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Introduction.

Let $(M, g)$ be the n-dimensional unit sphere of $R^{n+1}$ and $S$ an r-dimensional
connected submanifold of $(M, g)$ . Regarding $S$ as a submanifold of $R^{n+1}$ , we
can associate the Gauss map with it. It is a smooth mapping of $S$ to the

Grassmannian manifold $G_{r}^{n+1}$ of the r-dimensional linear subspaces in $R^{n+1}$ ,

defined as follows; $S\ni q\rightarrow T_{q}S\in G_{r}^{n+1}$ . The target space $G_{r}^{n+1}$ is a riemannian
symmetric space with a suitable metric. If the second fundamental form of $S$

is parallel, the Gauss map is a totally geodesic immersion by a result in Vilms
[10]. Here we note that if such a submanifold $S$ is complete, it is characterized
as a symmetric submanifold, namely a submanifold preserved by the reflections
with respect to all the normal spaces, and moreover the latter submanifold is
analougously defined for the case that the ambient space is a riemannian sym-

metric space. The purpose of this paper is to extend the above result for a
symmetric submanifold of a simply connected riemannian symmetric space with-

out Euclidean factor.
We will first consider certain submanifold classes of such a riemannian

symmetric space which contain the symmetric submanifolds, and then define a
generalization of Gauss map for each submanifold class. The target space of
this generalization is generally a pseudo-riemannian symmetric space, and

moreover if the ambient riemannian symmetric space is compact, it is a compact

riemannian symmetric space. We will next show that for a symmetric sub-

manifold our generalized Gauss map is a totally geodesic immersion, and it is
moreover isometric if and only if the submanifold is totally geodesic. Last we
will give the list of the target spaces of the generalized Gauss maps for our
considerable submanifold classes of the simply connected irreducible riemannian
symmetric spaces.
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\S 1. Submanifolds of riemannian symmetric spaces.

Let $(M, g)$ be a riemannian symmetric space. Denote by $R$ the curvature
tensor of $(M, g)$ . A vector subspace $V$ of a tangent space $T_{p}M$ is said to be
strongly curvature-invariant if it holds that

(1.1) (1) $R_{p}(V, V)V\subset V$ and (2) $R_{p}(V^{\perp}, V^{\perp})V^{\perp}\subset V^{\perp}$ ,

where $V^{\perp}$ denotes the orthogonal complement of V. 0bviously the subspace $V^{\perp}$

is also strongly curvature-invariant. Let $V,$ $W$ be strongly curvature-invariant
subspaces of $T_{p}M,$ $T_{q}M$, respectively. Then they are said to be equivalent to
each other if there exists an isometry $\phi$ of $(M, g)$ such that $\phi(p)=q,$ $\phi_{*}(V)=W$ .
Denote by [V] the equivalence class of a strongly curvature-invariant subspace
$V$ and by $S(M, g)$ the set of all the equivalence classes. For $\mathcal{V}\in S(M, g)$ a con-
nected submanifold $S$ of $M$ is called a $\mathcal{V}$-submanifold if it holds that $[T_{p}S]=\mathcal{V}$

for any point $p\in s$ .
LEMMA 1.1. For each $\mathcal{V}\in S(M, g)$ there exists a complete connected totally

geodesic $\mathcal{V}$-submanifold uniquely except the difference of congruence.

PROOF. Take a strongly curvature-invariant subspace $V$ of a tangent
space $T_{p}M$ which represents the equivalence class $\mathcal{V}$ . By (1.1), (1) there exists
a unique complete connected totally geodesic submanifold $N$ such that $p\in N$ and
$T_{p}N=V$ (cf. [3]).

We first show that $N$ is a $\mathcal{V}$-submanifold. Let $q$ be another point of $N$ and
join $q$ to $p$ by a geodesic $\gamma(t)$ in $N$. Then $\gamma(t)$ is also a geodesic in $M$ and
moreover $T_{q}N$ is translated to $T_{p}N$ by the parallel translation of $M$ along $\gamma(t)$ .
Since the parallel translation along a geodesic in a riemannian symmetric space
equals the differential of an isometry (cf. [3]), the subspace $T_{q}N$ is equivalent
to $T_{p}N=V$ . Hence $N$ is a $\mathcal{V}$-submanifold.

Next let $S$ be a complete connected totally geodesic $\mathcal{V}$-submanifold and take
a point $q\in S$ . Since $[T_{q}S]=\mathcal{V}$ , there exists an isometry $\phi$ of $(M, g)$ such that
$\phi(q)=p$ and $\phi_{*}(T_{q}S)=V$ . Then, since $N,$ $S$ are both complete connected totally

geodesic, it follows that $\phi(S)=N$. Hence $S$ is congruent to $N$. Q.E.D.

Let $S$ be a connected (regular) submanifold of $M$. Then $S$ is called a
symmetric submanifold if for any point $p\in S$ there exists an extrinsic symmetry
$t_{p},$

$i$ . $e.$ , a unique isometry of $(M, g)$ which preserves $S$ and satisfies that

(1.2)
$\{(t^{p_{p}})x=\left\{\begin{array}{l}-x for x\in T_{p}S,\\x for x\in N_{p}S,\end{array}\right.t(p_{*})=p$

,
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where $N_{p}S$ denotes the normal space at $p$ . The tangent spaces of such $S$ are
strongly curvature-invariant.

LEMMA 1.2. A symmetric submanifold $S$ of a riemannian symmetric space
$(1tl, g)$ is a complete $\mathcal{V}$-submanifold for some $\mathcal{V}\in S(M, g)$ . Next assume that $(M, g)$

is simply connected. Then a connected submanifold $S$ of $(M, g)$ is a complete
totally geodesic $\mathcal{V}$-submanifold for some $\mathcal{V}\in S(M, g)$ if and only if it is a totally
geodesic symmetric submanifold.

PROOF. Since a symmetric submanifold is a riemannian symmetric spce with
respect to the induced metric, it is complete. Hence, to show the first claim,

we may see that $S$ is a $\mathcal{V}$-submanifold for some $\mathcal{V}\in S(M, g)$ , namely the tangent
spaces of $S$ are equivalent to each other. This follows by the following fact;

The subgroup of isometries generated by the extrinsic symmetries $t_{p},$ $p\in S$ , acts
transitively on $S$ .

