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ON REAL HYPERSURFACES OF A COMPLEX SPACE
FORM WITH $\eta$-PARALLEL RICCI TENSOR

By

Young Jin SUH*

Introduction.

Let $M_{n}(c)$ denote an n-dimensional complex space form with constant holo-
morphic sectional curvature $c$ . It is well known that a complete and simply
connected complex space form consists of a complex projective space $CP^{n}$ , a
complex Euclidean space $C^{n}$ or a complex hyperbolic space $CH^{n}$ , according as
$c>0,$ $c=0$ or $c<0$ . In this paper we consider a real hypersurface $M$ of $CP^{n}$

or $CH^{n}$ .
The study of real hypersurfaces of $CP^{n}$ was initiated by Takagi [10], who

proved that all homogeneous hypersurfaces of $CP^{n}$ could be divided into six
types which are said to be of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ and $E$ . Moreover, he
showed that if a real hypersurface $M$ of $CP^{n}$ has two or three distinct con-
stant principal curvatures, then $M$ is locally congruent to one of the homo-
geneous ones of type $A_{1},$ $A_{2}$ and $B$ ([11]). Recently, to give another charac
terization of homogeneous hypersurfaces of type $A_{1},$ $A_{2}$ and $B$ in $CP^{n}$ Kimura
and Maeda [6] introduced the notion of an $\eta$ -parallel second fundamental form,

which was defined by $g((\nabla_{X}A)Y, Z)=0$ for any vector fields $X,$ $Y$ and $Z$ ortho-
gonal to the structure vector field $\xi$ , where $A$ means the second fundamental
form of $M$ in $CP^{n}$ , and $g$ and $\nabla$ denote the induced Riemannian metric and
the induced Riemannian connection, respectively.

On the other hand, real hypersurfaces of $CH^{n}$ have also been investigated
by many authors (Berndt [1], Montiel [8], Montiel and Romero [9]).

Using some results about focal sets, Berndt [1] proved the following.

THEOREM A. Let $M$ be a connected real hypersurface of $CH^{n}(n\geqq 2)$ . Then
$M$ has constant principal curvatures and $\xi$ is principal if and only if $M$ is locally
congruent to one of the following.
$(A_{0})$ a horosphere in $CH^{n}$ .
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$(A_{1})$ a geodesic hypersphere or a tube over a complex hyperbolic hyperplane
$CH^{n-1}$ .

$(A_{2})$ a tube over a totally geodesic submanifold $CH^{k}$ for $k=1,$ $\cdots$ , $n-2$ .
$(B)$ a tube over a totally real hyperbolic space $RH^{n}$ .

It is necessary to remark that real hypersurfaces of type $A_{0}$ or $A_{1}$ appear-
ing in Theorem $A$ , are totally $\eta$ -umblical hypersurfaces with two distinct con-
stant principal curvatures. In the paper of Montiel [7] the real hypersurface

of type $A_{0}$ in Theorem A is said to be self-tube.
In \S 3 we also consider the $\eta$ -parallel second fundamental form in $CH^{n}$ and

give a further characterization of type $A_{0},$ $A_{1},$ $A_{2}$ , and $B$ in $CH^{n}$ . Now we
introduce the notion of an $\eta$ -parallel Ricci-tensor of $M$ in $M_{n}(c),$ $c\neq 0$ , which is
defined by $g((\nabla_{X}S)Y, Z)=0$ for any $X,$ $Y$ , and $Z$ orthogonal to $\xi$ , where $S$ is
the Ricci-tensor of $M$ in $M_{n}(c),$ $c\neq 0$ . It is easily seen that if the second funda-
mental form is $\eta$ -parallel, then so is the Ricci-tensor, under the condition such
that $\xi$ is principal. Thus the purpose of this paper is to investigate this con-
verse problem. By using the classification theorem due to Takagi [10] and
Kimura and Maeda [6], we get the following.

