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1. Introduction.

All spaces considered in this paper are assumed to be compact and metrizable.
Let $\varphi$ be a homeomorphism from a space (X, d) onto itself. Then $\varphi$ is

expansive if there is $c>0$ such that for every $x,$ $y\in X$ with $x\neq y$ there is $n\in Z$

for which $d(\varphi^{n}(x), \varphi^{n}(y))>c$ . Given $\delta>0$ , a sequence $\{x_{i} ; i\in Z\}$ is a $\delta$-pseudo-
orbit of $\varphi$ if $ d(\varphi(x_{i}), x_{i+1})<\delta$ for every $i\in Z$ . Given $\epsilon>0$ , a sequence $\{x_{i} ; i\in Z\}$

is $\epsilon$ -traced by a point $y\in X$ if $ d(\varphi^{i}(y), x_{i})<\epsilon$ for every $i\in Z$. We say that $\varphi$

has the pseudo orbit tracing property (abbrev. P. $0$ . T. P.) if for every $\epsilon>0$ there
is $\delta>0$ such that every $\delta$-pseudo-orbit of $\varphi$ can be $\epsilon$ -traced by some point of $X$.

For a space (X, d) we denote by $j\zeta(X)$ the space of all homeomorphisms
of $X$ with the metric $d(\varphi, \psi)=\max\{d(\varphi(x), \psi(x)):x\in X\}$ for every $\varphi,$ $\psi\in j\zeta(X)$ .
Let $\mathcal{E}(X)=$ { $\varphi\in \mathcal{H}(X):\varphi$ is expansive} and $\mathcal{P}(X)=$ { $\varphi\in \mathcal{H}(X):\varphi$ has P.O. T. P.}.

In Section 3 we are concerned with the Cantor set $C$ . The Cantor set $C$

is the unique zero-dimensional infinite group. N. Aoki [1] proved that every
group automorphism of $C$ has P. $0$ . T. P. M. Sears [6] proved that $\mathcal{E}(C)$ is dense
in $\mathcal{H}(C)$ , constructing a dense subset $\cup q$ of $\mathcal{E}(C)$ in $\mathcal{H}(C)$ . M. Dateyama [3]

proved that $\mathcal{P}(C)$ is dense in $\mathcal{H}(C)$ , constructing a dense subset $B$ of $\mathcal{P}(C)$ in
$\mathcal{H}(C)$ . However, for the sets a and $\mathscr{Q}$ above we have $tA\cap B=\phi$ . So it is
unknown whether the set $\mathcal{E}(C)\cap \mathcal{P}(C)$ of all expansive homeomorphisms with
P.O. T. P. of $C$ is dense in $\mathcal{H}(C)$ . In Section 3 we shall prove the following
theorem.

THEOREM 1. The set of all expansive homeomorphisms with P. $0$ . T. P. of the
Cantor set $C$ is dense in $\mathcal{H}(C)$ .

We know [6] that $\mathcal{E}(C)$ is of first category. So $\mathcal{E}(C)\cap \mathcal{P}(C)$ is also of first
category.

The convergent sequence is another standard zero-dimensional space, classed
with the Cantor set. In Section 4 we shall prove the following theorem.
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THEOREM 2. Let $S=\{0,1,1/2,1/3, \cdots\}$ . Then
(a) the set of all expansive homeomorphisms of $S$ is dense in $\mathcal{H}(S)$ ,

(b) the set of all homeomorphisms with P. $0$ . T. P. of $S$ is dense in $\mathcal{H}(S)$ ,

(c) $S$ has no expansive homeomorphism with P.O. T. P.

In Section 5 we shall construct a zero-dimensional space having no expansive
homeomorphism.

