REFLEXIVE MODULES AND RINGS WITH SELF-INJECTIVE DIMENSION TWO

By

Mitsuo Hoshino

Let R be a left and right noetherian ring and M a finitely generated left R-module with $\operatorname{Ext}_R^i(M,R)=0$ for $i\ge 1$. Is then M reflexive? This is a stronger version of the generalized Nakayama conjecture posed by Auslander and Reiten [2]. In this note, we ask when every finitely generated left R-module M with $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2 is reflexive. Our main aim is to show that if R is a left and right noetherian ring then inj $\dim_R R=\inf \dim_R R \le 2$ if and only if for a finitely generated left R-module M the following conditions are equivalent: (1) M is reflexive; (2) there is an exact sequence $0\to M\to P_1\to P_0$ of left R-modules with the P_i projective; and (3) $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2. We will show also that if R is a commutative noetherian ring then it is a Gorenstein ring of dimension at most two if and only if the ring of total quotients of R is a Gorenstein ring and every finitely generated R-module M with $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2 is reflexive.

In what follows, R stands for a ring with identity, and all modules are unital R-modules. We denote by ()* both the R-dual functors, and for a module M we denote by $\varepsilon_M \colon M \to M^{**}$ the usual evaluation map. Recall that a module M is said to be torsionless if ε_M is a monomorphism and to be reflexive if ε_M is an isomorphism. Also, a module M is said to be finitely presented if it admits an exact sequence $P_1 \to P_0 \to M \to 0$ with the P_i finitely generated and projective. Note that if R is left noetherian then every finitely generated left module is finitely presented.

1. Preliminaries

In this section, we prepare several lemmas which we need in the next section.

LEMMA 1.1. The following are equivalent:

(1) Every finitely presented left module M with $\operatorname{Ext}_R^i(M, R) = 0$ for i=1, 2 Received August 8, 1988.

is reflexive.

(2) For any finitely presented reflexive right module N we have $\operatorname{Ext}_R^i(N, R) = 0$ for i=1, 2.

PROOF. Let M be a left module with a finite presentation $P_1 o P_0 o M o 0$ and put $N = \operatorname{Cok} f^*$. Then we have a finite presentation $P_0^* o P_1^* o N o 0$ with $\operatorname{Cok} f^{**} \cong \operatorname{Cok} f = M$. Fix these notations. By Auslander [1, Proposition 6.3], $\operatorname{Ker} \varepsilon_M \cong \operatorname{Ext}_R^1(N, R)$ and $\operatorname{Cok} \varepsilon_M \cong \operatorname{Ext}_R^2(N, R)$. Similarly, $\operatorname{Ker} \varepsilon_N \cong \operatorname{Ext}_R^1(M, R)$ and $\operatorname{Cok} \varepsilon_N \cong \operatorname{Ext}_R^2(M, R)$.

- $(1) \Rightarrow (2)$. Suppose that N is reflexive. Then $\operatorname{Ext}_R^i(M, R) = 0$ for i = 1, 2, and M is reflexive. Thus $\operatorname{Ext}_R^i(N, R) = 0$ for i = 1, 2.
- $(2) \Rightarrow (1)$. Suppose $\operatorname{Ext}_R^i(M, R) = 0$ for i = 1, 2. Then N is reflexive, and $\operatorname{Ext}_R^i(N, R) = 0$ for i = 1, 2. Thus M is reflexive.

LEMMA 1.2. Let R be left noetherian. Suppose injdim $R_R \leq 2$. Then every finitely generated left module M with $\operatorname{Ext}_R^i(M, R) = 0$ for i = 1, 2 is reflexive.

PROOF. Let N be a finitely presented reflexive right module. Note that N^* is finitely presented. Take a finite presentation $P_1 \rightarrow P_0 \rightarrow N^* \rightarrow 0$ of N^* . Applying ()*, we get an exact sequence $0 \rightarrow N \rightarrow P_0^* \rightarrow P_1^*$ with the P_i^* projective. Thus $\operatorname{Ext}_R^i(N,R)=0$ for $i \geq 1$, since inj dim $R_R \leq 2$. By Lemma 1.1, we are done.

LEMMA 1.3. For a module M, M^* is reflexive if and only if M^{**} is.

PROOF. Note first that $\varepsilon_L^* \circ \varepsilon_{L*} = id_{L*}$ for any module L (see e.g. Jans [4]). "Only if" part. Since $(\varepsilon_{M*})^* \circ \varepsilon_{M**} = id_{M**}$, if ε_{M*} is an isomorphism, so is ε_{M**} . "If" part. Note that $\ker \varepsilon_M^* \cong (\operatorname{Cok} \varepsilon_M)^*$. Since $\varepsilon_M^* \circ \varepsilon_{M*} = id_{M*}$, we get $\operatorname{Cok} \varepsilon_{M*} \cong \operatorname{Ker} \varepsilon_M^* \cong (\operatorname{Cok} \varepsilon_M)^*$. Applying this to M^* , we get $\operatorname{Cok} \varepsilon_{M**} \cong (\operatorname{Cok} \varepsilon_{M**})^*$ $\cong (\operatorname{Cok} \varepsilon_M)^{**}$. Thus $(\operatorname{Cok} \varepsilon_M)^{**} = 0$, which implies $(\operatorname{Cok} \varepsilon_M)^* = 0$. Hence $\operatorname{Cok} \varepsilon_{M*} = 0$, and M^* is reflexive, since it is torsionless.

