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SEQUENTIAL POINT ESTIMATION WITH BOUNDED
RISK IN A MULTIVARIATE REGRESSION MODEL

By

Tatsuya KUBOKAWA

For the coefficient matrix of the multivariate regression model,
consider the problem of finding an estimator with asymptotically
bounded risk. The paper proposes a sequential procedure resolving
the problem and investigates the asymptotic properties. Also it is
shown that if additional observations with the same coefficient
matrix are available, then the sequential estimator is improved on
by a combined procedure.

1. Introduction

Let x;, x;, --- be a sequence of mutually independent random vectors, x;
having p-variate normal distribution Ny(éa;, 2) where a; (rX1) is a known
vector and § (pXr), 2 (pXp) are unknown matrices. Denote X,=(x,, x,,
vy Xa), An=(ay, a,, -+, an)and w=(, 2). Then X, (pXn)has N, ,(§A.; 2, I[,),
being a multivariate regression model.

For a preassigned constant ¢>0, we consider the problem of finding an
estimator &, of the coefficient matrix & such that

(L.1) R(w, E)=E, [n ' tr Q. —8&)A, AL —&)]<e

for all w, where Q (pXp) is a positive definite matrix.

Throughout the paper, let m, be the smallest integer (=#) such that
rank(A,,)=r. In the case where % is known, for integer n (=m,), MLE of &
is given by

Eu(m)=Xn AL(AnAL)™
and from Muirhead (1982),

(1.2) R(o, &(n)=E,[n " {vec(éy(n)—&)} (A AsRQQ)Vec (§(n)—&)]
=n"'tr (4,A,QQ) Cov (vec &y(n))
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=n""tr(A, ALQQ){(A,AN'R2}
=nttrQY,

where the notation vec & denotes prx1 vector (&], ---, &)’ for&=(&,, ---, &,) and
A®B stands for kronecker product defined by (a.;B) for A=(a;;). Hence we
get that R(w, Eyn))<e if and only if n=rtr Q¥/e (=n*). Since Y is unknown,
there is no fixed sample size rule to achieve the goal.

For the univariate case, Rao (1973, pp. 486-487) provided a two-stage rule
solving the problem [(1.1) and multivariate extensions were given by Takada
(1988) and Kubokawa (1989, 90). When r=1 and a;=(1, ---,1) for each o,
Mukhopadhyay (1985) and Takada (1989) obtained three-stage and purely
sequential procedures satisfying

(1.3) lim,_,R(w, &)/e=1. (asymptotic constistency)

In the above multivariate regression model, we consider the purely sequ-

ential rule of the form

(1.4) N:Min{n_z_m; n= trQSn} ,

g(n—r)

where S,=X,(I,—AL(A, A" A)X, and m (=max {m,, r+1}) is the first sample
size. When ¢ is estimated by '

Ev=XnAW(AyvAy)™",
Section 2 demonstrates asymptotic consistency of &y and asymptotic efficiency of
N, that is,

(1.5) lim.. E[N]/n*=1.

The asymptotic expansions of E[N] and R(w, £y) are also developed based on
Woodroofe (1977). These are extensions of the results given by Takada (1989).
In Section 3, we assume that additional observations Y (pXx!) are taken
where Y has N, (§C; ¥, I,) with known design matrix C (»x!/), unknown posi-
tive definite matrix ¥ and the common coefficient matrix & Using information
of additional sample, we construct a combined estimator and prove, by the
method of Ghosh, Nickerson and Sen (1987), that it exactly dominates é‘ ~v. A
second order asymptotic comparison of their risks is presented in Section 4.

2. Asymptotic properties

THEOREM 2.1. The sequential procedure &y is asymptotically consistent for
pim—r)=3. The stopping number N given by (1.4) is asymptotically efficient.
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To prove the theorem, we need the following lemmas.

LEMMA 2.1. For integer n (Zm=m,), the pXp matrix S,=X,([,—
AWALAN A X, is written as

(2.1) Sa=3 T,

where Ty, -, T, satisfy the following conditions:

(a) Each T; is a statistic based on only x,,-,x;, that is, independent of
Xig1, "y Xne

(b)Y Tn,,Ta are independently distributed as Tu~W (2, m—r) and
Ti~W (2, 1) for i=m+1, -, n.

