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Introduction.

The notion of measuring actions of coalgebras on an algebra unifies the
notions of algebra automorphisms, of derivations and of higher derivations. In
this paper we examine such actions of a k-coalgebra $C$ on an Azumaya k-
algebra $A$ , where $k$ is a commutative ring. In (2.4) we show a 1-1 correspon-
dence between the set of measurings $C\rightarrow End$ $A$ and the set of certain right $C^{*_{-}}$

submodules of $C^{*}\otimes A$ . Using this result, we show a Noether-Skolem type

theorem (3.1): For example, if le is a field, then any measuring $C\rightarrow End$ $A$ is
inner for arbitrary $C$ and $A$ .

Throughout the paper we fix a commutative ring $k$ with 1. A linear map,
an algebra, a coalgebra, $\otimes,$ $Hom$ and End mean a k-linear map, a k-algebra, a
k-algebra, a k-coalgebra, $\otimes_{k},$ $Hom_{k}$ and $End_{k}$ , respectively. We fix an algebra
$A$ and a coalgebra C. $c*$ denotes $Hom(C, k)$ , the dual algebra of $C[9$ , Prop.
1.1.1, p. 9].

1. Preliminaries.

Let $\Delta,$
$\epsilon$ be the structure maps of $C$ and write

$\Delta(c)=\sum_{(c)}c_{(1)}\otimes c_{(2)}$ for $c\in C$ .

The k-module $Hom(C, A)$ is an algebra with the $*$-product [9, p. 69].

$Hom(C, A)^{x}$ denotes the group of units in $Hom(C, A)$ .

1.1. DEFINITION. A linear map $f$ : $C\rightarrow End$ $A$ is called a measuring, if $ a\mapsto$

$(c-\rangle f(c)(a)),$ $A\rightarrow Hom(C, A)$ is an algebra map, or equivalently if

$f(c)(1)=\epsilon(c)1$ ,

$f(c)(ab)=\sum_{(c)}f(c_{(1)})(a)f(c_{(2)})(b)$

for $c\in C,$ $a,$ $b\in A$ [ $9$ , Def. p. 138]. We denote by
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Meas ( $C$, End $A$ )

the set of measurings $C\rightarrow EndA$ .
For any $u\in Hom(C, A)^{\times}$ , the linear map inn $u:C\rightarrow End$ $A$ determined by

(1.2) inn $u(c)(a)=\sum_{(C)}u(c_{(1)})au^{-1}(c_{(2)})$
$c\in C,$ $a\in A$

is a measuring. Thus we have a map

(1.3) inn: $Hom(C, A)^{\times}-Meas$ ( $C$, End $A$ ).

1.4. DEFINITION (cf. [2, Def. 1.2, p. 674]). We write

Inn ( $C$, End $A$ ) $=the$ image of inn

and call an element of this set an inner measuring.

2. A 1-1 correspondence.

Throughout this section, let $A$ be an Azumaya algebra [6, p. 95]. Thus $A$

is a progenerator k-module and

(2.1) $A\otimes A\simeq End$ $A$ via $a\otimes b\leftrightarrow(x\rightarrow axb)$ .
Let $D$ be an arbitrary algebra. $Alg(A, D\otimes A)$ denotes the set of algebra

maps $A\rightarrow D\otimes A$ .

2.2. DEFINITION. $I(D\otimes A)$ denotes the set of right D-submodules $I$ of $D\otimes A$

such that
$\kappa;I\otimes A-D\otimes A$ , $\kappa(x\otimes a)=x(1\otimes a)$

is an isomorphism.

2.3. PROPOSITION. Let $A,$ $D$ be as above.
(1) Let $f\in Alg(A, D\otimes A)$ and define

$I_{f}=$ { $x\in D\otimes A|f(a)x=x(1\otimes a)$ for all $a\in A$ }.

Then $I_{f}\in I(D\otimes A)$ .
(2) Let $I\in I(D\otimes A)$ and suppose $\kappa^{-1}(1\otimes 1)=\Sigma_{i}x_{i}\otimes a_{i}$ . Define $ f_{I}\in$

$Hom(A, D\otimes A)$ by
$f_{I}(a)=\Sigma_{i}x_{i}(1\otimes aa_{i})$ , $a\in A$ .