THEOREM B. Let $M$ be a real hypersurface of $CP^{n}$ . Then the Ricci-tensor

of $M$ is $\eta-$])$arallel$ and $\xi$ is principal if and only if $M$ is locally congruent to one
of homogeneous real hypersurfaces of type $A_{1},$ $A_{2}$ and $B$ .

By applying the Theorem A we can also prove the following.

THEOREM C. Let $M$ be a real hypersurface of $CH^{n}(n\geqq 2)$ . Then the Ricci-
tensor of $M$ is $\eta$ -parallel and $\xi$ is principal if and only if $M$ is locally congruent

to one of type $A_{0},$ $A_{1},$ $A_{2}$ and $B$ .

\S 1. Preliminaries.

Let $M$ be a real hypersurface of a complex n-dimensional complex space
form $M_{n}(c)$ , and let $C$ be its unit normal vector field. Since $M_{n}(c)$ admits an
almost complex structure, let us denote by $F$ its almost complex structure. For
any tangent vector field $X$ and normal vector field $C$ on $M$, the transformations
of $X$ and $C$ under $F$ can be given by

$FX=\phi X+\eta(X)C$ , $ FC=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$ of
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$M$, while $\eta$ and $\xi$ denote a l-form and a vector field on a neighborhood of $x$ in
$M$, respectively. In which it is seen that $g(\xi, X)=\eta(X)$ , where $g$ denotes the

induced Riemannian metric on $M$ . By the properties of the almost complex

structure $F$, they satisfy the following

(1.1) $\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. The set of tensors $(\phi, \xi, \eta, g)$ is
called an almost contact structure on $M$.

Furthermore, the covariant derivatives of the structure tensors are given by

(1.2) $(\nabla_{X}\phi)Y=\eta(Y)AX-g(AX, Y)\xi$ , $\nabla_{X}\xi=\phi AX$,

where $\nabla$ is the induced Riemannian connection of $g$ and $A$ denotes the shape

operator with respect to $C$ on $M$.
Since the ambient space $M_{n}(c)$ is of constant holomorphic sectional curva-

ture $c$ , the equation of Gauss and Codazzi are respectively given as follows:

(1.3) $R(X, Y)Z$

$=c\{g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z\}/4$

$+g(AY, Z)AX-g(AX, Z)AY$ ,

(1.4) $(\nabla_{X}A)Y-(\nabla_{Y}A)X=c\{\eta(X)\phi Y-\eta(Y)\phi X-2g(\phi X, Y)\xi\}/4$ ,

where $R$ denotes the Riemannian curvature tensor of $M$ and $\nabla_{X}A$ denotes the

covariant derivative of the shape operator $A$ with respect to $X$.
The Ricci-tensor $S^{\prime}$ of $M$ is the tensor of type $(0,2)$ given by $S^{\prime}(X, Y)=$

$tr\{Z\rightarrow R(Z, X)Y\}$ . Also it may be regarded as the tensor of type $(1, 1)$ and

denoted by $S:TM\rightarrow TM$ ; it satisfies $S^{\prime}(X, Y)=g(SX, Y)$ . From (1.3) we see
that the Ricci tensor $S$ of $M$ is given by

(1.5) $S=c\{(2n+1)I-3\eta\otimes\xi\}/4+hA-A^{2}$ ,

where we have put $h=TrA$ . The covariant derivative of (1.5) are given as
follows

(1.6) $(\nabla_{X}S)Y=\frac{c}{4}\{-3(\nabla_{X}\eta)(Y)\xi-3\eta(Y)\nabla_{x}\xi\}+(Xh)AY+h(\nabla_{x}A)Y-(\nabla_{X}A^{2})Y$ .

The Ricci-tensor on the real hypersurface of $M_{n}(c),$ $c\neq 0$ , is said to be $\eta-$

parallel if it satisfies $g((\nabla_{x}S)Y, Z)=0$ for any tangent vector fields $X,$ $Y$ , and
$Z$ in $\xi^{\perp}$ . In the sequel, assume that the hypersurface $M$ is with $\eta$-parallel

Ricci-tensor. Thus for any $X,$ $Y$ , and $Z$ in $\xi^{\perp},$ $(1.6)$ gives

(1.7) $g((\nabla_{X}S)Y, Z)=(Xh)g(AY, Z)+hg((\nabla_{X}A)Y, Z)-g((\nabla_{X}A^{2})Y, Z)=0$ .
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It follows from (1.7) that if $\xi$ is principal and if the second fundamental form
is $\eta$ -parallel, then the Ricci-tensor is $\eta$ -parallel.