The second claim easily follows by the first claim and the characterization
(Corollary 1.4, [6]) of a symmetric submanifold. Q. E. D.

Now we give concrete examples of $\mathcal{V}$-submanifolds of simply connected
compact riemannian symmetric spaces of rank one.

EXAMPLE 1. Let $(M, g)$ be the n-dimensional sphere $S^{n}$ of positive constant
sectional curvature. Then any subspace $V\subset T_{p}M$ is strongly curvature-invariant,

and moreover two subspaces $V\subset T_{p}M,$ $W\subset T_{q}M$ are equivalent to each other if
and only if they have the same dimension. Hence the set $S(M, g)$ are exhaused
by the equivalence classes $\mathcal{V}^{r},$ $0\leqq r\leqq n$ , of r-dimensional subspaces. Then a con-
nected submanifold is a $\mathcal{V}^{r}$ -submanifold if and only if it is r-dimensional, and in
this case $N$ given in Lemma 1.1 is the r-dimensional totally geodesic sphere.

EXAMPLE 2. Let $(M, g)$ be the n-dimensional complex projective space $CP_{n}$

of positive constant holomorphic sectional curvature. Denote by $J$ the complex
structure on $M$. In this case a subspace $V\subset T_{p}M$ is strongly curvature-invariant
if and only if it is one of the following cases (1), (2);

(1) $V$ is an r-dimensional complex subspace, where $0\leqq r\leqq n$ .
(2) $V$ is an n-dimensional totally real subspace, $i$ . $e.,$ $JV=V^{\perp}$ .

Moreover strongly curvature-invariant subspaces $V\subset T_{p}M,$ $W\subset T_{q}M$ are equi-
valent to each other if and only if they are either complex subspaces with the
same dimension or totally real subspaces with the dimension $n$ . Hence the set
$S(M, g)$ are exhausted by the equivalence classes $\mathcal{V}_{C}^{r},$ $0\leqq r\leqq n$ , of r-dimensional
complex subspaces and the equivalence class $\mathcal{V}_{R}$ of n-dimensional totally
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real subspaces. Then a connected submanifold is a $\mathcal{V}_{C}^{r}$-submanifoid (resp. $\mathcal{V}_{R^{-}}$

submanifold) if and only if it is an r-dimersional K\"ahler submanifold (resp. n-
dimensional totally real submanifold), and in this case $N$ given in Lemma 1.1
is the r-dimensional totally geodesic complex projective space $CP_{r}$ (resp. the
n-dimensional totally geodesic real projective space $RP_{n}$ ).

EXAMPLE 3. Let $(M, g)$ be the n-dimensional quaternion projective space
$HP_{n}$ with the metric of riemannian symmetric space. Denote by $ Q\subset$

$Hom(TM, TM)$ the quaternionic structure on $M$. In this case a subspace $ V\subset$

$T_{p}M$ is strongly curvature-invariant if and only if it is one of the following
cases (1), (2);

(1) $V$ is an r-dimensional invariant subspace, where $0\leqq r\leqq n,$ $i$ . $e.,$ $\dim_{R}V=$

$4r$ and $FV=V$ for $F\in Q$ .
(2) $V$ is a $2n$-dimensional totally complex subspace, $i$ . $e.$ , there exist endo-

morphisms $I,$ $J,$ $K\in Q$ satisfying $I^{2}=J^{2}=K^{2}=-1,$ $IJ=-JI=K,$ $JK=-KJ=I$ ,

$KI=-IK=J$, and moreover $I$ $V=V,$ $JV=V^{\perp},$ $KV=V^{\perp}$ . Here $-1$ denotes the
minus identity map of $T_{p}\Lambda f$.

Moreover strongly curvature-invariant subspaces $V\subset T_{p}M$, $W\subset T_{q}M$ are
equivalent to each other if and only if they are either invariant subspaces with
the same dimension or totally complex subspaces with the dimension $2n$ . Hence
the set $S(M, g)$ are exhausted by the equivalence classes $\mathcal{V}_{H}^{r},$ $0\leqq r\leqq n$ , of r-
dimensional invariant subspaces and the equivalence class $\mathcal{V}_{C}$ of $2n$-dimensional
totally complex subspaces. Then a connected submanifold is a $\mathcal{V}_{K}^{r}$-submanifold
(resp. $\mathcal{V}_{C}$ -submanifold) if and only if it is an r-dimensional invariant submanifold
(resp. $2n$-dimensional totally complex submanifold), and in this case $N$ given in
Lemma 1.1 is the r-dimensional totally geodesic quaternion projective space $HP_{r}$

(resp. the n-dimensional totally geodesic complex projective space $CP_{n}$ ).

EXAMPLE 4. Let $(M, g)$ be the Cayley projective plane $CaP_{2}$ with the metric
of riemannian symmetric space. Then the set $S(M, g)$ consists of two equi-
valence classes $\mathcal{V}_{1},$ $\mathcal{V}_{2}$ . The equivalence class $\mathcal{V}_{1}$ is represented by a tangent
space of the projective line $S^{8}$ of $CaP_{2}$ and the other equivalence class $\mathcal{V}_{2}$ is
represented by a tangent space of the totally geodesic submanifold $HP_{2}\subset CaP_{2}$

which is induced by the natural inclusion of the quaternion number field $H$ to
the Cayley number field $Ca$ .

Here we refer [5], [8], [9] to Examples 2, 3, 4, respectively.
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\S 2. Generalized Gauss maps and symmetric submanifolds.

In this section we first assume that $(M, g)$ is a riemannian symmetric space
whose universal covering space does not contain any Euclidean factor, namely
the identity component $I^{0}(M, g)$ of the isometry group of $(M, g)$ is a semi-
simple Lie group.

Fix an equivalence class $\mathcal{V}\in S(M, g)$ and let $S$ be a connected $\mathcal{V}$-submanifold
of $M$. To define the ”Gauss map” associated with $S$ we first construct the
target space.