Then $f_{I}$ is an algebra map.
(3) $f-I_{f}$ and $ I-\rangle$ $f_{I}$ establish $a$ 1-1 correspondence between $Alg(A, D\otimes A)$

and $I(D\otimes A)$ .

PROOF. We modify the proof of [6, Prop. 1.2, p. 107].
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Let $f(D\otimes A)$ denote the $k$-module $D\otimes A$ with the twisted A-bimodule structure
represented by

$f\otimes 1$ $1\otimes(2.1)$

$A\otimes A-D\otimes A\otimes A-D\otimes EndA\subset End(D\otimes A)$ .

Then $I_{f}$ is identified with the A-centralizer of $f(D\otimes A)$ . This, together with
[6, Cor. 5.3, p. 95], implies $I_{f}\in I(D\otimes A)$ .

$fi$ coincides with the composition of algebra maps

$A-End_{-D\otimes A}(I\otimes A)\rightarrow^{\sim}End_{-D\copyright A}(D\otimes A)=D\otimes A$ ,

where the first map is $a\mapsto(x\otimes b-\rangle x\otimes ab)$ and the second is $g$ }$\rightarrow\kappa\circ g\circ\kappa^{-1}$ . This is
a unique algebra map making $\kappa;I\otimes A\simeq f_{I}(D\otimes A)$ into an A-bimodule isomor-
phism, so we have

$f=f_{I_{f}}$ , $I=I_{f_{I}}$ . Q. E. D.

2.4. THEOREM. Let $A$ be an Azumaya algebra, let $C$ be a coalgebra and let
$D=C^{*}$ .

(1) There is $a$ 1-1 correspondence betwtten Meas ( $C$ , End $A$ ) and $I(D\otimes A)$ ,

which is given by $f\leftrightarrow 1_{f},$ $I-f_{I}$ in (2.3) through the natural identification
(2.5) Meas ( $C$ , End $A$ ) $=Alg(A, D\otimes A)$ .

(2) If $f\vdash\rightarrow I$ in (1), then $f$ is inner if and only if $I\simeq D$ as right D-modules.

PROOF. (1) By definition (1.1) we have Meas ( $C$ , End $A$ )$=Alg(A, Hom(C, A))$

by adjointness. Since $A$ is a finitely generated projective k-module, we have
$D\otimes A=Hom(C, A)$ . Thus we have (2.5). Then part (1) follows from (2.3) im-
mediately.

(2) We have the correspondences

inn $u-(a-u(1\otimes a)u^{-1})$ in (2.5)

$-uD$ in (2.3)(3)

for $h\in(D\otimes A)^{x}$ . If $h:D\rightarrow I,$ $I\in I(D\otimes A)$ , is a right D-module isomorphism with
$u=h(1)$ (so $I=uD$), then $u\in(D\otimes A)^{\times}$ , since we have the right $D\otimes A$-module iso-
morphism

$D\otimes A=D\bigotimes_{D}(D\otimes A)_{\vec{h\otimes 1}}\sim I\bigotimes_{D}(D\otimes A)\rightarrow\sim_{\kappa}D\otimes A$

sending $1\otimes 1$ to $u$ . Thus part (2) follows. Q. E. D.

2.6. FACT. Let $A,$ $C,$ $D$ be as in (2.4). Suppose $C$ is cocommutative. Then:
(1) Meas ( $C$ , End $A$ ) forms a group with respect to the $*$-product.
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(2) $f\rightarrow I_{f}$ in (2.3) induces an exact sequence of groups

$1-Inn$ ( $C$, End $A$ ) $-Meas$ ( $C$ , End $A$ )
$\underline{\phi}$

Pic $(D)$

and
${\rm Im}\phi=$ { $I\in Pic(D)|I\otimes A\simeq D\otimes A$ as right or left $D\otimes A$-modules},

where $Pic(D)$ is the Picard group of $D$ .

PROOF. As is easily verified, if $C$ is cocommutative (so $D$ is commutative),

then Meas( $C$ , End $A$ ) is a sub-monoid of $Hom$ ( $C$ , End $A$ ) and the natural bijection

Meas ( $C$ , End $A$ ) $=Alg(A, D\otimes A)\simeq End_{D-Alg}(D\otimes A)$

is a monoid isomorphism. Moreover since $D\otimes A$ is an Azumaya D-algebra, the
assertions follow from [6, Cor. 5.4, p. 95 and Prop. 1.2, p. 107]. Q. E. D.

