cell which contains the
diagonal 14. By the symmetry, the cycles $\{i, i+1, i+3, i+2\}$ bounds 2-cells
with diagonals $(i, i+3)(i\equiv 1,2,3,4,5mod 5)$ . This is however possible only

when both 1243 and 13245 bound 2-cells like Figure 15(iii), which implies that
$F^{2}$ would be the projective plane.

Since any situation under Case 2 implies a contradiction, any pseudo-minimal
triangulation of the Klein bottle is equivalent to the normal form recognized in
Case 1 and Theorem 4 follows. $\blacksquare$

4. Remarks

We conjecture that any two triangulations in a given closed surface are
equivalent under diagonal triangulations. To prove this, it suffices to observe
that any two pseudo-minimal triangulations are equivalent, as our strategy in
this paper. Unfortunately, if one carries out arguments similar to ours in Sec-
tion 3, a tedious and long proof will be obtained in general.

A triangulation $G$ in a closed surface $F^{2}$ is said to be minimal if the number
of faces (or of vertices equivalently) of $G$ is the smallest among all the trian-
gulations of $F^{2}$ . If the complete graph $K_{n}$ has a triangular embedding in $F^{2}$ ,

then the embedding is a minimal triangulation of $F^{2}$ and $K_{n}$ is the unique
graph which induces a minimual triangulation. (See [4] and [5] for minimal
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triangulations.)

Since no diagonal transformation can be applied to $K_{n}$ , our conjecture is
false for $F^{2}$ if such $K_{n}$ has two or more inequivalent embeddings in $F^{2}$ . For
example, the embeddings of $K_{6}$ and $K_{7}$ in Figures 3 and 4 are minimal trian-
gulations of the projective plane and the torus, respectively, and they are uni-
quely embeddable, up to homeomorphism, in each surface. On the other hand,

the minimal trinagulations of the Klein bottle are not complete and not unique,

but they are equivalent.
Every minimal triangulation is pseudo-minimal, but the converse is not so

clear. If there is a pseudo-minimal triangulation $G$ of $F^{2}$ which is not minimal,

then our conjecture is not true again. For $G$ is not equivalent to any trian-
gulation obtained from a minimal triangulation by adding vertices of degree 3
in order. It is however not so difficult to show that for any two triangulations
$G_{1}$ and $G_{2}$ of $F^{2}$ with possibly different number of vertices, there is a common
triangulation which can be transformed into $G_{1}$ and $G_{2}$ by sequences of diagonal

transformations and deletions of vertices of degree 3.
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