COMPACTNESS CRITERIA FOR RIEMANNIAN MANIFOLDS WITH COMPACT UNSTABLE MINIMAL HYPERSURFACES

By

Kazuo AKUTAGAWA

1. Introduction

In this paper, we shall prove the following Theorem.

THEOREM A. Let N be a complete Riemannian manifold with a compact embedded unstable minimal hypersurface M. Suppose that there exists a positive constant s_0 such that along each unit speed geodesic $\gamma: [0, \infty) \to N$ emanating from each point in the tubular neighborhood $U_{s_0}(M) := \{ \mathcal{G} \in N ; \operatorname{dist}_N(\mathcal{G}, M) < s_0 \}$ the Ricci curvature satisfies

$$\liminf_{r\to\infty}\int_0^r \mathrm{Ric}_N(d\gamma/dt,\ d\gamma/dt)dt \ge 0.$$

Then N is compact.

The Myers' theorem [11] is one of the most well-known results relating the curvature and the topology of a complete Riemannian manifold N, which states that if the Ricci curvature has a positive lower bound then N is compact. In [1], Ambrose proved a generalization of Myers' theorem, that is, if there is a point $\mathcal{G} \in N$ such that along each unit speed geodesic $\gamma : [0, \infty) \to N$ emanating from \mathcal{G} the Ricci curvature satisfies

$$\int_0^\infty \operatorname{Ric}_N(d\gamma/dt, d\gamma/dt)dt = +\infty$$

then N is compact. It should be pointed out that in this result the Ricci curvature is not required to be everywhere nonnegative. Further developments can be found in Galloway [9] and different sorts of extensions of Myers' theorem can be found in Avez [3], Calabi [5] and Shiohama [12].

Theorem A is an Ambrose-type theorem for Riemannian manifolds with compact embedded unstable hypersurfaces (see also Remark in section 3). It should be also pointed out that in Theorem A the existence of the global unit normal vector field on M is not required.

Received February 12, 1988. Revised November 16, 1988.

The author would like to express his sincere gratitude to the referee for kind advices.

§ 2. Definitions and formulas

Let N=(N,g) be a complete Riemannian manifold of dimension $n\geq 2$ with a compact embedded hypersurface M. We choose a local orthonormal frame field $\{e_1, \dots, e_n\}$ in N such that, restricted to M, the vectors $\{e_1, \dots, e_{n-1}\}$ are tangent to M. Let denote the Levi-Civita connection of N by ∇ , the component normal to M by $(\cdot)^{\perp}$ and the restriction of e_n to M by ν . The second fundamental form A_M of M is defined by

$$A_{M}(X, Y)\nu = (\nabla_{X}Y)^{\perp}$$

where X and Y are local vector fields on M. M is called *minimal* if H_{M} = Trace A_{M} is identically zero.

We shall derive the equation $H_M=0$ by another elegant way. For a smooth function $f \in C^{\infty}_{0}(\mathcal{D}(\nu))$ with compact support in $\mathcal{D}(\nu)$ and a small positive constant δ , let $\{M(\varepsilon f; \nu)\}_{\varepsilon \in (-\delta, \delta)}$ denote the one-parameter family of hypersurfaces $\{S(\varepsilon f; \nu) \cup \{M-\mathcal{D}(\nu)\}\}_{\varepsilon \in (-\delta, \delta)}$, where $\mathcal{D}(\nu)$ is the domain of ν and $S(\varepsilon f; \nu) = \{\exp_{x}\varepsilon f(x)\nu \in N; x \in \mathcal{D}(\nu)\}$. We then get a local deformation $\{M(\varepsilon f; \nu)\}_{\varepsilon \in (-\delta, \delta)}$ of M. Let $\mathcal{A}(\cdot)$ denote the (n-1)-dimensional area functional of hypersurfaces. Then $\mathcal{A}(M(\varepsilon f; \nu))$ is class of C^{∞} with respect to ε and

$$\frac{d}{d\varepsilon}\mathcal{A}(M(\varepsilon f;\nu))\Big|_{\varepsilon=0} = -\int_{M} f \cdot H_{M} dv_{g},$$

where dv_s is the induced volume element of M. If M is a critical point of \mathcal{A} , then $H_M=0$.

