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NEAR-HOMEOMORPHISMS ON HEREDITARILY
INDECOMPOSABLE CIRCLE-LIKE CONTINUA

By

Kazuhiro KAWAMURA

1. Introduction

A continuum means a compact connected metric space. A continuun is said

to be circle-like if it is represented as an inverse limit of simple closed curves.
A continuum $X$ is said to be hereditarily indecomposable if each subcontinuum $Y$

can not be represented as the union of two proper subcontinua of $Y$ . The

class of hereditarily indecomposable circle-like continua contains the pseudo-arc

and the pseudo-circle.
Several authors have obtained some sufficient conditions or necessary con-

ditions on an inverse sequence that the limit is hereditarily indecomposable (see,

for example, [3], [10], [12], [15] etc.). In section 2 of this paper, we will

give some equivalent conditions on inverse sequence of simple closed curves
that the limit is hereditarily indecomposable. AOP (see Definition 1), one of

these conditions, corresponds to “crookedness” of Bing [1] and Fearnley [4]

and “0scillating Property” of Mioduszewski [14]. AEOP (See Definetion 1),

one of the other conditions, correspondes to ”Everywhere 0scillation Property”

of Mioduszewski [14].

In section 3, we will characterize near-homeomorphisms on a hereditarily

indecomposable circle-like continuum in terms of shape theory. As a corollary,

we have that any monotone map on a hereditarily indecomposable circle-like

continuum is a near-homeomorphism.

The author wishes to thank to Professors K. Sakai and T. Yagasaki for

their helpful advices.

2. Inverse limit representations of hereditarily indecomposable

circle-like continua

First we will prepare some definitions and notations. For an interval $J=$

$[a, b],$ $bdJ$ denotes $\{a, b\}$ . For two intervals $J_{1}=[a, b]$ and $J_{2}=[b, c],$ $J_{1}+J_{2}$

denotes $[a, c]$ and then the collection $\{J_{1}, J_{2}\}$ is called a decomposition of $[a, c]$ .
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A subinterval of $J$ always means closed interval contained in $J$. Let $\epsilon$ be a
positive number and $X$ and $Y$ be continua. Two maps $f$ and $g:X\rightarrow Y$ are said
to be $\epsilon$ -near, denoted by $f=_{\epsilon}g$ , if $\sup\{d(f(x), g(x))|x\in X\}<\epsilon$ , where $d$ is a

metric on $Y$ . A map $h:X\rightarrow Y$ is called an $\epsilon$ -map if diam $ h^{-1}(y)<\epsilon$ for each
$y\in Y$ . $H$ denotes the Hausdorff metric induced by a metric on a continuum.

Let $\underline{X}=(X_{n}, p_{nn+1})$ be an inverse sequence continua $X_{n}$ and maps $p_{nn+1}$ ;

$X_{n+1}\rightarrow X_{n}$ . For each pair of integers $m>n$ , $p_{nm}$ denotes $ p_{nn+1}\circ p_{n+1n+2^{\circ\circ}}\cdots$

$p_{m-1m}$ . The limit of $\underline{X}$ is denoted by $\lim_{\leftarrow}\underline{X}$ and the projection map from $\lim_{\leftarrow}\underline{X}$

to $X_{n}$ is denoted by $p_{n}$ .
A collection of finite open sets $U=\{U_{1}, \cdots , U_{n}\}$ is called a taut circular

chain if $ clU_{i}\cap clU_{j}\neq\emptyset$ if and only if $|i-j|\leqq 1(mod n)$ . A taut circular chain
$V=\{V_{1}, \cdots, V_{m}\}$ is called a closure refinement of $U$ if, for each $V_{i}\in V$ , there
exists $U_{j}\in U$ such that $clV_{i}\subset U_{j}$ . A function $f:\{1, \cdots, m\}\rightarrow\{1, \cdots, n\}$ is called
a cyclic pattern if $|f(i)-f(i+1)|\leqq 1(mod n)$ for each $i=1,$ $\cdots,$ $m-1$ . $V$ is said
to follow $f$ in $U$ if $V_{k}\subset U_{f(k)}$ for each $k=1,$ $\cdots,$ $m$ .

DEFINITION 1. Let $\underline{X}=(S_{n}, p_{nn+1})$ be an inverse sequence of simple closed
curves and essential bonding maps.