\S 2. Certain lemmas.

Let $M$ be a real hypersurface of a complex space form $M_{n}(c),$ $c\neq 0$ . The
shape operator $A$ of $M$ can be considered as a symmetric $(2n-1,2n-1)$-matrix.
Now we suppose that the structure vector $\xi$ is a principal curvature vector of
$A$ , that is, $ A\xi=\alpha\xi$ , where $\alpha$ is the principal curvature corresponding to $\xi$ .

Then the covariant derivative gives

$(\nabla_{x}A)\xi=(X\alpha)\xi+\alpha\phi AX-A\phi AX$ ,

where we have used the second formular of (1.2). Thus it follows that

(2.1) $g((\nabla_{X}A)Y, \xi)=(X\alpha)\eta(Y)+\alpha g(Y, \phi AX)-g(Y, A\phi AX)$ ,

for any tangent vector fields $X$, and $Y$ on $M$. By using the equation of Codazzi
to (2.1) and using the fact $X\alpha=(\xi\alpha)\eta(X)$ , we have

(2.2) $2A\phi AX-c\phi X/2=\alpha(\phi A+A\phi)X$.
We now introduce the following fact without proof.

LEMMA 2.1. ([3]) Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . If $\xi$ is a
principal curvature vector of $A$ , then its principal curvature $\alpha$ is locally constant.

REMARK. Maeda [7] proved that $\alpha$ is constant for the real hypersurface
of $CP^{n}$ .

Since $CP^{n}$ has constant holomorphic sectional curvature $c=4$ , (2.2) gives
the following.

LEMMA 2.2. ([7]) Let $M$ be a real hypersurface of $CP^{n}$ . Assume that $\xi$ is
a principal curvature vector and the corresponding principal curvature is $\alpha$ . If
$AX=\lambda X$ for any $X$ in $\xi^{\perp}$ , then $A\phi X=((\alpha\lambda+2)/(2\lambda-\alpha))\phi X$.

\S 3. Real hypersurfaces of $CH^{n}$ with $\eta$-parallel second fundamental form.

It is well known that the complex hyperbolic space $CH^{n}$ admits the Berg-
mann metric normalized so that the constant holomorphic sectional curvature $c$

is $-4$ .
Thus (2.2) gives the following equation for the real hypersurface of $CH^{n}$

whose structure vector field $\xi$ is principal.
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(3.1) $2A\phi AX+2\phi X=\alpha(\phi A+A\phi)X$

for any tangent vector field $X$ in $M$. It follows that if $AX=\lambda X$ for any $X$ in
$\xi^{\perp}$ , then

(3.2) $(2\lambda-\alpha)A\phi X=(\alpha\lambda-2)\phi X$ .
Now we need the following lemmas which will be used in the later.

LEMMA 3.1. (Montiel and Romero [9]) Let $M$ be a real hypersurface of $CH^{n}$ .
Then

(3.3) $A\phi=\phi A$ holds on $M$ if and only if $M$ is of type $A_{0},$ $A_{1}$ or $A_{2}$ .

LEMMA 3.2. Let $M$ be a real hypersurface of $CH^{n}$ . Then

(3.4) $ A\phi+\phi A=k\phi$ ( $k\neq 0$ : constant) holds on $M$ if and only if $M$ is of type $A_{0},$ $A_{1}$

or $B$ .

PROOF. From (3.4) we have that $ A\xi=\alpha\xi$, that is, $\xi$ is the principal curva-
ture vector. If $AX=\lambda X$ for any $X$ in $\xi^{\perp}$ , then $A\phi X=(k-\lambda)\phi X$.