Suppose that M is minimal. Then

(1)
$$\frac{d^2}{d\varepsilon^2} \mathcal{A}(M(\varepsilon f; \nu)) \Big|_{\varepsilon=0} = \int_{M} [|\nabla^{M} f|^2 - (\operatorname{Ric}_{N}(\nu, \nu) + |A_{M}|^2) f^2] d\nu_{g},$$

where $\nabla^M f = \sum_{i=1}^{n-1} e_i(f) \cdot e_i$ and $|A_M|^2 = \sum_{i=1}^{n-1} [A_M(e_i, e_i)]^2$. M is called unstable if there exist a local unit normal vector field ν on M and a smooth function $f \in C_0^{\infty}(\mathcal{D}(\nu))$ such that

$$\frac{d^2}{d\varepsilon^2}\mathcal{A}(M(\varepsilon f;\nu))\Big|_{\varepsilon=0}<0.$$

For later references, we also give the second variational formula of arc length functional of rays with respect to special variations. Let $\gamma: [0, \infty) \to N$ be a ray satisfying $\gamma(0) \in M$ and $\operatorname{dist}_N(M, \gamma(t)) = \operatorname{dist}_N(\gamma(0), \gamma(t))$ (=t) for all $t \ge 0$. Let $\mathcal{L}(\cdot)$ denote the arc length functional. We note that for each r > 0 $\gamma|_{[0, r]}$

is a critical point of \mathcal{L} . Choose a local orthonormal frame field $\{e_1, \cdots, e_n\}$ in N around $\gamma(0)$ such that, restricted to M, the vectors $\{e_1, \cdots, e_{n-1}\}$ are tangent to M and the vector $\mathbf{v} = e_n|_M$ satisfies $\mathbf{v}(\gamma(0)) = (d\gamma/dt)(0)$. Let $\gamma_{i,\,r}$: $[0,\,r] \times (-\delta,\,\delta) \to N$ be a variation of $\gamma|_{[0,\,r]}$ satisfying $\gamma_{i,\,r}(\{0\} \times (-\delta,\,\delta)) \subset M$, $\gamma_{i,\,r}(\{r\} \times (-\delta,\,\delta)) = \gamma(r)$ and $\frac{\partial}{\partial \varepsilon} \gamma_{i,\,r}(t,\,\varepsilon)\Big|_{\varepsilon=0} = \cos\frac{\pi t}{2r} \cdot e_i(t)$, where each $e_i(t)$ is the parallel translate vector of $e_i(\gamma(0))$ along γ . We then obtain (cf. [4, Chapter 11])

(2)
$$\frac{d^{2}}{d\varepsilon^{2}} \sum_{i=1}^{n-1} \mathcal{L}(\gamma_{i,r}([0,r] \times \{\varepsilon\})) \Big|_{\varepsilon=0}$$

$$= (n-1)\pi^{2}/8r - \int_{0}^{r} \operatorname{Ric}_{N}(d\gamma/dt, d\gamma/dt) \Big(\cos\frac{\pi t}{2r}\Big)^{2} dt - H_{M}(\gamma(0)),$$

where H_M is the mean curvature of M with respect to ν .

§ 3. Proof of Theorem A

Theorem A is an immediate consequence of the following.

THEOREM B. Let N=(N,g) be a complete Riemannianman ifold with a compact embedded unstable minimal hypersurface M. Suppose that there exist positive constants s_0 and θ such that along each unit speed geodesic $\gamma:[0,\infty)\to N$ satisfying $\gamma(0)\in M$ and $|g((d\gamma/dt)(0),V)|\geq 1-\theta$, the Ricci curvature satisfies

(3)
$$\liminf_{r\to\infty}\int_{s}^{r}\operatorname{Ric}_{N}(d\gamma/dt,\,d\gamma/dt)dt\geq0$$

for all $0 \le s < s_0$, where V is a unit vector normal to M at $\gamma(0)$. Then N is compact.