(1) $X$ is said to have Approximate Oscillation Property (AOP) if
for each $n$ , for each subinterval $J\subset S_{n}$ and for each $\epsilon>0$ , there exists an

$m>n$ such that
for each subinterval $K$ of $p_{nm}^{-1}(J)$ satisfying $p_{nm}(K, bdK)=(J, bdJ)$ , there

exists a decomposition $K=K_{1}+K_{2}+K_{3}$ such that
a) $p_{nm}(bdK_{i})=bd(p_{nm}(K_{i}))$ for $i=1,2,3$ .
b) $ H(p_{nm}(K_{i}), J)<\epsilon$ for $i=1,2,3$ .
(2) $\underline{X}$ is said to have Approximate Everywhere Oscillating Property (AEOP)

if
for each $n$ , for each $\epsilon>0$ and for each pair of essential maps $f_{1}$ : $S_{n}\rightarrow S$ ,

$f_{2}$ : $C\rightarrow\succ S$ , where $C$ and $S$ are simple closed curves, such that $\deg f_{2}|\deg p_{nl}$

for some [ $\geqq n$ , there exist an $m\geqq l$ and a map $\alpha:S_{m}\rightarrow\succ C$ such that $f_{2}\circ\alpha=_{\epsilon}f_{1}\circ p_{nm}$ .
These two concepts are approximate versions of Mioduszewski’s [14].

DEFINITION 2. Let $\underline{X}=(X_{n}, p_{nn+1})$ be an inverse sequence of continua. $\underline{X}$

is said to have property $(^{*})$ if,
for each $n$ , for each $\epsilon>0$ and for each map $f:X_{l}\rightarrow X_{n}$ which satisfies

$f\simeq p_{n\iota}$ , there exist an $m\geqq l$ and a map $\alpha;X_{m}\rightarrow X_{\iota}$ such that $\alpha\simeq p_{lm}$ and
$f\circ\alpha=_{\epsilon}p_{nm}$ .
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This concept was suggested by T. Yagasaki.

PROPOSITION 3. Let $X$ be an one dimensional continuum which is the limit

of an inverse sequence of graphs with property $(^{*})$ . Then $X$ is hereditarily inde-
composoble.

PROOF. Let $X=\lim_{\leftarrow}(X_{n}, p_{nn+1})$ , where each $X_{n}$ is a graph and $(X_{n}, p_{nn+1})$

has property $(^{*})$ . For each $n$ , there exists an $\epsilon_{n}>0$ such that
1) if $d(x, y)<\epsilon_{n},$ $x,$ $y\in X_{n}$ , then $d(p_{in}(x), p_{in}(y))<diamX_{i}/2^{n}$ . By Lemma

1.4 of [17], there exists a map $f:X_{n+1}\rightarrow X_{n}$ such that $f\simeq p_{nn+1}$ and $f$ is $\epsilon_{n}/2-$

crooked (see [3] or [17] for the definition of $\epsilon$-crookedness). By property $(^{*})$ ,

there exists an $m>n+1$ and a map $\alpha:X_{m}\rightarrow X_{n+1}$ such that $p_{nm_{8}}=_{/4}f\circ\alpha n$ Clearly,

$ f\circ\alpha$ is $\epsilon_{n}/2$ crooked and hence $p_{nm}$ is $\epsilon_{n}$ -crooked. So taking a subsequence,

we can assume that $p_{nn+1}$ is $\epsilon_{n}$ -crooked for each $n$ . By Lemma 2 of [3], we
have that $X=\lim_{\leftarrow}X_{n}$ is hereditarily indecomposable.

REMARK. There exists a hereditarily indecomposable tree-like continuum $X$

such that
1) $X=\lim_{\leftarrow}(T_{n}, p_{nn+1})$ , where each $T_{n}$ is a simple triod.
2) $(T_{n}, p_{nn+1})$ does not have property $(^{*})$ .

One of Ingram’s examples [8] is such an example. This follows from the fol-
lowing proposition.

PROPOSITION 4. Suppose that $\underline{X}=(X_{n}, p_{nn+1}),\underline{Y}=(Y_{n}, q_{nn+1})$ are inverse
sequence of compact ANR’s and both of $\underline{X}$ and YYave property $(^{*})$ . Then $sh$

$(\lim Z)=sh\leftarrow(\lim\underline{Y})\leftarrow$ if and only if $\lim_{\leftarrow}Z$ and $\lim_{\leftarrow}\underline{Y}$ are homeomorphic.