Fix a point $0$ of $S$ and put $V=T_{o}S$ . Let $F_{S}$ be the set of the strongly
curvature-invariant subspaces which are equivalent to $V$ by isometries in $I^{0}(M, g)$ .
Hereafter denote by $G$ the identity component $I^{0}(M, g)$ . Then the Lie group
$G$ acts transitively on the set $F_{S}$ by the following way; $\phi\cdot W=\phi_{*}(W)$ for $\phi\in$

$G$ , $W\in F_{s}$ . We next define a relation $\sim$ on the set $F_{S}$ . Let $W\subset T_{p}M,$ $ U\subset$

$T_{q}M$ be subspaces in $F_{S}$ . Then it holds that $W\sim U$ if and only if there exists
a complete connected totally geodesic submanifold $N^{\perp}$ of $M$ such that $p,$ $q\in N^{\perp}$

and $T_{p}N^{\perp}=W^{\perp},$ $T_{q}N^{\perp}=U^{\perp}$ . This relation is an equivalence relation since $N^{\perp}$

is uniquely determined by any one point in it and the tangent space. Denote
by $\langle W\rangle$ the equivalence class of $W\in F_{S}$ with respect to this relation and by $M^{*}$

the set of the equivalence classes. Since the action of $G$ on $F_{S}$ preserves the
relation $\sim$ , the Lie group $G$ also acts transitively on the set $M^{*}$ by the fol-
lowing way; $\phi\cdot\langle W\rangle=\langle\phi_{*}W\rangle$ for $\phi\in G,$ $\langle W\rangle\in M^{*}$ .

We first define a differentiable structure on $M^{*}$ . Thus $M^{*}$ is a smooth
manifold. Let $p_{*}$ be a point of $M^{*}$ and denote by $K^{*}(p_{*})$ the stabilizer in $G$

of $p_{*}$ . Moreover set $ p_{*}=\langle W\rangle$ where $iV\in F_{s}$ and $W\subset T_{p}\Lambda l$, and denote by $N^{\perp}(p_{*})$

a unique complete connected totally geodesic submanifold of $M$ such that $ p\in$

$N^{\perp}(p_{*})$ and $T_{p}N^{\perp}(p_{*})=W^{\perp}$ . Then this $N^{\perp}(p_{*})$ is independent of selecting the
representative $W$ of $p_{*}$ and it characterizes $K^{*}(p_{*})$ as follows.

LEMMA 2.1. It holds that

(2.1) $K^{*}(p_{*})=\{\phi\in G;\phi(N^{\perp}(p_{*}))=N^{\perp}(p_{*})\}$ .

Particularly, if $(M, g)$ is simply connected, $K^{*}(p_{*})$ is a closed subgroup of $G$ .

PROOF. Let $\phi\in K^{*}(p_{*})$ . Since $\phi_{*}W\sim W$ , it follows that $\phi(p)\subset-N^{\perp}(p_{*})$ and
$(\phi_{*}W)^{\perp}=T_{\phi(p)}N^{\perp}(p_{*})$ . Moreover since $(\phi_{*}W)^{\perp}=\phi_{*}(W^{\perp})$ , it follows that $\phi(N^{\perp}(p_{*}))$

$=N^{\perp}(p_{*})$ . Conversely assume that $\phi\in G$ satisfies $\phi(N^{\perp}(p_{*}))=N^{\perp}(p_{*})$ . Then it
follows that $\phi(p)\in N^{\perp}(p_{*})$ and $\phi_{*}(W)^{\perp}=\phi_{*}(W^{\perp})=T_{\phi(p)}N^{\perp}(p_{*})$ . Hence it holds
that $\phi_{*}W\sim W$ , which implies that $\phi\in K^{*}(p_{*})$ .
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We next show that the subgroup $K^{*}(p_{*})$ of $G$ is closed. Define a linear
isometry $\Phi$ of $T_{p}M$ as follows;

$\Phi(x)=\left\{\begin{array}{l}-x for x\in W,\\x for x\in W^{\perp}.\end{array}\right.$

Then it preserves the curvature tensor $R_{p}$ at $p$ by (1.1). Since $(M, g)$ is a
simply connected riemannian symmetric space, $\Phi$ is uniquely extended to an
isometry $\phi$ of $(M, g)$ such that $\phi(p)=p$ and $\phi_{*_{p}}=\Phi$ (cf. [3]). Here we can
easily see that the totally geodesic submanifold $N^{\perp}(p_{*})$ is a connected component

of the fixed point set of $\phi$ , which containes $p$ . Hence $N^{\perp}(p_{*})$ is closed and

so $K(p_{*})$ is closed. Q. E. D.

By this lemma, if $(M, g)$ is simply connected, the set $M^{*}$ is, as set, bijective

to the homogeneous space $G/K^{*}(p_{*})$ for any point $p_{*}\in M^{*}$ . Then, since $G$ acts
transitively on $1lf^{*}$ , there exists a unique smooth structure on $M^{*}$ such that
$M^{*}$ is diffeomorphic to $G/K^{*}(p_{*})$ for any point $p_{*}\in M^{*}$ . We regard $M^{*}$ as a
smooth manifold with this smooth structure.

We next define a pseudo-riemannian structure on $M^{*}$ . Denote by $\mathfrak{g}$ the Lie
algebra of the Killing vector fields on $(M, g)$ . Fix a point $p\in M$ and denote
by $s_{p}$ an involutive isometry defined by the geodesic symmetry at $p$ . Then it
induces an involutive automorphism $\sigma$ of $G$ by the following way; $\sigma(\phi)=s_{p}\circ\phi\circ s_{p}$

for $\phi\in G$ . The differential of $\sigma$ is also an involutive automorphism of $\mathfrak{g}$ .
Denote the differential by the same notation $\sigma$ and let $\mathfrak{g}_{\pm 1}$ be its $\pm 1$-eigenspaces.