By Lemma 2.1 $\alpha$ is constant. Thus we can consider the following two
cases: $\alpha^{2}-4\neq 0$ and $\alpha^{2}-4=0$ .

For $\alpha^{2}-4\neq 0$ we then have $2\lambda-\alpha\neq 0$ by (3.2). Thus also from (3.2) it fol-
lows that $k-\lambda=(\alpha\lambda-2)/(2\lambda-\alpha)$ . Hence it follows that $2\lambda^{2}-2k\lambda+\alpha k-2=0$ .
Since $\lambda$ satisfies the above quadratic equation with constant coefficients, all
principal curvatures are constant on $M$. Thus due to Theorem $A,$ $M$ is of type
$A_{1},$ $A_{2}$ or $B$ . Suppose that $M$ is of type $A_{2}$ . By Lemma 3.1 $A\phi=\phi A$ holds on
$M$. This fact and (3.4) imply $ 2A\phi=k\phi$ . Thus from the almost contact struc-
ture it follows that $ A=aI+b\eta\otimes\xi$ , that is, $M$ is totally $\eta$ -umblical. Then it is
seen by Montiel and Romero [9] that $M$ is of type $A_{0}$ or $A_{1}$ , a contradicts.
Thus the type of $A_{2}$ can not occur.

Now we consider for the case $\alpha^{2}-4=0$ . Let $M_{0}=\{x\in M|(2\lambda-\alpha)_{x}\neq 0\}$ .
Then $\lambda$ also satisfies $2\lambda^{2}-2k\lambda+\alpha k-2=0$ . Thus $\lambda$ is constant on $M_{0}$ . On the
other hand, we have $2\lambda-\alpha=0$ on $M-M_{0}$ . Then (3.2) gives $\alpha\lambda=2$ . Thus $\lambda=$

$\pm 1$ on $M-M_{0}$ .
The continuity of principal curvatures implies that if the set $M-M_{0}$ is not

empty, then $\lambda=\pm 1$ on $M$. Hence $M$ is of type $A_{0}$ .
For the case where $M_{0}$ coincides with the whole $M$ , it is of type $A_{1},$ $A_{2}$ or

$B$ and therefore it must be of type $A_{1}$ or $B$ by the same argument as that of
the above half, a contradiction.

Conversely, suppose that $M$ is of type $A_{0},$ $A_{1}$ or $B$ . It is seen by Montiel
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and Romero [9] that the type of $A_{0}$ and $A_{1}$ are the only totally $\eta$ -umblical real
hypersurfaces of $CH^{n}$ . Thus it naturally satisfies $ A\phi+\phi A=k\phi$ .

For the type of $B$ we can take an orthonormal basis $\{X_{1},$
$\cdots,$ $X_{n-1},$ $\phi X_{1},$ $\cdots$ ,

$\phi X_{n- 1},$ $\xi$ } of $T_{x}(M)$ such that $AX_{i}=\coth\theta X_{i},$ $A\phi X_{i}=\tanh\theta\phi X_{i},$ $i=1,$ $\cdots,$ $n-1$ ,

and $ A\xi=2\tanh 2\theta\xi$ . Then we have $A\phi X+\phi AX=(\tanh\theta+\coth\theta)\phi X$ for any $X$

in $T_{x}(M)$ . Thus we complete the above lemma.

LEMMA 3.3. Let $M$ be a real hypersurface of $M_{n}(c),$ $c\neq 0$ . If the structure
vector field $\xi$ is principal and if the second fundamental form $A$ satisfies the fol-
lowing quadratic formula:

(3.5) $A^{2}+aA+cI=0$ ( $a^{2}-4b\neq 0,$ $a,$
$b$ : constant) on $\xi^{\perp}$ ,

then the second fundamental form $A$ is $\eta$-parallel.