PROOF. Using property $(^{*})$ , we can replace the homotopy commutative
diagram which gives shape equivalence by the approximative commutative dia-
gram as in the theorem of Mioduszewski [13]. For the detail of this argument,

see also Proposition 10.

The following two theorems are fundamental in the arguments of this

paper.

THEOREM 5 [15, Theorems 1 and 2]. Let $f,$ $g:S\rightarrow S$ be simplicial maps
between simple closed curves such that $k=\deg f>0$ and $l=\deg g>0$ . Then there

exist simplicial maps $\alpha$ and $\beta:S\rightarrow S$ such that $ f\circ\alpha=g\circ\beta$ and $\deg\alpha=m/k,$ $\deg\beta$

$=m/l$ , where $m$ is the least common multiple of $k$ and $l$ .
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THEOREM 6 [7, Theorem 3.1]. Let $(f_{i} : S_{i+1}\rightarrow S_{i})$ be a sequence of simplicial

maps between simple closed curves such that
1) $\deg f_{i}\neq 0$ for each $i$ .
2) each $f_{i}$ is a crooked pattern (see [4] for the definition of crooked pattern).

Then for each simplicial map $f:S\rightarrow S_{n}$ from a simple closed curve $S$ such that
$\deg f|\deg f_{nl}$ for some $l>n$ , there exist an $m>l$ and a map $r:S_{m}\rightarrow S$ such that
$f\circ r=f_{nm}$ .

Using the above theorems, we have

THEOREM 7. Let $\underline{X}=(S_{n}, p_{nn+1})$ be an inverse sequence of simple closed

curves and essential bonding maps. Then the following statements are equivalent.

(1) $\underline{X}$ has $AOP$.
(2) $\underline{X}$ has AEOP.
(3) $\underline{X}$ has property $(^{*})$ .
(4) $\underline{X}=\lim_{\leftarrow}\sum$ is hereditarily indecomposable.

PROOF. All ideas of the proof are already known, but we will give it for
completeness. We will show implications

$1\rightarrow 4\rightarrow 3-1$ and $3 2$ .
$1\rightarrow 4$ (see [12], Theorem 5). We only have to show that each proper sub-

continuum of $X$ is indecomposable. Assume that $X$ contains a proper subcon-
tinuum $Y$ which is a union of its proper subcontinua $H$ and $I$. Take $x\in H-I$

and $y\in I-H$. There exists an integer $n$ such that for each $m\geqq n,$ $p_{m}(x)\not\in p_{m}(I)$

and $p_{m}(y)\not\in p_{m}(H)$ . Let $J=p_{n}(Y)$ and $0<\eta<\min\{d(p_{n}(x), p_{n}(I))/4,$ $d(p_{n}(y)$ ,

$p_{n}(H))/4\}$ .
Applying AOP to $n,$ $J$ and $\eta/2$ , we have an $m>n$ satisfying the condition

of AOP. Let $K$ be the subinterval of $p_{m}(Y)$ which is irreducible with respect to
being mapped onto $J$ under $p_{nm}$ . Then $p_{nm}(bdK)=bdJ$. Using the decomposition
$K=K_{1}+K_{2}+K_{3}$ required in AOP, we can see that $ d(p_{n}(y), p_{n}(H))<\eta$ or
$ d(p_{n}(x), p_{n}(I))<\eta$ . This contradicts the choice of $\eta$ .

$4\rightarrow 3$ . Suppose that $ X=\lim\underline{X}\leftarrow$ is hereditarily indecomposable and give $n,$
$\epsilon>0$,

and $f:S\rightarrow S_{n}$ as in the hypothesis of property $(^{*})$ . By the simplicial approxima-

tion theorem, we may assume that $f$ is simplicial with respect to suitable sub-

divisions $T$ and $T_{n}$ of $S$ and $S_{n}$ respectively. Let $U_{0}$ be a taut circular chain
cover of $S_{n}$ such that

a) mesh $U_{0}<\epsilon/4$ and each vertex of $T_{n}$ is contained in the unique link
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of $U_{0}$ .
$\iota C^{\backslash }\prime etC_{0}=p_{n}^{-1}(U_{0})$ and $k_{0}=n$ .