Then the vector space $\mathfrak{g}_{-1}$ is identified with the tangent space $T_{p}M$ by the
correspondence: $\mathfrak{g}_{-1}\ni X\rightarrow X_{p}\in T_{p}M$. Under this identification the adjoint repre-

sentation $ad_{\mathfrak{g}-1}(\mathfrak{g}_{1})$ of $\mathfrak{g}_{1}$ on $\mathfrak{g}_{-1}$ is identified with the Lie algebra spanned over
$R$ by the endomorphisms $R(x, y),$ $x,$ $y\in T_{p}M$ (cf. [3]). Hence the metric $g_{p}$

on $T_{p}M$ induces an inner product $\langle$ , $\rangle_{\mathfrak{g}-1}$ on $\mathfrak{g}_{-1}$ such that the endomorphisms

$ad_{\mathfrak{g}-1}(X),$ $X\in \mathfrak{g}_{1}$ , are skew symmetric. Since $\mathfrak{g}$ is semi-simple and $ad_{\mathfrak{g}-1}$ is faithful,

the inner product $\langle$ , $\rangle_{\mathfrak{g}-1}$ is uniquely extended to a nondegenerate symmetric

bilinear form $\langle$ $\rangle$ on $\mathfrak{g}$ satisfying the following conditions (a), (b) (cf. [2]);

(a) The endomorphisms ad(X), $X\in \mathfrak{g}$ , of $\mathfrak{g}$ are skew symmetric with respect

to $\langle$ , $\rangle$ .
(b) The involutive automorphism $\sigma$ preserves $\langle$ , $\rangle$ .

We here note that this bilinear from $\langle$ $\rangle$ is independent of taking the fixed
point $p$ of $AAt$. This fact follows by the condition (a) and the uniqueness of

the extension $\langle$ , $\rangle$ of $\langle$ , $\rangle_{t1-1}$ . Now the Lie algebra $\mathfrak{g}$ is isomorphic to that
of $G$ , and so the bilinear form $\langle$ , $\rangle$ on $\mathfrak{g}$ moreover induces a bi-invariant
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pseudo-riemannian metric on $G$ by virtue of the condition (a). This metric is
also denoted by $\langle$ , $\rangle$ . If $(M, g)$ is of compact type, $i.e.,$ $G$ is a semi-simple
Lie group of compact type, the pseudo-riemannian metric is riemannian.

Assume that $(M, g)$ is simply connected. Again fix a point $p_{*}\in M^{*}$ and
let $ p_{*}=\langle W\rangle$ where $W\subset T_{p}M$. Moreover let $N$ be a complete connected totally

geodesic submanifold of $M$ such that $p\in N$ and $T_{p}N=W$ . Then $N$ is a sym-
metric submanifold by Lemma 1.2. Let $t_{p}$ be the extrinsic symmetry of $N$ at
$p$ . Similarly as $s_{p}$ , it also induces an involutive automorphism $\tau$ of $G$ and thus
$\mathfrak{g}$ . This involution $\tau$ of $\mathfrak{g}$ has the following properties (1), (2);

(1) $[\tau, \sigma]=0$ .
(2) $\tau$ preserves the bilinear form $\langle, \rangle$ on $\mathfrak{g}$ .

The property (1) follows since $[t_{p}, s_{p}]=0$ and the property (2) follows since $\tau$

preserves $\langle$ , $\rangle_{\mathfrak{g}-1}$ . Now denote by $f^{*}(p_{*})$ the Lie algebra of $K^{*}(p_{*})$ . Then it
is characterized by $\tau$ as follows.

LEMMA 2.2. It holds that

$f^{*}(p_{*})=\{X\in \mathfrak{g};\tau(X)=X\}$ .
PROOF. We first recall that $N^{\perp}(p_{*})$ is a connected component of the fixed

point set of $t_{p}$ , which contains $p$ . Hence, for any point $q\in N^{\perp}(p_{*})$, it follows
that $t_{p}(q)=q$ and $(t_{p})_{*}(x)=x$ or $-x$ according as $x\in T_{q}N^{\perp}(p_{*})$ or $x\in N_{q}N^{\perp}(p_{*})$ .

Let $X\in f^{*}(p_{*})$ and $t\in R$ . Then it holds that $(\exp tX)(N^{\perp}(p_{*}))=N^{\perp}(p_{*})$ by

Lemma 2.1. Hence, by the above remark, it follows that $(t_{p}\circ\exp tX\circ t_{p})(q)=$

$(\exp tX)(q)$ and $(t_{p}\circ\exp tX\circ t_{p})_{*}=(\exp tX)_{*}qq$ Since $t_{p}\circ\exp tX\circ t_{p}$ and $\exp tX$ are
both isometries of $(M, g)$ , it holds that $t_{p}\circ\exp tX\circ t_{p}=\exp tX$, and thus $\tau(X)=X$.

Conversely assume that $\tau(X)=X$ where $X\in \mathfrak{g},$ $i$ . $e.,$ $t_{p}\circ\exp tX\circ t_{p}=\exp tX$ for
$t\in R$ . Again by the above remark it follows that $t_{p}((\exp tX)(q))=(\exp tX)(q)$

for $q\in N^{\perp}(p_{*})$ . Hence it holds that $(\exp tX)(q)\in N^{\perp}(p_{*})$ and so $(\exp tX)(N^{\perp}(p_{*}))$

$=N^{\perp}(p_{*})$ . By Lemma 2.1 it follows that $\exp tX\in K^{*}(p_{*})$ and thus $X\in f^{*}(p_{*})$ .
Q. E. D.

Denote by $\mathfrak{p}^{*}(p_{*})$ the (–l)-eigenspace of $\tau$ . By Lemma 2.1 it is identified
with the tangent space at the origin $K^{*}(p^{*})$ of the homogeneous space $G/K^{*}(p_{*})$ .
Since $\langle, \rangle$ is preserved by $\tau$ , its restriction to $\mathfrak{p}^{*}(p_{*})$ is nondegenerate. Hence
the bi-invariant metric $\langle$ , $\rangle$ on $G$ induces a pseudo-riemannian metric $g^{*}$ on
$G/K^{*}(p_{*})$ . This metric $g^{*}$ moreover induces a pseudo-riemannian metric on $M^{*}$

such that $G$ acts isometrically on $M^{*}$ . This is also denoted by $g^{*}$ . We here
note that the metric $g^{*}$ on $M^{*}$ is independent of taking the fixed point $p_{*}$ of
$M^{*}$ since the metric $\langle$ , $\rangle$ on $G$ is bi-invariant.
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We next show that this pseudo-riemannian homogeneous space $(M^{*}, g^{*})$ is
independent of selecting a connected $\mathcal{V}$-submanifold $S$ and a fixed point $0\in S$ .
Namely let $(1tl^{\prime*}, g^{\prime*})$ be the pseudo-riemannian homogeneous space constructed

above from another connected $v$ -submanifold $S^{\prime}$ and another fixed point $0^{\prime}\in S^{\prime}$ .
Then it holds that $(M^{\prime*}, g^{\prime*})$ is isometric to $(M^{*}, g^{*})$ . In fact, since $[T_{o}, S^{\prime}]$