PROOF. By taking covariant derivative of (3.5), we get

(3.6) $g((\nabla_{X}A)AY, Z)+g(A(\nabla_{X}A)Y, Z)+ag((\nabla_{X}A)Y, Z)=0$

for any $X,$ $Y$ , and $Z$ in $\xi^{\perp}$ .
Taking the skew-symmetric part of (3.6) and using the equation of Codazzi,

we have
$g((\nabla_{x}A)AY, Z)=g((\nabla_{Y}A)AX, Z)$ ,

from which together with $g(AX, (\nabla_{Z}A)Y)=g((\nabla_{Z}A)AX, Y)=g((\nabla_{X}A)AZ, Y)$ , we
get

(3.7) $g((\nabla_{X}A)AY, Z)=g(A(\nabla_{X}A)Y, Z)$

for any $X,$ $Y$ , and $Z$ in $\xi^{\perp}$ , where we have used the fact that $\xi^{\perp}$ is invariant
under the transformation of $A$ because $\xi$ is the principal curvature vector.

Combining (3.6) and (3.7), we obtain for any $X,$ $Y$ , and $Z$ in $\xi^{\perp}$

(3.8) $2g(A(\nabla_{X}A)Y, Z)+ag((\nabla_{X}A)Y, Z)=0$ .
Transforming (3.8) with $A$ and using (3.5) again, we get

(3.9) $2bg((\nabla_{X}A)Y, Z)=-ag(A(\nabla_{X}A)Y, Z)$ .

From which, substituting into (3.8), we have

(3.10) $g(A(\nabla_{X}A)Y, Z)=0$ ,

where we have used the fact a $-4b\neq 0$ . Thus (3.9) gives $g((\nabla_{x}A)Y, Z)=0$ for
$b\neq 0$ .

For the case where $b=0$, $a^{2}-4b\neq 0$ implies $a\neq 0$ . From which together
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with (3.8) and (3.10) it follows that $g((\nabla_{X}A)Y, Z)=0$ for any $X,$ $Y$ and $Z$ in $\xi^{\perp}$ .
Hence we get the above lemma.

These Lemmas 3.1, 3.2 and 3.3 and Theorem A enable us to prove the fol-
lowing.

THEOREM 3.4. Let $M$ be a real hypersurface of $CH^{n}$ . Then the second

fundamental form of $M$ is $\eta$ -parallel and the structure vector field $\xi$ is principal

if and only if $M$ is locally congruent to one of type $A_{0},$ $A_{1},$ $A_{2}$ or $B$ .

PROOF. First we shall show that the second fundamental form of type $A_{0}$ ,
$A_{1},$ $A_{2}$ or $B$ is $\eta$ -parallel.

Now let $M$ be a of type $A_{0},$ $A_{1}$ or $A_{2}$ . Then by Lemma 3.1 $A\phi=\phi A$ holds
on $M$ . Thus $\phi A\xi=0$ implies that $\xi$ is principal, that is, $ A\xi=\alpha\xi$ . From which
and (3.1) it follows that

$A^{2}-\alpha A+I=0$ on $\xi^{\perp}$ .

Thus Lemma 3.3 gives that the second fundamental form is $\eta$-parallel for the
case $\alpha^{2}-4\neq 0$ . For the case where $\alpha^{2}=4$ all the principal curvatures $\lambda$ are $\pm 1$ .
Thus $M$ is of type $A_{0}$ and totally $\eta$ -umblical. Hence the second fundamental
form is also $\eta$ -parallel in this case.

Now we consider that $M$ is of type $B$ . Then by Lemma 3.2 $ A\phi+\phi A=k\phi$

( $k\neq 0$ : constant) holds on $M$. From which we also get $ A\xi=\alpha\xi$ . Thus from
(3.1) it follows that

$A^{2}-kA-(1-\alpha k/2)I=0$ on $\xi^{\perp}$ .

On the other hand, due to Berndt’s classification [1] all the principal cur-
vatures of type $B$ are given as follows: $\lambda=\coth\theta,$ $\mu=\tanh\theta,$ $\alpha=2\tanh 2\theta$ .
Since $\lambda+\mu=2\coth 2\theta=4/\alpha,$ $ A\phi+\phi A=k\phi$ implies $ k=4/\alpha$ . Hence we conclude
that $k^{2}+4(1-\alpha k/2)\neq 0$ . Hence by Lemma 3.3 we also get our result.