LEMMA 1.4. Let R be left and right noetherian. The following are equivalent:

- (1) The dual of a finitely generated left module is reflexive.
- (2) The dual of a finitely generated right module is reflexive.

PROOF. (1) \Rightarrow (2). Let N be a finitely generated right module. Since N^* is finitely generated, N^{**} is reflexive. Thus, by Lemma 1.3, N^* is reflexive. (2) \Rightarrow (1). Similarly.

2. Main results

To begin with, we deal with the case of R being commutative.

PROPOSITION 2.1. Let R be commutative and noetherian. Then R is a Gorenstein ring of dimension at most two if and only if the ring of total quotients of R is a Gorenstein ring and every finitely generated module M with $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2 is reflexive.

PROOF. "Only if" part. The former assertion is well known (see e.g. Bass [3]). The latter assertion follows from Lemma 1.2.

"If" part. Let M be a module with a finite presentation $P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ and put $N = \operatorname{Cok} f^*$. Then $\operatorname{Ker} f \cong N^*$. By Bass [3, Proposition 6.1], N^* is reflexive. Thus, by Lemma 1.1, we get $\operatorname{Ext}_R^3(M, R) \cong \operatorname{Ext}_R^1(N^*, R) = 0$. Hence $\operatorname{inj} \dim_R R \leq 2$.

In order to prove the main theorem, we need one more auxiliary result.

PROPOSITION 2.2. Let R be left and right noetherian. Suppose injdim_RR ≤ 2 . Then injdim_RR=injdim R_R if and only if every finitely generated left module M with $\operatorname{Ext}_R^i(M, R)=0$ for i=1, 2 is reflexive.

PROOF. "Only if" part. By Lemma 1.2.

"If" part. We claim inj dim $R_R \le 2$. Let N be a right module with a finite f presentation $P_1 \to P_0 \to N \to 0$ and put $M = \operatorname{Cok} f^*$. Applying ()*, we get an exact sequence $0 \to N^* \to P_0^* \to P_1^* \to M \to 0$ with the P_i^* projective. Thus $\operatorname{Ext}_R^i(N^*, R) \cong \operatorname{Ext}_R^{i+2}(M, R) = 0$ for $i \ge 1$, and N^* is reflexive. Hence the dual of a finitely generated right module is reflexive, and by Lemma 1.4 M^* is reflexive. By Lemma 1.1 we have $\operatorname{Ext}_R^i(M^*, R) = 0$. Since $\operatorname{Ker} f \cong M^*$, we get $\operatorname{Ext}_R^3(N, R) \cong \operatorname{Ext}_R^1(M^*, R) = 0$. Therefore inj dim $R_R \le 2$, and by Zaks [5, Lemma A], we are done.

We are now in a position to prove the main theorem.

THEOREM 2.3. Let R be left and right noetherian. Then $\inf \dim_R R = \inf \dim_R R \leq 2$ if and only if for a finitely generated left module M the following are equivalent:

- (1) M is reflexive.
- (2) There is an exact sequence $0 \rightarrow M \rightarrow P_1 \rightarrow P_0$ with the P_i projective.
- (3) Ext_Rⁱ(M, R) = 0 for i = 1, 2.

PROOF. "Only if" part. By Proposition 2.2, $(3) \Rightarrow (1)$. Also inj dim_R $R \leq 2$ implies $(2) \Rightarrow (3)$. Finally, by applying ()* to a finite presentation of M^* , we get $(1) \Rightarrow (2)$.

"If" part. Since $(2)\Rightarrow(3)$, we get $\inf \dim_R R \leq 2$. Thus, by Proposition 2.2, $(3)\Rightarrow(1)$ implies $\inf \dim_R R = \inf \dim R_R \leq 2$.

We end with making the following

REMARK. In Proposition 2.1, the condition that the ring of total quotients of R is a Gorenstein ring is really needed. Let $R=k[x,y]/(x^2,xy,y^2)$, where k is a field. Then R is not a Gorenstein ring, whereas every finitely generated module M with $\operatorname{Ext}_R^i(M,R)=0$ for i=1,2 is free and thus reflexive. On the other hand, by a slight modification of Lemma 1.1, one can easily verify that if R is right noetherian then inj dim $R_R \leq 1$ if and only if every finitely presented left module M with $\operatorname{Ext}_R^i(M,R)=0$ is torsionless.

References

- [1] Auslander, M., Coherent functors, in: Proceedings of the conference on categorical algebra, Springer, Berlin, 1966, pp. 189-231.
- [2] Auslander, M. and Reiten, I., On a generalized version of the Nakayama conjecture, Proc. Amer. Math. Soc. 52 (1975), 69-74.
- [3] Bass, H., On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28.
- [4] Jans, J.P., Duality in noetherian rings, Proc. Amer. Math. Soc. 12 (1961), 825-835.
- [5] Zaks, A., Injective dimension of semiprimary rings, J. Algebra 13 (1969) 73-86.

Institute of Mathematics University of Tsukuba Ibaraki, 305 Japan