To prove Theorem B, we will suppose that N is noncompact and, finally, lead a contradiction.

Since N is noncompact, there exists a ray $\gamma:[0,\infty)\to N$ satisfying $\gamma(0)\in M$ and

(4)
$$\operatorname{dist}_{N}(M, \gamma(t)) = \operatorname{dist}_{N}(\gamma(0), \gamma(t)) = t$$

for all $t \ge 0$.

From the unstability of M, we will first construct C^0 -hypersurfaces $\{M(\varepsilon u; \bar{\nu})\}_{\varepsilon \in (0, \sigma)}$ near M, which are smooth and have positive mean curvature around $\gamma \cap M(\varepsilon u; \bar{\nu})$.

LEMMA 1. There exist a continuous nonnegative function $u \in C(M)$, a local unit normal vector field $\overline{\nu}$ on M and a positive constant σ such that

- (i) $\gamma(0) \in \mathcal{D}(\bar{\nu}) = \{x \in M; u(x) > 0\},$
- (ii) u is smooth in $\mathfrak{D}(\bar{\nu})$,
- (iii) $M(\varepsilon u; \bar{\nu}) \subset U_{s_0}(M)$,
- (iv) $H_{M(su;\bar{\nu})} > 0$ in $\{\exp_x t\bar{\nu} \in N; x \in W, 0 \le t < s_0\}$

for all $\varepsilon(0<\varepsilon<\sigma)$, where $W=\{x\in M; u(x)>\frac{1}{2}u(\gamma(0))\}\subset \mathcal{D}(\bar{\nu})$.

PROOF. From the unstability of M, there exist a local unit normal vector field \tilde{v} on M and a function $f \in C_0^{\infty}(\mathfrak{D}(\tilde{v}))$ such that

(5)
$$\frac{d^2}{d\varepsilon^2} \mathcal{A}(M(\varepsilon f; \tilde{v})) \Big|_{\varepsilon=0} < 0.$$

We may assume that the closure $\bar{\mathcal{D}}(\tilde{\nu})$ is contained in a coordinate neighborhood of M. Let ν be a local unit normal vector field on M around $\gamma(0)$ satisfying $(d\gamma/dt)(0)=\nu(\gamma(0))$. Replacing $\tilde{\nu}$ by $-\tilde{\nu}$ if necessary, we can choose a local unit normal vector field $\bar{\nu}$ on M, which is an extension of $\tilde{\nu}$, ν and satisfies that $\mathcal{D}(\bar{\nu})$ is connected with C^{∞} -boundary $\partial \mathcal{D}(\bar{\nu})$.

Consider the functional

$$I_{\bar{\nu}}(\phi) = \int_{M} [|\nabla^{M} \phi|^{2} - (\operatorname{Ric}_{N}(\bar{\nu}, \bar{\nu}) + |A_{M}|^{2})\phi^{2}] d\nu_{g}$$

and define $\lambda = \inf I_{\bar{\nu}}(\phi)$ for all $\phi \in C_0^{\infty}(\mathcal{D}(\bar{\nu}))$ satisfying $\phi = 0$ on $M - \mathcal{D}(\bar{\nu})$ and $\int_{M} \phi^2 dv_g = 1$. From (1) and (5) we then obtain a continuous function $u \in C(M)$ satisfying $\lambda = I_{\bar{\nu}}(u) < 0$, which u has the following properties (cf. [2], [7] and [8])