Conversely, it suffices to show that all the principal curvatures are constant
on $M$. If $AX=\lambda X$ for any $X$ in $\xi^{\perp}$ , then $g((\nabla_{Y}A)X, X)=(Y\lambda)g(X, X)$ . Thus
from the assumption we have that $Y\lambda=0$ for any $Y$ in $\xi^{\perp}$ .

On the other hand, using equation of Codazzi and making use of (2.1) and
Lemma 2.1, we get the following.

$\xi\lambda=g((\nabla_{\xi}A)X, X)=g((\nabla_{X}A)\xi, X)=0$ .

From these facts and Theorem $A$ , we conclude that $M$ is of type $A_{0},$ $A_{1},$ $A_{2}$ ,

and $B$ . This completes the above Theorem.
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REMARK. Kimura and Maeda [6] showed that a real hypersurface of $CP^{n}$

with $\eta$ -parallel second fundamental form and principal structure vector field $\xi$

is locally congruent to one of homogeneous real hypersurfaces of type $A_{1},$ $A_{2}$

and $B$ .

\S 4. Real hypersurfaces of $M_{n}(c),$ $c\neq 0$ , with $\eta$-parallel Ricci-tensor.

Let $M$ be a real hypersurface of $M_{n}(c)$ with $\eta$ -parallel Ricci-tensor, that is,
$g((\nabla_{X}S)Y, Z)=0$ for any $X,$ $Y$ and $Z$ in $\xi^{\perp}$ . It is easily seen that if $\xi$ is prin-
cipal, then the second fundamental form $A$ of $M$ in $M_{n}(c)$ is $\eta$ -parallel implies
that the Ricci-tensor $S$ is $\eta$ -parallel. In this section we are investigated to
study this converse problem by using Kimura and Maeda’s [6] result and Theo-
rem 3.4. Then we can state another characterization as the following.

THEOREM 4.1. Let $M$ be a real hypersurface of $CP^{n}$ . Then the Ricci-tensor
is $\eta$ -parallel and the structure vector field $\xi$ is principal if and only if $M$ is of
type $A_{1},$ $A_{2}$ and $B$ .

PROOF. For any $X,$ $Y$ in $\xi^{\perp}$ , the fact that the Ricci-tensor is $\eta$ -parallel
implies

$(\nabla_{x}S)Y=-3(\nabla_{X}\eta)(Y)\xi+(Xh)AY+h(\nabla_{X}A)Y-(\nabla_{X}A^{2})Y$

belongs to $[\xi]$ , where $[\xi]$ means l-dimensional vector space spanned by $\xi$ . Thus
$g((\nabla_{X}S)Y, Y)=0$ for any $Y$ in $\xi^{\perp}$ . Hence if we put $AY=\lambda Y$ , then

(4.1) $\lambda(Xh)+h(X\lambda)-(X\lambda^{2})=0$ for any $X$ in $\xi^{\perp}$ .

Also for any $Y$ in $\xi^{\perp}$ such that $AY=\lambda Y$ we have $(\nabla_{\xi}A)Y=(\xi\lambda)Y+(\lambda I-A)\nabla_{\xi}Y$ .
Thus $\xi\lambda=g((\nabla_{\xi}A)Y, Y)=g((\nabla_{Y}A)\xi, Y)=0$ . Hence the mean curvature $h$ is also
constant on $\xi$-direction. Together with this fact and (4.1), we conclude that
$\lambda h-\lambda^{2}$ is constant on $M$. Thus we can put as the following.

(4.2) $\lambda h-\lambda^{2}=a$ , (4.3) $\mu h-\mu^{2}=b$ .
By Lemma 2.2, (4.2) and (4.3) can be rewritten as follows

(4.4) $\lambda^{2}-h\lambda+a=0$ ,

(4.5) $(2h\alpha-\alpha^{2}-4b)\lambda^{2}-\{(\alpha^{2}-4)h+4\alpha-4b\alpha\}\lambda-(2\alpha h+b\alpha^{2}+4)=0$ .