(€) (T, , Ty is independent of X,Ar.

PROOF. Let A,=(An-1,a), An_1=A, ar=a’(AA’)'a and

D 1 (A’(AA’)“‘aa’(AA’)“A ——A’(AA’)“a)
n .

T IHan\  _gra4)4 1
Then we can express S, as

Sa=Ss 1+ XaDrXs .
Further letting A,_.i1=(An_2,b), An_.=B, a,.,=b'(BB’)"'b and

B’(BB’)"'bb’(BB’)"'B —B'(BB"'b 0
— 1 __h -1
D”‘1“1+an-, b'(BB")'B 1 0],
0 0 0

we have S, =S,_.+X.D,_,X,;. By the same consideration, consequently, we
get

Sa= 3 XaD: X}

It can be shown that Dj=D; D;D;=0 (¢#j) and A,D;=0 for i=m, -, n
that rank (D,)=m—r, rank (D,)=1 for i=m+1,---,n. Letting Ti=X,D;X,
establishes Lemma 2.1.

LEMMA 2.2. Assume that p(m—r)/2>2>0 or A<0. Then (n*/N)* is uni-
formly integrable for 0<e<e, (specified).

PROOF. Consider the case of 1>0. We first have that for d,d>0,

(2.2) E[(n*/ Nt nuinrisa1] < d PE[(n*/ N ) +07
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where [;.; designates the indicator function, so that it is sufficient to show that
SUPocece, { E[(n*/ N)A+D ]} L oo, of Woodroofe (1977) gives that for
0<o<l,

PINZOn*]=0(gPm-7/2) as ¢—0.

[Woodroofe’s notations ¢, t., m, «, B, p, t%, Lo, A correspond to our &/r, N—r,

m—r, 2, 1, tr Q2, 2tr(Q2X), r, n* respectively.] Hence for 0<e<e,,

(2.3) E[(n*/N)X(H";)]éE[(n*/N)Z(Hé)[[Nson‘ﬂ+0—2(14-5)
é(n*/m>z(1+5)P[N§0n*]+ 0-2(1+5)
ngp(m—r)/2-Z(1+5)+0—2(l+6)
§K83<m+r)/2—,2(1+6)+0-2(1+5) ,

where K is a constant independent of . The fourth inequality in follows

from the fact that there exists a positive d satisfying p(m—r)/2—A(1—6)=0,

which always holds if p(m—r)/2> 4.

When 4<0, from Lemma 2.1, note that tr QS,=3"~, tr Q7;. Here trQT;
=tr W, 3'2Q2X"* for W,=X"12T, 32, W,~W,(I,m—r) and for i=m+1, -, n,
Wi~W,(I,1). Denote diag(ag,, --,0,)=H’3'?QX"*H for some orthogonal
matrix . From the Bartlett’s decomposition, we have

(2.4) tr QT,= ﬁl oW,
2

where W, .-, W,, are mutually independent random variables, W o y~%% _» and
for i=m+1,---,n, W ;~¥2. Then,

n p 14
(2.5) tr QS,= igm jzzlajWi,:jglan}"‘” ,
where Q" " =3X7,W;; having X%2_.. Also from the definition of N,
(2.6) N< oy i QSwaslewzmen+14m.

Let 7=—A(140). In the rhs of the inequality [2.2), from [2.5) and [2.6), we can
see that for 0<e<e,,

ELN/n*Y]<EL{(tr Q3)" £ 0@ "2 /(N—=r—Dewamsir-+(1+m)/ )]
< 5 CELIQSY " /(N=r =Dl Ity sman]+Cosi

<X CjE[:SUpnzm{Q;n—r)/(n_r)}t]+C055 ’

=
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where C,, C,, -, C, are constants independent of . The Doob’s maximal in-
equality for reversed martingale sequence {Q{" "/(n—7)}n2m gives that
E[supn:m {Q§" 7 /(n—7r)}7]<co. Therefore the uniform integrability of (n*/N)A
is completely proved.