Using an induction, we can take a sequence $(C_{n})_{n\geqq 0}$ of taut circular chain
(overs satisfying the following conditions.

b) mesh $C_{i}\rightarrow 0$ as $ i\rightarrow\infty$ , and $C_{i+1}$ is a closure refinement of $C_{i}$ .
c) Each link of $C_{i}$ contains a subchain of $C_{i+1}$ consisting of two links.
d) There exist a subsequence $(k_{i})$ and a sequence $(U_{i})$ of taut circular

chain covers of $S_{k_{i}}$ such that mesh $U_{i}<\epsilon/3\cdot 2^{i+1}$ and $C_{i}=p_{k_{i^{-1}}}(U_{i})$ for each $i$ .
Let $f_{i}$ : $C_{i+1}\rightarrow C_{i}$ be a pattern which $C_{i+1}$ follows in $C_{i}$ . By the same way

as in [12, Theorem 1], we can assume, taking a subsequence if necessary, that
e) $f_{i}$ is a crooked pattern for each $i$.

Each $f_{i}$ determines a simplicial map $\overline{f}_{i}$ : $S_{k_{i+1}}\rightarrow S_{k_{i}}$ such that
f) $p_{k_{i}k_{j}}$ and $f_{i}\circ\cdots\circ\overline{f}_{j}$ are $3\cdot meshU_{i}$-near.

Applying Theorem 6, there exist an integer $s$ with $k_{s}>1$ and a map $\alpha;S_{k_{S}}\rightarrow S$

such that $f\circ\alpha=\overline{f}_{1}\circ\cdots\circ\overline{f}_{s}$ . By d) and f), $k_{s}$ and $\alpha$ have the required property.

$3\rightarrow 1$ (see [12], Theorem 4).

Give any integer $n>0,$ $\epsilon>0$ and any arc $J\subset S_{n}$ . Define a PL map $f:S_{n}\rightarrow S_{n}$

as follows. Let $J=[p, q]$ .
$J$ is decomposed by congruent arcs $J_{1}=[p, s],$ $J_{2}=[s, t],$ $J_{3}=[t, q]$ . $f|J:J$

$\rightarrow J$ is defined by $f(p)=p,$ $f(q)=q,$ $d(f(s), q)=\epsilon/2$ , and $d(f(t), p)=\epsilon/2$ , and $f|J$

is linear on the remaining parts. Furthermore, $f|S_{n}-J=id_{s_{n^{-J}}}$ . Note $f\simeq id_{s_{n}}$ .
Then applying property $(^{*})$ , there exist an integer $m>n$ and a map $\alpha:S_{m}$

$\rightarrow S_{n}$ such that $ f\circ\alpha$ and $p_{nm}$ are $\epsilon/2$ near. Take an arc $K\subset S_{n}$ which satisfies
$p_{nm}(K, bdK)=(J, bdJ)$ . By the same way as in [12], Theorem 4, we can find
a decomposition $K=K_{1}+K_{2}+K_{3}$ which has the required property.

$2\rightarrow 3$ . This is obvious.
$3\rightarrow 2$ . This is proved by Theorem 5. Notice that if $f,$ $g:S\rightarrow S$ are maps

between simple closed curves such that $\deg g|\deg f$ , then there exists a map
$h:S\rightarrow S$ such that $g\circ h\simeq f$ .

This completes the proof of Theorem 7.

By the similar way, we can define AOP, AEOP and property $(^{*})$ for inverse
sequences of arcs (homotopy conditions for maps are not required). We can
obtain the similar result to Theorem 7 for inverse sequences of arcs. This
gives an inverse limit characterization of the pseudo-arc, which is represented

as an inverse limit of simple closed curves and null-homotopic bonding maps.
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The following corollary is essentially proved by Fearnley [6].

COROLLARY 8. Let $X$ and $Y$ be hereditarily indecomposable circle-like con-
tinua. $X$ and $Y$ are homeomorphic if and only if $shX=shY$.

3. A characterization of near-homeomorphisms

Lewis [9] and Smith [16] have shown that each onto map on the pseudo-arc

is a near-homeomorphism. In this section, we will characterize near-homeo-
phisms on a hereditarily indecomposable circle-like continuum. By the charac-
terization, we will construct an onto map on the pseudo-circle which is not a
near-homeomorphism.

Let $X=\lim_{\leftarrow}(S_{i}, p_{ii+1})$ be an inverse limit of n-spheres $S_{i}\prime s$ and essential
bonding maps $(n\geqq 1)$ , and let $r_{i}=\deg p_{ii+1}$ . Then $\check{H}^{n}(X)\cong\{j/r_{1}r_{2}\cdots r_{k}|j\in Z$,
$k\in N\}$ and $p_{\iota^{*}}:$ $H^{n}(S_{i})\rightarrow\check{H}^{n}(X)$ is written by $p_{i^{*}}(e_{i})=1/r_{1}\cdots r_{i-1}$ , where $e_{i}$ is
the generator of $H^{n}(S_{i})$ . In particular, $p_{\iota^{*}}$ is a monomorphism.