- (6) u>0 in $\mathcal{D}(\bar{\nu})$ and $u|_{\partial\mathcal{D}(\bar{\nu})}=0$,
- (7) u is smooth in $\mathcal{D}(\bar{\nu})$,
- (8) $Lu := -\Delta_M u (\operatorname{Ric}_N(\bar{\nu}, \bar{\nu}) + |A_M|^2) u = \lambda u \ (<0) \text{ in } \mathcal{D}(\bar{\nu}),$

where $\Delta_M u = \sum_{i=1}^{n-1} g(e_i, \nabla_{e_i} \nabla^M u)$. In particular, the property (6) is an immediate consequence of Courant's nodal domain theorem for the linear elliptic operator of second order L (cf. [6, Chapter 1], [7, VI-§6]). From (6)-(8) and an easy calculation we obtain

$$(9) \qquad \frac{\partial}{\partial \varepsilon} H_{M(\varepsilon u; \bar{\nu})} \Big|_{\varepsilon=0} = \Delta_M u + (\operatorname{Ric}_N(\bar{\nu}, \bar{\nu}) + |A_M|^2) u = -\lambda u > 0 \quad \text{in} \quad \mathcal{D}(\bar{\nu}).$$

It follows from (6), (7) and (9) that there exists a positive constant σ such that for any $\varepsilon(0<\varepsilon<\sigma)$ $M(\varepsilon u\,;\,\bar{\nu})\subset U_{s_0}(M)$ and $H_{M(\varepsilon u\,;\,\bar{\nu})}=\int_0^\varepsilon \left(\frac{\partial}{\partial \rho}H_{M(\rho u\,;\,\bar{\nu})}\Big|_{\rho=s}\right)ds>0$ in $\{\exp_x t\bar{\nu}\in N\,;\,x\in W,\,0\leq t< s_0\}$. This completes the proof of Lemma 1.

LEMMA 2. There exist positive constants $\varepsilon_0(0 < \varepsilon_0 < \sigma)$, $t_0(0 < t_0 < s_0)$ and a unit

speed geodesic $\bar{\gamma}:[0,\infty)\to N$ such that

- (i) $\bar{\gamma}(t_0) \in M(\varepsilon_0 u; \bar{\nu}) \cap \{\exp_x t \bar{\nu} \in N; x \in W, 0 \le t < s_0\}$
- (ii) $\bar{r}(0) \in W \subset \mathcal{D}(\bar{\nu})$,
- (iii) $g((d\bar{r}/dt)(0), \bar{\nu}(\bar{r}(0))) \ge 1 \theta$,
- (iv) $\operatorname{dist}_N(M(\varepsilon_0 u; \bar{\nu}), \bar{\gamma}(t)) = \operatorname{dist}_N(\bar{\gamma}(t_0), \bar{\gamma}(t)) = t t_0 \text{ for all } t \geq t_0.$

PROOF. Take $\varepsilon(0 < \varepsilon < \sigma)$ arbitrarily and fix it. For each $i \in \mathbb{N}$, there exists a minimizing geodesic $\gamma_{\varepsilon,i}$, emanating from $M(\varepsilon u; \bar{\nu})$, between $M(\varepsilon u; \bar{\nu})$ and $\gamma(i)$. Put $\widetilde{W} = \{x \in M; u(x) \ge u(\gamma(0))\} \subset W \subset \mathcal{D}(\bar{\nu})$. Suppose that there exists $j_1 \in \mathbb{N}$ such that

(10)
$$\gamma_{\varepsilon,j_1}(0) \notin M(\varepsilon u; \bar{\nu}) \cap \{\exp_x t \bar{\nu} \in N; x \in \widetilde{W}, 0 \leq t < s_0\}.$$

From (4), (10) and Lemma 1-(iii) we have

$$\operatorname{dist}_{N}(M, \gamma(j_{1})) \leq \operatorname{dist}_{N}(M, \gamma_{\varepsilon, j_{1}}(0)) + \mathcal{L}(\gamma_{\varepsilon, j_{1}})$$
$$< \mathcal{L}(\gamma|_{[0, j_{1}]}) = \operatorname{dist}_{N}(M, \gamma(j_{1})).$$