PROOF OF THEOREM 2.1 Denote by &, the o¢-algebra generated by
Twm, -, Tn given in Lemma 2.1. Similar to the risk function of &y is
represented as

R(,4x)= 3 n"" tr (A, AR®Q)EL(vec &n—vec §)(vec £u—vec §) Iev-ni] -
Since &, and (T, -+, Tw) are independent by Lemma 2.1, we have
E[(vec &,—vec &)(vec &, —vec &) Iry-ni]

=E{Itn-n1E[(vec é,—vec &)(vec &, —vec &) | F,]]
=E[Ity=n1Cov (vec &,)]
={(A, A" Q2}E[INn=n1],

which yields that

2.7) R(@, év)= 3 rn' tr QTE[Iey-ny)=¢E[n*/N1.

Since n*/N—1 a.s. as ¢—0, applying Lemma 2.2 with A=1 proves that R(w, v
/e—1 as e—0. The asymptotic efficiency of N is trivial from and
the proof is complete.

shows the first order asymptotic efficiency and consistency.
More detailed, the second order asymptotic expansions for E[N ] and R(w, &x)
are presented based on Woodroofe (1977).

THEOREM 2.2. For p(m—r)=bh,

B vt (QI)
2.8) ELNI=n* 4 b~ 65 +olD),
s, & qtr (Q2) v R
(2.9) Rlo, EN)_s+r tr QZ{ (tr QX tr QZ}+0(S )

where v is defined by (2.4) in Woodroofe (1977).

The expansion [2.8] is from Woodroofe (1977). Note that n*/N=
(N—n*?/(n*N)—N/n*+2 and that (N—n*)N"12-N(, 2tr (Q2)*/(tr QX)*) as
e—0. Hence can be derived by combining (2.7), and the following
lemma.
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LEMMA 2.3. Assume that 0<A<p(m—r)/2. Then (|N—n*|/N'*}* is uni-
formly integrable.

Proor. First, observe that for d, §>0,
E[(IN=n*|/N**PIcq v -nxi/n1/273>01]
SdPE[(| N—n*| /N2 o]
<A E[(n*/NYHDJEL{ | N—n*|/(n¥)/2}pacsd ] ue,

From Lemma 2.2, (n*/N)Y29*® is uniformly integrable for some >0 under the
condition 0<A< p(m—r)/2. Also, Theorem 2.3 of Woodroofe (1977) demonstrates
that {( N—n*)?/n*}20+® is uniformly integrable under the same condition. Hence
there exists some constant M independent of ¢ such that

E[(n*/NYRODTE[{| N—n*|/(n*)!/2} 220+ ]< M
for 0<e<e,, which establishes Lemma 2.3

3. Improving on the sequential procedure when an additional
sample is available

In this section, we discuss two-sample problem. Assume that for the prin-
cipal estimation of &, sample «x,, ---, xy is obtained based on the sequential
sampling rule in Section 2, each x; having Npy(fa; 2). We further assume
that supplementary observations Y (pX/) are taken where Y has N, (§C; ¥, I,)
with known matrix C (»X!), unknown positive definite matrix ¥ and the com-
mon coefficient matrix & Using information of the additional sample, we want
to construct an estimator superior to éN.

The problem of estimating the common parameters in the fixed sample size
case has been studied by several authors. [For the brief bibliography, see Kubo-
kawa (1988).] Since MLE based on only Y is &, =YC/(CC’)!, we consider a
combined estimator of &y and &, of the form

3.1) Exa, by=éxy+a(l+Ru)E—En),

where
Ry=btr AyA¥(CC)Y ' tr QT /(rvy),

vy=tr QSy/{3(N—1)},
T=Y(,—C(CC)'C)Y’,

and a, b are positive constants.
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THEOREM 3.1. Assume that a<min{l, 20 —r—4)b}. Then R(w, £éx(a, )<
R(w, éy) for all w.