$=[T_{o}S]=\mathcal{V}$ , there exists an isometry $\phi$ of $(M, g)$ such that $\phi(0^{\prime})=0$ and $\phi_{*}(T_{0}, S^{\prime})$

$=T_{o}S$ . This isometry induces a bijection of $F_{S^{\prime}}$ onto $F_{S}$ since $\phi\circ G\circ\phi^{-1}=G$ ,

and the bijection moreover induces a bijection $\phi^{\#}$ of $M^{\prime*}$ onto $M^{*}$ since it
preserves the equivalence relation $\sim$ . Identify $M^{\prime*},$ $M^{*}$ with the homogeneous

spaces $G/K^{\prime*}(0_{*}^{\prime})$ , $G/K^{*}(0_{*})$ , where $0_{*}^{\prime}=\langle T_{O^{\prime}}S^{\prime}\rangle,$ $ 0_{*}=\langle T_{o}S\rangle$ . Then we can
easily see that the bijection $\phi^{*}$ is identified with a smooth mapping of $G/K^{\prime*}(0_{*}^{\prime})$

to $G/K^{*}(0_{*})$ induced from the following isomorphism $\hat{\phi}$ of $G:\hat{\phi}(\psi)=\phi\circ\psi\circ\phi^{-1}$

for $\psi\in G$ . Here, noting that $\hat{\phi}$ preserves the metric $\langle, \rangle$ on $G$ , we can moreover
see that $\phi^{*}$ is an isometry of $(M^{\prime*}, g^{\prime*})$ onto $(M^{*}, g^{*})$ .

We call this pseudo-riemannian homogeneous space $(M^{*}, g^{*})$ the target space
associated with the equivalence class $\mathcal{V}$ .

THEOREM 2.3. Let $(\lrcorner t/l, g)$ be a simply connected riemannian symmetric space
without Euclidean factor and let $\mathcal{V}\in S(M, g)$ . Then the target space $(M^{*}, g^{*})$

associated with $\mathcal{V}$ is a pseudo-riemannian symmetric space.
Moreover if $(M, g)$ is compact, the target space $(M^{*}, g^{*})$ is a compact rie-

mannian symmetric space.

PROOF. Fix a point $0_{*}\in M^{*}$ and set $ 0_{*}=\langle W\rangle$ where $W\subset T_{o}M$. Moreover
let $t_{o}$ be the extrinsic symmetry at $0$ of the totally geodesic symmetric sub-

manifold $N$ such that $0\in N$ and $T_{o}N=W$ . Then, similarly as the above argue-
ment, the isometry $t_{o}$ induces an involutive isometry $t_{o}^{*}$ of $M^{*}=G/K^{*}(0_{*})$ and

it moreover holds that $t_{o}^{\#}(0_{*})=0_{*}$ and $ f_{o}=\tau$ . Obviously this isometry $t_{o}^{*}$ defines
the geodesic symmetry at 0* $\cdot$ Moreover since $(1l[*g^{*})$ is a pseudo-riemannian

homogeneous space, it is a pseudo-riemannian symmetric space.
Next assume that $(M, g)$ is compact. Then the Lie group $G$ is compact and

the metric $\langle$ , $\rangle$ on $G$ is riemannian. Hence $(M^{*}, g^{*})$ is a compact riemannian
symmetric space. Q. E.D.

Now we define a “generalized Gauss map” associated with a connected $\mathcal{V}-$

submanifold of M. Assume that $(M, g)$ is a simply connected riemannian sym-

metric space without Euclidean factor and let $\mathcal{V}\subset-S(hI, g)$ . Let $S$ be a connected
$\mathcal{V}$-submanifold and fix a point $0\in S$ . Then the target space $(\Lambda 4^{*}, g^{*})$ is con-
structed from $S$ and $0$ . We define a smooth mapping $\kappa$ of $S$ to $M^{*}$ in the
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following way. For a point $p\in S$ the tangent space $’\tau_{p}s$ is contained in the set
$F_{S}$ by the connectedness of $S$ . Then we put $\kappa(p)=\langle T_{p}S\rangle\in M^{*}$ . We call this
mapping $\kappa$ the generalized Gauss map associated with the $\mathcal{V}$-submanifold $S$ .

We first remark the followings (a), (b), (c);

(a) The generalized Gauss map $\kappa$ is independent of taking the fixed point
$0\in S$ since the set $F_{S}$ is so.

(b) The generalized Gauss map $\kappa$ only depends on the congruence class of
$S$ . Namely let $S^{\prime}$ be another connected $\mathcal{V}$-submanifold of $M$ which is congruent
to $S$ by an isometry $\phi$ of $(M, g)$ . Then there exists an isometry $\psi$ of $(M^{J*}, g^{\prime*})$

onto $(M^{*}, g^{*})$ such that $\kappa^{\prime}\circ\phi=\psi 0\kappa$ , where $(M^{\gamma*}, g^{\prime*}),$ $\kappa^{\prime}$ denote the target space,
the generalized Gauss map associated with $S^{\prime}$ . In fact, this isometry $\psi$ is given
by the isometry $\phi^{\#}$ constructed above by $\phi$ .

(c) Let $(M, g)$ be the n-dimensional unit sphere $S^{n}$ of the Euclidean space
$R^{n+1}$ and $S$ an r-dimensional connected submanifold of $S^{n}$ . Then the generalized
Gauss map associated with $S$ is, so is called, the “usual” Gauss map since the
target space $M^{*}$ is identified with the Grassmannian manifold $G_{r}^{n+1}$ .