PROPOSITION 9. Let $X$ be a continuum which is an inverse limit of n-sphere
and essential bonding maps and $f:X\rightarrow X$ be an onto map.

a) $f$ is a shape equivalence if and only if $f$ induces an isomorphism on n-th
$\check{C}ech$ cohomology.

b) If $f$ is a near-homeomorphism, then it is a shape equivalence.

PROOF. a) In the case $n\geqq 2$ , this follows from the cohomological version
of Whitehead theorem by S. Mardesi\v{c} (see [11], p. 155-156). The case $n=1$

follows from [7], (2.6) and the fact that each circle-like continuum has the
same shape as a solenoid.

The author wishes to thank to the referee for pointing out these results.
b) Let $X=\varliminf(S_{i}, p_{ii+1})$ , where $S_{i}$ is a n-sphere and $p_{ii+1}$ is essential, and

suppose that $f$ is a near-homeomorphism. Using an induction, we will construct
a homotopy commutative diagram which implies shape equivalence of $f$ . Take
a decreasing sequence $(\epsilon_{i})$ of positive and sufficiently small numbers which
converges to $0$ .

Let $S_{n},=S_{1}$ and take an integer $m_{1}>1$ and a map $f_{1}$ : $S_{m_{1}}\rightarrow S_{n_{1}}$ such that
$p_{1^{O}}f=f_{1}\circ p_{m_{1}}\epsilon/4$ There exists a homeomorphism $h:X\rightarrow X$ such that $p_{1}\circ h_{\epsilon}=_{/4}p_{1}\circ f_{1}$ .
Take a large $l_{1}>m_{1}$ and a map $h_{1}$ : $S_{l_{1}}\rightarrow S_{n_{1}}$ such that $p_{n_{1}}\circ h_{\epsilon}=_{/4}h_{1}\circ p_{l_{1}}$ . Since $h$

is a homeomorphism, there exists an integer $n_{2}>n_{1}$ and a map $k_{1}$ : $S_{n_{2}}\rightarrow S_{l_{1}}$

such that $h_{1}\circ k_{1}=\epsilon/4p_{n_{1}n_{2}}$ . It is easy to see that $f_{1}\circ p_{m_{1}l_{1}}\circ k_{1}=_{1}\epsilon p_{n_{1}n_{2}}$ and hence
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$f_{1}\circ p_{m_{1}l_{1}}\circ k_{1}\simeq p_{n_{1}n_{2}}\neq 0$ . Let $g_{1}=p_{m_{1}l_{1}}\circ k_{1}$ . Since $\deg f_{1}\neq 0$ , we have

(1) $p_{m_{1^{*}}}=(g_{1}\circ p_{n_{2}^{Q}}f)^{*}$ .
There exist an integer $m_{2}>m_{1}$ and a map $f_{2}$ : $S_{m_{2}}\rightarrow S_{n_{2}}$ such that $p_{n_{2}}\circ f$

$=_{1}\epsilon f_{2}\circ p_{m_{2}}$ . Using (1),

(2) $p_{m_{2^{*}}}\circ f_{2^{*}}\circ g_{1}^{*}=p_{m_{2^{*}}}\circ p_{m_{1}m_{2^{*}}}$ .
Since $p_{m_{2}}*is$ a monomorphism, we have $f_{2}^{*0}g_{1}^{*}=p_{m_{2}}*$ . Hence $g_{1}\circ f_{2}\simeq p_{m_{1}m_{2}}$ .

Repeating this process, we obtain a homotopy commutative diagram as
follows.

Hence $f$ is a shape equivalence.

PROPOSITION 10. Let $X$ be a continuum which is the inverse limit of an
$ANR$ sequence which has property $(^{*})$ . Let $f:X\rightarrow+X$ be an onto map. If $f$ is
a shape equivalence, then $f$ is a near-homeomorphism.