PrROOF. By using Lemma 2.1, the risk difference is written as

(3.2)  A=R(w, éy)--R(w, £x(a, b))

___ 2ar a? s
‘E[mt S )2{ trQI+ tr(ANA XCC) trny}]

=artr QYE[N"{2(14+0yUy)*—a(l+0x)1+0yUx)?%],

where

(B.3) On=tr AyANCCH ' tr QU /(rtr QF), Un=b(tr QX)tr QT)/(vy tr Q¥).
Here by the inequality of Kubokawa (1988),

2 (l+0N)a
4 U
(34) CE 0Ty Aty 1T aa2UF e,
which yields that A=0 for all e if
_ tr Q¥ tr Q¥
(3.5) E[g(N)N {21) S OT trQT) uN/a}];o for all o,

where g(n)=(1+80,a)"* and o=tr QX. Similar to [2.5),

Eltr Q¥/tr QT] _ E[(ZPumaw)™'] Elw3']
(3.6 Efter QU6 Q7] ~ B any ™ = Brwrs))
where w;, -+, w, are mutually independent random variables, each w; having
X;-, and %, ---, 9, are parameters satisfying >%,%;=1 and %;>0, i=1, ---, p.

Here the inequality in follows from theorem 2.2 of Bhattacharya (1984).
From the condition a<2(/—r—4)b and the fact that E[w7']/E[w3%]=]—r—4,
the inequality holds if E[g(N)N 'vy(l—vy/0)]1=0 for all w, which is
rewritten as

3.7) 3 g(MEn wa(l—va/0  y-ni]Z0  for all .

To prove [(3.7), the arguments used in Ghosh, Nickerson and Sen (1987) are
available. Let n, denote the smallest integer (=m) such that en(n—r)/{3r(n—1)}
=>a. It should be noted that n, is uniquely determined. Then we write

the lhs of

38) =3 gME[Fvsl=va/Oexens |+ 8OE[ T0a(1=00/ Dlewanei]]
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+ 3 {g(n+1)E[

+1 Vp(1— vn+1/0)I[N>n+1]]

— g B[ 1 va(1—va/ ) evznsn|}

where the first term in the rhs of (3.8) should be interpreted as zero if ny=m
Note that for n=n,, on the set {N=n+1}, v,>en(n—r)/{3r(n—1)} =0¢. Since
g(n) is nonincreasing,

third term in the rhs of (3.8)

1
+1

Note that Ity.n+i1 1S @ F,-measurable function. Also from LCemma 2.1, v, =
(n—Dn"'v,+@Bn)'u for u=tr QTn,,. Then,

> 3 g<n+1)E[{

n=ny

1
Vsl Vass/ )= —-0n1=va/ D} ewansus

39 E[{yvanl=vnn/0)— —ad =/ ewsnsnl F4

1 —1 1
:1[N2n+13|:h{%’“vn+ %“E[u]}

n+1
1 yn—1 2(n—1) 4 11 1.
AT )i+ 3w UnElultg E[ b=t ”]
3n—1 , 8n—2 n—1
gI[Nerl][;zGl—_;I)—vn/o—3n2(n+1) Vot 3n2(n+1)a]

since E[u]=o0 and E[u?]<30% Note that the multiple of I;x..4+:7 in the ex-
treme rhs of (3.9) is a convex function of v,, where the minimum occurs at
v.=@n—-1)e/{3(3n—1)} (<o). Here, recalling that on the set {N=>n+1}, v,>0,
it follows that

extreme rhs of (3.9)

3n—1 8n—2 n—1 ]

:\—:[[N2n+1][n2<n+1) ”an(n_'_l) +3nz(n+1) ag

=0.
Next, note that [;y.,3=1 with probability 1 and that
(3.10) Elvu(l-=vn/0)]=E[vn]—E[vh]/0
m—r (m—r)(m— r+2)

\ e

“3m—1%"  (Bum—D}?
=(m—7r)2m+r—5)a/{¥m—1)*}

=0.
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Thus, if n,=m then the first two terms in the rhs of (3.8)=0. For n,>m, first
note that for n<n,—1, on the set {N=n}, v,<en(n—r)/{3r(n—1)}<o. Then
the first two terms in the rhs of (3.8)

ng-1
G 20| % Eln0a(1—v0/)ewens] +Eln5 a1 =vay/ lewniil}
Since vp,=(ne—2)(1ne—1)"Way-1+{3(ne—1)} * tr QT;,, it can be seen that
(3'12) E[nglvno(l_vno/o)IENznoJ| gno—ljz—. {anovno—l—bnov%o—l/a+acno}I[NZﬂo]