Substituting $h\lambda=\lambda^{2}+a$ into (4.5), we then have

(4.6) $2\alpha\lambda^{4}-(2\alpha^{2}+4b-4)\lambda^{3}+2(a\alpha+2b\alpha-3\alpha)\lambda^{2}-(a\alpha^{2}-4a+b\alpha^{2}+4)\lambda-2a\alpha=0$ .
From which we see that $\lambda$ satisfies an algebraic equation with constant coeffici-
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ents. Thus $M$ has at most five constant principal curvatures. According to
Kimura’s theorem [4], $M$ is homogeneous.

On the other hand, due to Takagi’s classification of homogeneous real hyper-
surface of $CP^{n}$ , we conclude that $M$ is of type $A_{1},$ $A_{2},$ $B,$ $C,$ $D$ and $E$ .

In order to prove this theorem we shall show that the shape operator is $\eta-$

parallel.
Let $A(\lambda)$ be an eigenspace of $A$ with eigenvalue $\lambda$ . Then the subspace $\xi_{X}^{\perp}$

of the tangent space $T_{x}(M)$ at $x$ can be decomposed as $\xi_{X}^{\perp}=A(\lambda_{1})\oplus A(\lambda_{2})\oplus\cdots$

$\oplus A(\lambda_{s})$ . Now in what follows we consider the following eigenvector such that
$X\in A(\lambda),$ $Y\in A(\mu)$ and $Z\in A(\sigma)$ , where $\lambda,$

$\mu$ and $\sigma$ are corresponding constant
principal curvatures. Then we have that

(4.7) $g((\nabla_{X}A)Y, Z)=(\mu-\sigma)g(\nabla_{X}Y, Z)$ .

On the other hand, from the $\eta$ -parallel Ricci-tensor it follows that

(4.8) $(h-\mu-\sigma)g((\nabla_{X}A)Y, Z)=0$ .
For the case where $\mu=\sigma,$ $(4.7)$ implies that $g((\nabla_{X}A)Y, Z)=0$ . Thus it suffices
to show that the shape operator is $\eta$ -parallel for the case where $\mu\neq\sigma$ .

In the case where $h-\mu-\sigma\neq 0,$ $(4.8)$ gives our result. Thus it remains to
consider for the case where $h-\mu-\sigma=0$ . Thus the $\eta$ -parallel Ricci-tensor gives

(4.9) $g((\nabla_{Y}S)X, Z)=(h-\lambda-\sigma)g((\nabla_{Y}A)X, Z)=0$ .

If $\lambda\neq\mu$ , then $h-\mu-\sigma=0$ implies $h-\lambda-\sigma\neq 0$ . From which together with (4.9)

it follows $g((\nabla_{x}A)Y, Z)=g((\nabla_{Y}A)X, Z)=0$ . If $\lambda=\mu,$ $(4.7)$ gives $g((\nabla_{x}A)Y, Z)=$

$g((\nabla_{Z}A)X, Y)=0$ . Summing up, we conclude that the shape operator is $\eta-$

parallel. Thus, due to Kimura and Maeda’s Theorem [6], $M$ is of type $A_{1},$ $A_{2}$

and $B$ .
Conversely, if $M$ is of type $A_{1},$ $A_{2}$ or $B$ , then by Kimura and Maeda’s

Theorem [6] the second fundamental form is $\eta$ -parallel and its structure
vector field $\xi$ is principal. Since $\eta$ -parallel second fundamental form with the
principal structure vector $\xi$ implies $\eta$ -parallel Ricci-tensor, we get the above
Theorem.

REMARK. Kimura [5] showed that a real hypersurface of $CP^{n}$ with the
condition $(\nabla_{X}S)Y=c\{g(\phi AX, Y)+\eta(Y)\phi AX\}$ , where $c$ is constant, is locally

congruent to homogeneous hypersurfaces with 2 or 3 distinct principal curva-
tures. Thus this condition implies that the Ricci-tensor $S$ is $\eta$-parallel and
structure vector field $\xi$ is principal.
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On the other hand, for a real hypersurface of $CH^{n}$ we get the following.