We next show the following theorem, which is a generalization of the
result by Vilms [10] described in Introduction.

THEOREM 2.4. Let $(M, g)$ be simply connected riemannian symmetric space
without Euclidean factor and let $\mathcal{V}\in S(M, g)$ . If $S$ is a symmetric $\mathcal{V}$-submanifold
of $M$, then the generalized Gauss map is a totally geodesic immersion of $S$ to
$(M^{*}, g^{*})$ .

Moreover it is isometric if and only if $S$ is a totally geodesic submanifold
of $M$.

Before proving this theorem we prepare the following lemma. Let $(M, g)$

be a riemannian symmetric space and $S$ a symmetric submanifold of $M$. Let
$\gamma(t)$ be a complete geodesic of $S$ and denote by $t_{t}$ the extrinsic symmetry of $S$

at $\gamma(t)$ . Moreover set $T(t)=t_{(t/2)}\circ t_{0}$ for $t\in R$ .

LEMMA ([6]). The curve $T(t)$ is $a$ one-parameter subgroup of $I^{0}(M, g)$ satis-
fying the following conditions;

(1) $T(t)(S)=S$ for $t\in R$ .
(2) $t_{0}\circ T(t)\circ t_{0}=T(-t)$ for $t\in R$ .

PROOF OF THEOREM 2.4. Fix a point $0\in S$ and let $(M^{*}, g^{*})$ be the target
space constructed from $S$ and $0$ . Let $\gamma(t)$ be a complete geodesic of $S$ such that
$\gamma(0)=0$ . By the condition (1) of the lemma it holds that $T_{\gamma(t)}S=(T(t))_{*}T_{o}S$ .
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Hence it follows that

$ T(t)(0_{*})=T(t)(\langle T_{o}S\rangle)=\langle T_{\gamma(t)}S\rangle$

$=\kappa(\gamma(t))$

for $t\in R$ , where $ 0_{*}=\langle T_{o}S\rangle$ . Here set $T(t)=\exp tX$ where $X\in \mathfrak{g}$ . By the con-
dition (2) of the lemma it holds that $\tau(X)=-X$ and thus $X\in \mathfrak{p}^{*}(0_{*})$ . This im-
plies that $T(t)(0_{*})$ is a geodesic of $(M^{*}, g^{*})$ by the general theory of symmetric

space. Hence the generalized Gauss map $\kappa$ transposes a geodesic of $S$ to a
geodesic of $(M^{*}, g^{*})$ .

We next show that the differential $\kappa_{*0}$ at $0$ is injective. Assume that
$T(t)(0_{*})=0_{*}$ for all $t\in R$ . Then it holds that $\langle T(t)_{*}T_{o}S\rangle=\langle T_{o}S\rangle$ and thus
$\langle T_{\gamma(t)}S\rangle=\langle T_{o}S\rangle$ . Since the geodesic $\gamma(t)$ intersects the totally geodesic submani-
fold $N^{\perp}(0_{*})$ orthogonally at $0$ , it follows that $\gamma(t)=0$ for $t\in R$ . This implies

that $\kappa_{*0}$ is injective.
Hence $\kappa$ is a totally geodesic immersion. We show the second claim. We

first remark that $d\gamma/dt(O)=X_{o}$ since $\gamma(t)=T(t)(0)=(\exp tX)(0)$ . Decompose the

Killing vector field $X$ into the sum of a Killing vector field $X_{1}$ in $\mathfrak{g}_{1}$ and a
Killing vector field $X_{-1}$ in $\mathfrak{g}_{-1}$ . Then it holds that $X.=(X_{-1})_{0}$ . Hence it follows

that $ g(d\gamma/dt(0), d\gamma/dt(O))=\langle X_{-1}, X_{-1}\rangle$ , while it holds that $g^{*}(d\kappa\circ\gamma/dt(O), d^{y}\circ\gamma/dt(0))$

$=\langle X, X\rangle$ . Here it holds that \langle X, $ X\rangle$ $=\langle X_{-1}, X_{-1}\rangle$ if and only if $X\in \mathfrak{g}_{-1}$ , equi-

valently, $\gamma(r)$ is a geodesic of $M$. Hence $\kappa$ is isometric if and only if $S$ is
totally geodesic in $M$ . Q. E. D.

REMARK. In Theorem 2.3 and Theorem 2.4 we may change the simply

connectedness of $M$ for the following condition $(\#)$ with respect to an equi-

valence class $\mathcal{V}$ .
$(\#)$ The unique complete connected totally geodesic $\mathcal{V}$-submanifold is de-

fined by a connected component of the fixed point set of an involutive isometry

of $(M, g)$ .
In fact, the arguements in this section are valid under this assumption $(\#)$ .

Moreover the classification of such $\mathcal{V}$-submanifolds has been studied in Nagano

[4].

\S 3. Target spaces and the local expressions as symmetric space.

In this section we assume that $(M, g)$ is a simply connected irreducible rie-
mannian symmetric space and then express the target spaces $i1f^{*}$ locally and

concretely as symmetric space. We note that in this case $(M, g)$ is of compact
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type or of noncompact type.

Let $\mathfrak{g}$ be a semi-simple Lie algebra and $\sigma$ an involutive automorphism of $\mathfrak{g}$ .
Moreover let $\mathfrak{g}_{\pm 1}$ be the $(\pm 1)$-eigenspaces of $\sigma$ . Then a pair $(\mathfrak{g}, \sigma)$ is called an
(effective) symmetric Lie algebra if the adjoint representation $ad_{\mathfrak{g}-1}(\mathfrak{g}_{1})$ of $\mathfrak{g}_{1}$ onto
$\mathfrak{g}_{-1}$ is faithful, and it is moreover said to be irreducible if it is not decomposed
into any sum of proper factors. Here the direct sum of symmetric Lie algebras
is defined naturally. Also, a symmetric Lie algebra $(\mathfrak{g}, \sigma)$ is said to be of com-
pact type if $\mathfrak{g}$ is a semi-simple Lie algebra of compact type, while it is said to
be of noncompact type if $\mathfrak{g}_{1}$ does not contain any compact simple ideal of $\mathfrak{g}$ .