PROOF. Give any $\epsilon>0$ . We will construct a homeomorphism $h$ which is
$\epsilon$ -near to $f$ . Take an integer $j_{1}$ and $\delta>0$ such that

1) for each subset $A\subset X_{j_{1}}$ with diam $ A<\delta$ , diam $p_{j_{1}}^{-1}(A)<\epsilon/2$ .
Let $\epsilon_{i}=\delta/2^{i}$ . Take an integer $i_{1}$ and a map $f_{1}$ : $X_{i_{1}}\rightarrow\neq X_{j_{1}}$ such that $p_{j_{1}}\circ f_{\epsilon}=_{1}f_{1}\circ p_{i_{1}}$

and let $h_{1}=f_{1}$ .
Since $f$ is a shape equivalence, there exist an integer $k>]_{1}$ and a map

$u_{1}$ : $X_{k}\rightarrow>X_{i_{1}}$ such that $f_{1^{O}}u_{1}\simeq p_{j_{1}}k$ . Applying property $(^{*})$ , there exist an integer
$j_{2}>k$ and a map $v_{1}$ : $X_{j_{2}}\rightarrow>X_{k}$ which is homotopic to $p_{kj_{2}}$ such that $f_{1}\circ u_{1}\circ v_{1}$

$=_{1}\epsilon p_{j_{1}j_{2}}$ . Let $g_{1}=u_{1}\circ v_{1}$ .
Take an integer $l>i_{1}$ and a map $f_{2}$ : $X_{l}\rightarrow+X_{j_{2}}$ such that $ p_{j_{1}j_{2}}\circ p_{j_{2}}\circ f=_{2}p_{j_{1}j_{2}}\circ f_{2^{o}}p_{\ell}\epsilon$

Since $v_{1}\simeq p_{kj_{2}}$ , we may assume that $u_{1}\circ v_{1}\circ f_{2}\simeq p_{i_{1}l}$ . Applying property $(^{*})$

again, there exist an integer $i_{2}>l$ and a map $w_{2}$ : $X_{i_{2}}\rightarrow*X_{l}$ such that $g_{1}\circ f_{2}\circ w_{2}$

$=_{2}p_{i_{1}i_{2}}\epsilon$
Let $h_{2}=f_{2}\circ w_{2}$ .

Repeating these processes, we obtain an approximative commutative dia-
gram as follows.
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By [13], the sequence $(h_{i})$ induces a homeomorphism $h$ . By the choice of
$j_{1}$ and $\delta$ , we have $h=_{\epsilon}f$ . This completes the proof.

Combining Propositions 9, 10 and Theorem 7, we have

THEOREM 11. Let $X$ be a hereditarily indecomposable circle-like continuum
and $f;X\rightarrow X$ be an onto map. Then the following statements are equivalent.

1) $f$ is a near-homeomorphism.
2) $f$ is a shape equivalence.
3) $f$ induces an isomorphism on the first $\check{C}ech$ cohomology.

COROLLARY 12. Each monotone map on a hereditarily indecomposable circle-
like continuum is a near-homeomorphism.

Because, each monotone map on a circle-like continuum is a cell-like map.

EXAMPLE 13. There is an onto map on the pseudo-circle which is not a
near-homeomorphism.

The pseudo-circle $Q$ is represented as the inverse limit of an inverse sequence
$(S_{i}, p_{ii+1})$ of simple closed curves $S_{i}\prime s$ where $p_{ii+1}$ has degree 1. We may
assume that each $p_{ii+1}$ is simplicial.

Take a map $f_{1}$ : $S_{1}\rightarrow S_{1}$ with $\deg f_{1}=2$ . Applying Theorem 5 to $f_{1}$ and $p_{12}$ ,
there exist simplicial maps $a_{1}$ : $C_{1}\rightarrow S_{1}$ and $b_{1}$ : $C_{1}\rightarrow S_{2}$ from a simple closed curve
$C_{1}$ such that $p_{12}\circ b_{1}=f_{1}\circ a_{1}$ and $\deg a_{1}=1,$ $\deg b_{1}=2$ . Applying Theorem 6 to
$a_{1}$ , there exist an $n_{2}>1=n_{1}$ and a map $c_{1}$ : $S_{n_{2}}\rightarrow C_{1}$ such that $a_{1}\circ c_{1}=p_{1n_{2}}$ . Let
$f_{2}=b_{1^{O}}c_{1}$ . Then $\deg f_{2}=2$ .

Repeating this step, we obtain a commutative sequence $(f_{i} : S_{n_{i}}\rightarrow S_{i})$ of
maps such that $\deg f_{i}=2$ for each $i$ . $(f_{i})$ induces an onto map $f:Q\rightarrow Q$ which
is not a shape equivalence, hence not a near-homeomorphism.
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