2. Preliminaries.

Let $D^{Z}=\Pi\{D_{i} : i\in Z\}$ , where $D_{i}=\{0,1\}$ for every $i\in Z$ . We define the
metric $d$ on $D^{Z}$ by

$d(x, y)=\left\{\begin{array}{l}1/\min\{|k|.\cdot x_{k}\neq y_{k}\} if x_{0}=y_{0}\\2 if x_{0}\neq y_{0}\end{array}\right.$

for every $x=(\mathfrak{r}_{i}),$ $y=(y_{i})\in D^{Z}$ .
Obviously, $(D^{Z}, d)$ is homeomorphic to the Cantor set. For a homeomorphism

of a compact metrizable space $X$ it is clear that both expansiveness and P. $0$ . T. P.
do not depend on the choice of metrics on $X$. Thus we may regard $(D^{Z}, d)$ as
the Cantor set.

For every $i,$ $j\in Z$ with $i\leqq j$ we put $D(i, j)=\Pi\{D_{k} : i\leqq k\leqq j\}$ and for every
$f\in D(i, j)$ we put $c^{+}(f)=j$ and $c^{-}(f)=i$ . We define the order $\leqq on\cup\{D(i, j):i,$ $j$

$\in Z$ with $i\leqq j$ } $\cup D^{Z}$ as follows: $f\leqq g$ if and only if one of the following condi-
tions holds; (1) $f=g,$ (2) $f\in D(i, j),$ $g\in D(k, 1),$ $k\leqq i,$ $j\leqq l$ and $f_{m}=g_{m}$ for every
$m,$ $i\leqq m\leqq j,$ (3) $f\in D(i, j),$ $g\in D^{Z}$ and $f_{m}=g_{m}$ for every $m,$ $i\leqq m\leqq j$ , where $f=$

$(f_{i}, f_{i+1}, \cdots , f_{j})$ for $f\in D(i, j)$ and $f=(\cdots, f_{-1}, f_{0}, f_{1}, \cdots)$ for $f\in D^{Z}$ . For every
$f\in D(i, j)$ and any $n\in N$ with $i\leqq-n$ and $n\leqq j$ (or for every $f\in D^{Z}$ and any
$n\in N)$ we put $f_{1n}=(f_{-n}, f_{-n+1}, \cdots, f_{n})\in D(-n, n)$ . For every $f\in D(i, j)$ we put
$A_{f}=p_{ij^{1}}^{-}(f)$ , where $p_{ij}$ : $D^{Z}\rightarrow D(i, j)$ is the projection.

If a space $X$ is the union of a pairwise disjoint collection $\{X_{\lambda} : \lambda\in\Lambda\}$ of
open-and-closed subsets of $X$, then we represent $X$ as $X=\oplus\{X_{\lambda} : \lambda\in\Lambda\}$ .

3. Proof of Theorem 1.

Let $\psi:D^{Z}\rightarrow D^{Z}$ be a homeomorphism and $\epsilon>0$ . We shall construct an ex-
pansive homeomorphism $\varphi$ with P. $0$ . T. P. such that $d(\psi, \varphi)=\max\{d(\psi(x), \varphi(x))$ ;

$ x\in D^{Z}\}<\epsilon$ .
We take $k,$ $n\in N$ such that $ 1/k<\epsilon$ and $d(\psi(x), \psi(y))<1/k$ for every $x,$ $y\in D^{Z}$

with $d(x, y)<1/n$ .
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Claim 1. For every $f\in D(-n, n)$ there are $h(f)\in D(-k, k)$ and $ g(f)\in$

$D(-l_{1}, l_{2})$ for some $l_{1},$ $l_{2}\in N,$ $i=1,2$ , satisfying the following three conditions;
(a) $D^{Z}=\oplus\{A_{g(f)} : f\in D(-n, n)\}$ ,

(b) $\psi(A_{f})\subset A_{h(f)}$ ,

(c) $h(f)\leqq g(f)$ .