This is a contradiction. Then we obtain for all $i \in N$

$$(11) \gamma_{\varepsilon,i}(0) \in M(\varepsilon u; \bar{\nu}) \cap \{\exp_x t\bar{\nu} \in N; x \in \widetilde{W}, 0 \leq t < s_0\} \subset U_{s_0}(M).$$

We also note that for each $i\in N$ the vector $(d\gamma_{s,i}/dt)(0)$ is perpendicular to $TM(\varepsilon u\,;\,\bar{\nu})$ and

(12)
$$\gamma_{\varepsilon,i} \cap M(\varepsilon u; \bar{\nu}) = \{\gamma_{\varepsilon,i}(0)\}.$$

Suppose that there exists $j_2 \in N$ such that

$$g((d\gamma_{\varepsilon,j_2}/dt)(0), (d(\exp t\bar{\nu})/dt)(\gamma_{\varepsilon,j_2}(0)))<0.$$

From (11) and (12) that there exists $c(0 < c < \mathcal{L}(\gamma_{s,j_2}))$ such that

(13)
$$\gamma_{\varepsilon,j_2}(c) \in \widetilde{W} \cup \{\exp_x t \overline{\nu} \in N; x \in \partial \widetilde{W}, 0 \leq t < \varepsilon u(\gamma(0))\}.$$

It then follows from (4), (11) and (13) that

$$\begin{aligned} \operatorname{dist}_{N}(M, \gamma(j_{2})) & \leq \operatorname{dist}_{N}(M, \gamma_{\varepsilon, j_{2}}(c)) + \mathcal{L}(\gamma_{\varepsilon, j_{2}}|_{[c, \mathcal{L}(\gamma_{\varepsilon, j_{2}})]}) \\ & < \operatorname{dist}_{N}(M, \gamma_{\varepsilon, j_{2}}(c)) + \mathcal{L}(\gamma_{\varepsilon, j_{2}}) \\ & < \mathcal{L}(\gamma|_{[0, j_{2}]}) = \operatorname{dist}_{N}(M, \gamma(j_{2})). \end{aligned}$$

This is a contradiction, too. Then we obtain for all $i \in N$

(14)
$$g((d\gamma_{\varepsilon,i}/dt)(0), (d(\exp t\overline{\nu})/dt)(\gamma_{\varepsilon,i}(0))) \ge 0.$$

Let $v_{\varepsilon} \in \{v \in TM(\varepsilon u; \vec{v})^{\perp}; ||v|| = 1\}$ be an accumulation point of the sequence

 $\{(d\gamma_{\epsilon,i}/dt)(0)\}_{i\in \mathbb{N}}$. Let $\gamma_{\epsilon}: [0, \infty)\to N$ be the geodesic such that $\gamma_{\epsilon}(0)=\mathcal{Q}(v_{\epsilon})$ and $(d\gamma_{\epsilon}/dt)(0)=v_{\epsilon}$, where $\mathcal{Q}: TN\to N$ is the bundle projection. Then γ_{ϵ} is a ray satisfying

(15)
$$\operatorname{dist}_{N}(M(\varepsilon u; \bar{\nu}), \gamma_{\varepsilon}(t)) = \operatorname{dist}_{N}(\gamma_{\varepsilon}(0), \gamma_{\varepsilon}(t))$$

for all $t \ge 0$. We say that γ_i is a *limit ray* of the sequence of minimizing geodesics $\{\gamma_{i,i}\}_{i \in \mathbb{N}}$. It then follows from (11) and (14) that

(16)
$$\gamma_{\mathfrak{s}}(0) \in M(\mathfrak{s}u ; \bar{\nu}) \cap \{\exp_x t \bar{\nu} \in \widetilde{W}, 0 \leq t < s_0\},$$