%bnovno—1(1—vn0~1/0)IENzno] »

where  a,,=(3n,—5)(n,—2)/{3(ne—1)ns}, ba,=(no—2)"/{(no—1)*ne} and c,,=
=(no—2)/{3ndne—1}. If E[vn,-:(1—vny-1/0)1n20y3] 20, noting again that v,<g
on the set {N=n} for all n<n,—1, we prove that the rhAs of (3.11)=0. Other-
wise using the fact that b,,<1/(n,—1), we get from (3.12) that

the rhs of (3.11) 2g(no){ S Eln"*va(l—va/0)cxans]

+E[(no“1)_11)7:0-1(1—‘Uno—l/o')I[Nzno—ﬂ] .
Proceed inductively to get
the rhs of (3.11) =Zgm)E[m 'vp(l—v,/06)]=0
as shown earlier, and the proof of is complete.

4. Asymptotic risk expansion

Now we reveal the asymptotic risk expansion of €x(a, b) and asymptotically
compare the risks of £y and &x(a, b).
From (3.2), the risk difference is written as

4.1) A=—c¢%a(r tr Q) 'E[(n*/N)*Px],

where Py=N{a(l4+0x)1+05Uy)2—2(14+0xU x)'}. Then the following lemma
is essential for our purpose.

LEMMA 4.1, Assume that n'A,A,—R2>0 as n—oco. If p(m—r)>8 and
[—r>8, then (n*/NYPNQ1+0x)1+60xUx)"? and (n*/NXENA+65U )™t are uni-
formly integrable for 0<e<e,.

PROOF. Put Zy=N{1+0x)(1+80x5Uy)"%. Observe that for d, 6>0,
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4.2) E[(n*/NYZ yI;cnninrezy>ar] < d PE[(n*/ NP Z 0]
éd—é{E[(n*/N)4(l+5)]E[Z%V(1+5):|}1/2 .
Since (n*/N)*@+® is uniformly integrable under the condition p(m—r)>8 by

Lemma 2.2, there exists some constant M, independent of e such that
E[(n*/N)*+d7< M, for 0<e<e, Also,

1405 \1+0Ux/ =146y
Noting that 6,—c and 8,/n—tr Q(CC’)"'tr (Q¥)/(r tr Q) as n—co, We can
take a constant M, such that

(4.3) Zy

(1+51;)2U .

(4.4) n(1+6,) 1+ 6 M, for all n=m.

Since vy=(N—r){3(N—1)} '22.,0,;{Q¥~"/(N—r)} by [2.5), we obtain from (4.3)
and [(4.4) that

(4.5) E[Z%+0]< jé C;E[(tr QT) @+ E[ sgp{Q}"‘”/(n-—r)}“”‘”]

for constants C, independent of ¢. From the proof of it is seen
that the rhs of is finite for 0<<e<e, under the condition /—r>8. Hence
the uniform integrability of (n*/N)*Zy holds. Similarly we can show the uni-
form integrability of (n*/N):EN(1+605Un)™".

Note that (n*/N)*—1 a.s. and

rtr QY [ tr QU \e trQVU
(3b) tr Q(CC/) ' tr Qm“(tr QT> ”thr QT }

as ¢—>0. Then from Lemma 4.1, we get

Py —>

THEOREM 4.1. Assume that n'A,A,—2>0 as n—ooo. If p(m—r)>8 and

[—r>8, then
R(w, éx(a, b)=R(w, &x)
2 QYT \2 QU
Te (3b)% tr .Q(CaC’)‘l tr Q?{GE[C: QT) ]_ GbE[g QT]}+0(€2)-

From and the inequality [3.6), we can see that x(a, b) asymp-
totically dominates £y if a<6(/—»—4)b. In the univariate case [p=r=1, a;=1,
R=1, Y=¢a? C=(, -+, 1), ¥=¢*], Theorems 2.2 and give that

R(w, Xy)=E,[(Xy—8]=e+c*0 Hd—vo*)+n(e?).

al{a—6(—5)b}

R, &nta, )=R(@, Xu)+e' g a5

+o(e?).
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