3. A $Noether\cdot Skolem$ theorem.

3.1. THEOREM. Let $C$ be a coalgebra and let $D=C^{*}$ . Then any measuring
$C\rightarrow End$ A is inner for an arbitrary Azumaya algebra $A$ , if either

(a) $C$ is cocommutative and the Picard group $Pic(D)$ of $D$ is trivial,
(b) $k$ , the base ring, is artinian and $C$ is a flnitely generated k-module, $or$

(c) $k$ is a fleld (and $C$ is arbitrary).

PROOF in case (a). This follows from (2.6).

PROOF in case (b). By (2.4) we have only to show each $I\in I(D\otimes A)$ is iso-
morphic to $D$ as a right D-module. Multiplying a primitive idempotent, we may
assume $k$ is local artinian. Then $A$ is a free $k$ -module of finite rank, say $n$ .
We have

$I^{n}\simeq I\otimes A\simeq D\otimes A\simeq D^{n}$

as right D-modules, where $($ $)^{n}$ means the direct sum of $n$ copies of $()$ . Since
$D$ is right artinian, we can apply the Krull-Schmidt theorem to have $I\simeq D$ .

Q. E. D.

More generally, the conclusion of (3.1) holds true, if $k$ is the direct product
$\prod k_{i}$ of finitely many commutative rings $k_{i}$ such that all finitely generated
projective $k_{i}$-modules are free and if each $Dk_{i}$ is contained in the class $\Re$ de-
fined as follows. Let $\Re$ be the class of rings $R$ with 1 satisfying: A right R-
module $M$ is isomorphic to $R$ , if there exists $n\geqq 1$ such that $M^{n}\simeq R^{n}$ as right R-
modules. All right artinian rings are contained in $\Re$ .
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3.2. LEMMA. (1) If $ R/RadR\in\Re$ , then $ R\in\Re$ , where Rad $R$ is the Jacobson
radical of $R$ .

(2) $\mathfrak{N}$ is closed under possibly inflnite direct products.

PROOF. (1) This follows from [1, (2.12) Prop., p. 90].

(2) Let $R=\Pi R_{\lambda}$ . Suppose $M^{n}\simeq R^{n}$ . Then $M\simeq\Pi MR_{\lambda}$ , since so is $M^{n}=R^{n}$ .
Suppose $ R_{\lambda}\in\Re$ for all $\lambda$ . Then $MR_{\lambda}\simeq R_{\lambda}$ , since $M^{n}\simeq R^{n}$ implies $(MR_{\lambda})^{n}\simeq R_{\lambda}^{n}$ .
Thus we have

$M\simeq\Pi MMR_{\lambda}\simeq\Pi R_{\lambda}=R$

as right R-modules. Hence $R\in \mathfrak{N}$ . Q. E. D.

PROOF in case (c). By (3.2)(1), it is enough to show $ D/RadD\in\Re$ . By [5,

2.1.5. Prop. (a), p. 224], $D/RadD\simeq C_{0}^{*}$ , where $C_{0}$ is the coradical [9, Def., p. 181]

of $C$ . Since $C_{0}^{*}$ is a direct product of finite dimensional (simple) algebras [5,

p. 223], $ D/RadD=C_{0}^{*}\in\Re$ by (3.2)(2). Q. E. D.

3.3. REMARKS. (1) Sweedler [8, Thm. 9.5, p. 236] extended the classical
results of Noether-Skolem and of Jacobson to Hopf algebra actions. His result

cannot be covered by ours, unless $D=B$ in the notation of [8].

(2) Blattner and Montgomery [3, Thm. 2.15] prove a Noether-Skolem theo-
rem for Hopf-Galois extensions, generalizing [7, Thm. 6]. Their result follows
immediately from (3.1)(c), since, in their notation, an action of $H$ on $B$ trivial
on $Z$ gives rise to a Z-linear measuring $Z\otimes H\rightarrow End_{Z}B$ .
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