THEOREM 4.2. Let $M$ be a real hypersurface of $CH^{n},$ $n\geqq 2$ . Then the
Rcci-tensor is $\eta$-parallel and the structure vector field $\xi$ is principal if and only

if $M$ is of type $A_{0},$ $A_{1},$ $A_{2}$ or $B$ .

PROOF. The converse is trivial by Theorem 3.4.
Let $M$ be a real hypersurface of $CH^{n}$ with $\eta$ -parallel Ricci-tensor and

principal structure vector field $\xi$ . Then similarly as in Theorem 4.1 we can
put

(4.13) $\lambda h-\lambda^{2}=a$ ,

(4.14) $\mu h-\mu^{2}=b$ .
By Lemma 2.1 we can consider the following two cases.

CASE I. $\alpha^{2}-4\neq 0$ .

Then $2\lambda-\alpha\neq 0$ . In fact, suppose that $2\lambda-\alpha=0$ . Then (3.2) gives $\alpha\lambda=2$ .
Together with this fact we have $\alpha^{2}-4=0$ , a contradiction. Thus from (3.2) it
follows $A\phi X=\mu\phi X,$ $\mu=(\alpha\lambda-2)/(2\lambda-\alpha)$ . From which, substituting (4.14), then
we get

(4.15) $(2\alpha h-a^{2}-4b)\lambda^{2}+\{4a+4b\alpha-(a^{2}+4)h\}\lambda+(2ah-4-ba^{2})=0$ .
Substituting (4.13) into (4.15), then $\lambda$ satisfies the following equation with con-
stant coefficients

$2\alpha\lambda^{4}-2(\alpha^{2}+2b+2)\lambda^{3}+2\alpha(a+2b+3)\lambda^{2}-(aa^{2}+b\alpha^{2}+4a+4)\lambda+2a\alpha=0$ .

In the case where $\alpha=0,$ $a=-1$ and $b=-1$ , coefficients of the above equation
are all vanishing. Thus it suffices to prove that principal curvatures are also
constant on $M$ in this case.

For the case where $a=-1$ , and $b=-1$ it follows from (4.13) and (4.14) that
$\lambda=\mu$ or $ h=\lambda+\mu$ . Since $\mu=-1/\lambda$ for $\alpha=0,$ $\lambda=\mu$ implies $\lambda^{2}+1=0$ . This con-
tradicts. Thus we have $ h=\lambda+\mu$ . From which together with $h=m_{1}\lambda+m_{2}(-1/\lambda)$

for $\alpha=0$ , it follows that $(m_{1}-1)\lambda^{2}-(m_{2}-1)=0$ . Since $m_{1}\neq 1$ , principal curvatures
are constant on $M$ in this case. Hence all principal curvatures are constant on
$M$. Thus due to Theorem A we conclude that $M$ is of type $A_{1},$ $A_{2}$ or $B$ .

CASE II. $\alpha^{2}=4$ .

Now we consider for the case $\alpha=2$ . Then (3.2) gives
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$(\lambda-1)A\phi X=(\lambda-1)\phi X$ .

Let us take an open set $M_{0}=\{x\in M|\lambda\neq 1\}$ . Then $A\phi X=\phi X$. Thus $\mu=1$ . From
which and (4.14) it follows $h=b+1$ on $M_{0}$ . Since $\lambda=1$ on $M-M_{0}$ , also from
(4.13) it follows $h=a+1$ . Hence $h$ is constant and $a=b$ on $M$. Thus $\lambda$ satisfies
a quadratic equation with constant coefficients: $\lambda^{2}-h\lambda+a=0$ . Hence all principal
curvatures are constant on $M$.

Similarly, for the case $\alpha=-2$ we also get the same conclusion. By virtue
of Theorem $A,$ $M$ is of type $A_{0},$ $A_{1},$ $A_{2}$ or $B$ . Since $\alpha=\pm 2$ , then $M$ is of
type $A_{0}$ .
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