(17)
$$g((d\gamma_{\epsilon}/dt)(0), (d(\exp t\bar{\nu})/dt)(\gamma_{\epsilon}(0))) \ge 0.$$

Let $\tilde{\gamma}$ be a limit ray of the sequence of rays $\{\gamma_{1/i}\}_{i\geq i_0}$, where $1/i_0 < \sigma$. It then follows from (15)-(17) that

$$\tilde{\gamma}(0) \in \widetilde{W} \subset W \subset \mathcal{D}(\bar{\nu})$$

(19)
$$g((d\tilde{r}/dt)(0), \, \bar{\nu}(\tilde{r}(0))) \ge 0,$$

(20)
$$\operatorname{dist}_{N}(M, \, \tilde{\gamma}(t)) = \operatorname{dist}_{N}(\tilde{\gamma}(0), \, \tilde{\gamma}(t))$$

for all $t \ge 0$. Also from (19) and (20) $(d\tilde{r}/dt)(0) = \bar{\nu}(\tilde{r}(0))$ and then

(21)
$$g((d\tilde{r}/dt)(0), \, \bar{\nu}(\tilde{r}(0)))=1.$$

By the construction of \tilde{r} , (18) and (21) there exists a positive constant $\epsilon_0(\epsilon_0=1/i, i \ge i_0)$ such that

(22)
$$s_0 > t_0 : = \inf\{t > 0; \gamma_{s_0}^{-1}(t) \in W\},$$

$$|g((d\gamma_{\varepsilon_0}^{-1}/dt)(t_0), \bar{\nu}(\gamma_{\varepsilon_0}^{-1}(t_0)))| \ge 1 - \theta,$$

where $\gamma_{\epsilon_0}^{-1}(t) = \exp_{\gamma_{\epsilon_0}(0)}(-t(d\gamma_{\epsilon_0}/dt)(0)).$

Let $\bar{r}: [0, \infty) \rightarrow N$ be the geodesic such that

$$\bar{\tau}(t) = \begin{cases} \gamma_{\epsilon_0}^{-1}(t_0 - t) & \text{if } 0 \leq t \leq t_0 \\ \gamma_{\epsilon_0}(t - t_0) & \text{if } t \geq t_0. \end{cases}$$

It then follows from (15), (16), (22) and (23) that \bar{r} satisfies the properties (i)-(iv). This completes the proof of Lemma 2.

Let $\{\bar{e}_1, \dots, \bar{e}_{n-1}\}$ be a local orthonormal frame field on $M(\varepsilon_0 u; \bar{v})$ around $\bar{\gamma}(t_0)$ and each $\bar{e}_i(t)$ be the parallel translate vector of $\bar{e}_i(\bar{\gamma}(t_0))$ along $\bar{\gamma}$ with the initial condition $\bar{e}_i(t_0) = \bar{e}_i(\bar{\gamma}(t_0))$. Let $\bar{\gamma}_{i,r} : [0, r] \times (-\delta, \delta) \to N$ be a variation of $\bar{\gamma}|_{[t_0, t_0 + r]}$ satisfying $\bar{\gamma}_{i,r}(\{0\} \times (-\delta, \delta)) \subset M(\varepsilon_0 u; \bar{v})$, $\bar{\gamma}_{i,r}(\{r\} \times (-\delta, \delta)) = \bar{\gamma}(t_0 + r)$ and $(\partial \bar{\gamma}_{i,r}/\partial \varepsilon)(t, \varepsilon)|_{\varepsilon=0} = \cos \frac{\pi t}{2r} \cdot \bar{e}_i(t_0 + t)$. From (2) we then obtain

$$(24) \quad \frac{d^{2}}{d\varepsilon^{2}} \sum_{i=1}^{n-1} \mathcal{L}(\overline{\gamma}_{i,r}([0,r]\times\{\varepsilon\})) \Big|_{\varepsilon=0}$$

$$= (n-1)\pi^{2}/8r - \int_{t_{0}}^{t_{0}+r} \operatorname{Ric}_{N}(d\overline{\gamma}/dt, d\overline{\gamma}/dt) \Big(\cos\frac{\pi(t-t_{0})}{2r}\Big)^{2} dt - H_{M(\varepsilon_{0}u;\overline{\nu})}(\overline{\gamma}(t_{0})).$$