Next assume that $\mathfrak{g}$ is a semi-simple Lie algebra of compact type. Let $\sigma,$ $\tau$

be involutive automorphisms of $\mathfrak{g}$ and $\langle, \rangle$ a nondegenerate symmetric bilinear
form on $\mathfrak{g}$ . Then a triple $(\mathfrak{g}, \sigma, \tau)$ is called a pairwise symmetric Lie algebra if
the pairs $(\mathfrak{g}, \sigma),$ $(\mathfrak{g}, \tau)$ are symmetric Lie algebras such that $[\sigma, \tau]=0$ , and more-
over a quadruple $(\mathfrak{g}, \sigma, \tau, \langle,\rangle)$ associated with a pairwise symmetric Lie algebra
is called an orthogonal pairwise symmetric Lie algebra if the bilinear form $\langle,\rangle$

is preserved by $\sigma,$ $\tau$ and the endomorphisms ad (X), $X\in \mathfrak{g}$ , of $\mathfrak{g}$ are skew sym-
metric with respect to $\langle,\rangle$ .

We note that for these objects $(\mathfrak{g}, \sigma),$ $(\mathfrak{g}, \sigma, \tau),$ $(\mathfrak{g}, \sigma, \tau, \langle,\rangle)$ the equivalences

are naturally defined respectively. Next let $(M, g)$ be a simply connected com-
pact riemannian symmetric space and $N$ a symmetric submanifold of $M$. Then
$N$ is called substantial if $N$ is not contained in any proper product factor of
$(M, g)$ . We have the following two correspondences.

LEMMA 3.1 ([6]). The congruence classes $((M, g),$ $N$ ) of the simply connected
connected compact riemannian symmetric spaces $(M, g)$ and the totally geodesic
substantial symmetric submanifolds $N$ of $M$ with $\dim N\geqq 1$ bijectively correspond
the equivalence classes of the orthogonal pairwise symmetric Lie algebras
$(\mathfrak{g}, \sigma, \tau, \langle,\rangle)$ .

Moreover the equivalence classes of the pairwise symmetric Lie algebras
$(\mathfrak{g}, \sigma, \tau)$ bi7’ectively correspond the equivalence classes of the symmetric Lie alge-
bras $(\hat{\mathfrak{g}},\hat{\tau})$ of noncompact type.

Here the correspondence: $((M, g),$ $N$ ) $\mapsto(\mathfrak{g}, \sigma, \tau, \langle,\rangle)$ is given by the following
way. Let $\mathfrak{g}$ be the Lie algebra of the Killing vector fields on $(M, g)$ . Fix a
point $p\in N$ and let $s_{p},$ $t_{p}$ be the geodesic symmetry of $(M, g)$ at $p$ and the ex-
trinsic symmetry of $N/atp$ . Then $\sigma,$ $\tau$ are the involutive automorphisms de-
fined from $s_{p},$ $t_{p}$ , and $\langle,\rangle$ is the bilinear form defined from $g_{p}$ on $T_{p}M$. (See

\S 2 for these constructions.) We note that the object $(\mathfrak{g}, \sigma, \langle,\rangle)$ only depends on
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the ambient space $(M, g)$ . Next the correspondence: $(\mathfrak{g}, \sigma, \tau)\rightarrow(\hat{\mathfrak{g}},\hat{\tau})$ is given by

the following way. Decompose $\mathfrak{g}$ to the sum of the $(\pm 1)$-eigenspaces $\mathfrak{g}_{\pm 1}$ by $\sigma$

and put $\hat{\mathfrak{g}}=\mathfrak{g}_{1}+\sqrt{-1}\mathfrak{g}_{-1}$ . Then $\hat{\mathfrak{g}}$ has a semi-simple Lie algebra structure of
noncompact type, and $\tau$ induces the involutive automorphism $\hat{\tau}$ of $\mathfrak{g}$ since it
holds that $[\sigma, \tau]=0$ .

Now let $(M, g)$ be a simply connected compact irreducible riemannian sym-
metric space and $(\mathfrak{g}, \sigma, \langle,\rangle)$ the object associated above with $(M, g)$ . Let $\mathcal{V}_{0}\in$

$S(M, g)$ be the trivial equivalence class of a O-dimensional subspace. Then, by

Lemma 1.1 the set $S(M, g)-\{\mathcal{V}_{0}\}$ is bijective to the congruence classes of the
totally geodesic symmetric submanifolds $N$ of $M$ with $\dim N\geqq 1$ . Since in this
case a symmetric submanifold of $\lrcorner lf$ is necessarily substantial, by the first cor-
respondence of Lemma 3.1 the set $S(M, g)-\{\mathcal{V}_{0}\}$ is moreover bijective to the
equivalence classes $(\mathfrak{g}, \sigma, \tau, \langle,\rangle)$ by the automorphisms which preserve the object
$(\mathfrak{g}, \sigma, \langle,\rangle)$ . Let $\hat{\mathfrak{g}}$ be the Lie algebra constructed from $(\mathfrak{g}, \sigma)$ in the second cor-
respondence of Lemma 3.1. It is a simple Lie algebra of noncompact type since
$(\mathfrak{g}, \sigma)$ is irreducible. Then, by the second correspondence, the equivalence classes
$(\mathfrak{g}, \sigma, \tau)$ underlying the above equivalence classes $(\mathfrak{g}, \sigma, \tau, \langle,\rangle)$ is moreover bijec-

tive to the equivalence classes $(\hat{\mathfrak{g}},\hat{\tau})$ by the automorphisms which preserve $\hat{\mathfrak{g}}$ .
The latter equivalence classes are classified in Berger [1]. Hence, using this
classification, we can decide the local structures of the target spaces $M^{*}$ .