It follows from (3), (24), Lemma 1, Lemma 2 and Lemma 3 below that there exists a large constant r_0 such that

$$\begin{split} &(n-1)\pi^2/8r_0 - \int_{t_0}^{t_0+r_0} \mathrm{Ric}_N(d\bar{\gamma}/dt, \, d\bar{\gamma}/dt) \Big(\cos\frac{\pi(t-t_0)}{2r_0} \Big)^2 dt \\ &- H_{M(\varepsilon_0 u; \, \bar{\nu})}(\bar{\gamma}(t_0)) < 0 \, . \end{split}$$

This contradicts that $\bar{7}|_{\mathfrak{l}\mathfrak{l}_0,\infty}$ is a ray. This completes the proof of Theorem B.

LEMMA 3. For each constant K

$$\liminf_{r\to\infty}\int_0^r \operatorname{Ric}_N(d\bar{\gamma}/dt, d\bar{\gamma}/dt)dt \ge K$$

implies

$$\liminf_{r\to\infty}\int_0^r \operatorname{Ric}_N(d\bar{r}/dt, d\bar{r}/dt) \left(\cos\frac{\pi t}{2r}\right)^2 dt \ge K.$$

COROLLARY. Let N be a complete Riemannian manifold of nonnegative Ricci curvature with a compact embedded minimal hypersurface M. Suppose that either

- (i) M is unstable in N or
- (ii) (N-M) is connected.

Then N is compact. In the case (ii) it is also established that (N-M) is isometric to a product Riemannian manifold $M\times(0, l)$, where l is a suitable positive constant.

PROOF. In the case (ii), Corollary was proved by Ichida [10].

REMARK. Without the unstability of M it follows immediately from (2) and Lemma 3 that

"Let N be a complete Riemannian manifold with a compact embedded minimal hypersurface M. Suppose that along each unit speed geodesic $\gamma: [0, \infty) \rightarrow N$ emanating perpendicularly from each point in M the Ricci curvature satisfies

$$\liminf_{r\to\infty}\int_0^r \operatorname{Ric}_N(d\gamma/dt, d\gamma/dt)dt > 0.$$

Then N is compact."

References

- [1] Ambrose, W., A theorem of Myers, Duke Math. J., 24 (1957), 345-348.
- [2] Aubin, T., Nonlinear Analysis on Manifolds, Monge-Ampère Equations, Springer, 1982.
- [3] Avez, A., Riemannian manifolds with non-negative Ricci curvature, Duke Math. J., 39 (1972), 55-64.
- [4] Bishop R. and Crittenden R., Geometry of Manifolds, Academic Press, 1964.
- [5] Calabi, E., On Ricci curvature and geodesics, Duke Math. J., 34 (1967), 667-676.
- [6] Chavel, I., Eigenvalues in Riemannian Geometry, Academic Press, 1984.
- [7] Courant, R. and Hilbert D., Methods of Mathematical Physics, Vol. I, J. Wiley & Sons, 1953.
- [8] Friedman, A., Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969.
- [9] Galloway, G. J., Compactness criteria for Riemannian manifolds, Proc. Amer. Math. Soc., 84 (1982), 106-110.
- [10] Ichida, R., Riemannian manifolds with compact boundary, Yokohama Math. J., 29 (1981), 169-177.
- [11] Myers, S.B., Riemannian manifolds with positive mean curvature, Duke Math. J., 8 (1941), 401-404.
- [12] Shiohama, K., An extension of a theorem of Myers, J. Math. Soc. Japan, 27 (1975), 561-569.

Department of Mathematics Miyakonojo National College of Technology Miyazaki 885, Japan