We start with an irreducible symmetric Lie algebra $(\hat{\mathfrak{g}},\hat{\tau})$ of noncompact

type and with simple Lie algebra $\hat{\mathfrak{g}}$ , and next find the symmetric Lie algebra
$(\hat{\mathfrak{g}},\hat{\rho})$ associated as follows with $(\hat{\mathfrak{g}},\hat{\tau})$ . Let $(\mathfrak{g}, \sigma, \tau)$ be the pairwise symmetric

Lie algebra corresponding $(\hat{\mathfrak{g}},\hat{\tau})$ . Then $(\hat{\mathfrak{g}},\hat{\rho})$ is the symmetric Lie algebra cor-
responding the pairwise symmetric Lie algebra $(\mathfrak{g}, \sigma, \sigma\tau)$ . Here we note that
$(\hat{\mathfrak{g}},\hat{\rho})$ is not always effective. In fact, this occurs if and only if $\sigma=\tau$ , and then

the totally geodesic symmetric submanifold $N$ coincides with the ambient space
$M$. Hence this case is out of our consideration. Now, using these symmetric

Lie algebras $(\hat{\mathfrak{g}},\hat{\tau}),$ $(\hat{\mathfrak{g}},\hat{\rho})$ , we clarify the local structures of $M,$ $N,$ $M^{*}$ associated
with $(\hat{\mathfrak{g}},\hat{\tau})$ . First the local structure of $M$ is given by $(\mathfrak{g}, \sigma)$ . Here $\mathfrak{g}$ is the
compact form of $\hat{\mathfrak{g}}$ and the subalgebra $\mathfrak{g}_{1}$ , the set of fixed points of $\sigma$ , is the
maximal compact subalgebra of $\hat{\mathfrak{g}}$ . Next the local structure of $M^{*}$ is given by

$(\mathfrak{g}, \tau)$ . Hence let { $*\hat{1}^{*}$ be the subalgebras of the fixed points of $\tau,\hat{\tau}$ respec-
tively. Then $f^{*}$ is the compact form of $\hat{f}^{*}$ . Lastly let $\mathfrak{g}_{\pm 1}$ be the $(\pm 1)$-eigen-

spaces by $\sigma$ and decompose $\mathfrak{g}_{1},$ $\mathfrak{g}_{-1}$ to the $(\pm 1)$-eigenspaces $\mathfrak{g}_{1f1},$ $\mathfrak{g}_{-1\pm 1}$ by $\tau$ re-
spectively. Then the subalgebra $\hat{1}$ of the fixed points of $\hat{\tau}$ is given by $\mathfrak{g}_{11}+$

$\sqrt{-1}\mathfrak{g}_{-1-1}$ . Since $N$ is the totally geodesic submanifold of $M$ defined by the
Lie triple system $\mathfrak{g}_{-1-1}$ , the local structure is given by the quotient space
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$\mathfrak{g}_{11}-\vdash \mathfrak{g}_{-1-1}/\mathfrak{g}_{11}$ . Here $\mathfrak{g}_{11}+\mathfrak{g}_{-1-1}$ is the compact form of $\hat{1}$ and $\mathfrak{g}_{11}$ is the maximal
compact subalgebra of $\hat{t}$.

Next let $(\hat{M},\hat{g})$ be the irreducible riemannian symmetric space of noncom-
pact type which is dual to $(M, g)$ . Then the local structure of $\hat{M}$ is given by

the quotient space $\hat{\mathfrak{g}}/\mathfrak{g}_{1}$ . Let $\hat{N}$ be the totally geodesic symmetric submanifold
of $\hat{M}$ defined by the Lie triple system $\sqrt{-1}\mathfrak{g}_{-1-1}$ . Then the local structure of
$\hat{N}$ is given by the quatient space $\hat{t}/\mathfrak{g}_{11}$ . We here note that a totally geodesic
symmetric submanifold of $\hat{M}$ is obtained in this way from a totally geodesic
symmetric submanifold of $M$. Let $\hat{M}^{*}$ be the target space associated with the
congruence class $((\hat{M},\hat{g}),\hat{N})$ . The local structure of $\hat{M}^{*}$ is given by $(\hat{\mathfrak{g}},\hat{\tau})$ .

Lastly we list up the local structures of $M,$ $N,$ $\perp ff^{*}$ and $\hat{M},\hat{N},\hat{M}^{*}$ in the

form of quotient space. The local structures of $\hat{M},\hat{N}$ are the noncompact

duals of the local structures of $M$, $N$. Hence we do not describe the local
local structures of $\hat{M},\hat{N}$ in the following tables. Moreover we assume that $N$

is neither $M$ nor one point of $M$.
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Table II. (The case that $M$ is of exceptional type and not of group type.)

$|30|\frac{E_{6}^{1}/F_{4}^{1}}{E_{6}/sp(4)}\frac{\overline 1}{|su(6)/sp(3)}\frac{\overline{E_{6}^{1}/su^{*}(6)+su(2)}}{1E_{6}/F_{4}}|$
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$\prime 1^{\cdot}able$ III. (The case that $1\backslash f$ is of group type.)

Let 1 be a simple Lie algebra of noncompact type whose complexification $\mathfrak{l}^{}$

is also simple, and denote by $\alpha$ the conjugation of $\mathfrak{l}^{}$ with respect to 1. More-
over let $\mathfrak{h}$ be a maximal compact subalgebra of 1 and denote by $\beta$ the Cartan
involution of $\mathfrak{l}$ with respect to $\mathfrak{h}$ . The R-linear extension of $\beta$ to $\mathfrak{l}^{}$ is also
denoted by $\beta$ and the complexification of $\mathfrak{h}$ is denoted by $\mathfrak{h}^{C}$ . Then the pairs
$(\mathfrak{l}^{C}, \alpha),$ $(\mathfrak{l}^{C}, \beta)$ are irreducible symmetric Lie algebras of noncompact type and
they are associated with each other. These exhaust the case that $M$ is of
group type. Denote by $\mathfrak{l}_{u}$ the compact real form of 1.

$|\frac{86|\mathfrak{l}^{C}/\mathfrak{l}--------\frac{-\mathfrak{l}^{C}/\mathfrak{h}^{C}}{1\mathfrak{l}_{u}}---|^{1}}{871\frac{\mathfrak{l}^{C}/\mathfrak{h}^{C}1\mathfrak{l}^{C}/\mathfrak{l}}{\mathfrak{l}_{u}|\mathfrak{l}_{u}/\mathfrak{h}|\mathfrak{l}_{u}/\mathfrak{y}\oplus \mathfrak{l}_{u}/\mathfrak{h}}}\overline{|}$
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