Proof of Claim 1. From diam $A_{f}<1/n$ it follows that diam $\psi(A_{f})<1/k$ .
Since $D^{Z}=\oplus\{A_{h} : h\in D(-k, k)\}$ and $d(A_{h}, A_{h^{\prime}})\geqq 1/n$ for every $h,$ $h^{\prime}\in D(-k, k)$

with $h\neq h^{\prime}$ , there is $h(f)\in D(-k, k)$ such that $\psi(A_{f})\subset A_{h(f)}$ . For every $ h\in$

$D(-k, k)$ list $\{f\in D(-n, n):h(f)=h\}$ as $\{f_{ht} : 1\leqq i\leqq p_{h}\}$ . For every $i,$ $1\leqq i\leqq p_{h}$ ,

we take $g_{hi}\geqq h$ such that $A_{h}=\oplus\{A_{g_{hi}} : 1\leqq i\leqq p_{h}\}$ . Let us set $g(f_{hi})=g_{hi}$ for
every $h\in D(-k, k)$ and any $i,$ $1\leqq i\leqq p_{h}$ . Then $g(f)$ and $h(f)$ have all the re-
quired properties.

Next, we shall construct a homeomorphism $\varphi:D^{Z}\rightarrow D^{Z}$ . For every $x\in D^{Z}$

we define $\varphi(x)$ as follows.
Let $f=x_{1n}\in D(-n, n)$ and $g(f)\in D(-l_{1}, l_{2})$ .
Case 1. $l_{1}+l_{2}\geqq 2n$ and $l_{2}\geqq n$ .
Let us set

$(\varphi(x))_{i}=\int_{x_{i+1}}^{(g(f))_{i}}$

$ifif$ $l_{2}+^{1}1\leqq i-l\leqq i\leqq l_{2}$

$x_{i+l_{1}+l_{2}+2}$ if $n-l_{1}-l_{2}-1\leqq i\leqq-l_{1}-1$

$X_{i-2n+l_{1}+l_{2}+1}$ if $i\leqq n-l_{1}-l_{2}-2$

and
$M^{+}(f)=1$ and $M^{-}(f)=-2n+l_{1}+l_{2}+1$ .

Case 2. $l_{1}+l_{2}<2n$ and $l_{1}\leqq n$ .
Let us set

$(\varphi(x))_{i}=r^{(g(f))_{i}}x_{i+1}$

$ifif$ $i^{-l_{1}\leqq i\leqq l}\leqq-n-2^{2}$

$|x_{i+2n- l_{I}- l_{2}+1}\chi i+2n+2$

if $l_{1}+1\leqq i$

if $-n-1\leqq i\leqq-l_{1}-1$

and
$M^{+}(f)=2n-l_{1}-l_{2}+1$ and $M^{-}(f)=1$ .

Case 3. otherwise, $i$ . $e$ . ( $l_{1}+l_{2}\geqq 2n$ and $l_{2}<n$ ) or ($l_{1}+l_{2}<2n$ and $l_{1}>n$ ).

In this case we have $l_{2}<n<l_{1}$ . Let us set
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$(\varphi(x))_{i}=\left\{\begin{array}{l}(g(f))_{i} if\\x_{l+n- l_{\underline{9}}} if\\x_{i+l_{1}- n} if\end{array}\right.$
$i^{2}\leqq-l-1^{2}l+^{1}1\leqq_{1}i-l\leqq i\leqq l$

and
$M^{+}(f)=n-l_{1}$ and $N^{-}(f)=l_{1}-n$ .

Then it is obvious that $\varphi_{1A_{f}}$ : $A_{f}\rightarrow A_{g(f)}$ is a homeomorphism. By (a), $\varphi$ is a
homeomorphism from $D^{Z}$ onto itself. Let us set $m=\max\{-c^{-}(g(f)),$ $c^{+}(g(f))$ :
$f\in D(-n, n)\}$ .

By the construction of $\varphi$ the following claim is easily seen.

Claim 2. Let $x,$ $y\in D^{Z}$ with $d(x, y)=1/k\leqq 1/2m$ .
(i) If $x_{k}\neq y_{k}$ , then $d(\varphi(x), \varphi(x))=1/l$ and $x_{l}\neq y_{l}$ , where $l=k-M^{+}(x_{1n})$ .
(ii) If $x_{-k}\neq y_{-k}$ , then $d(\varphi^{-1}(x), \varphi^{-1}(y))=1/l$ and $x_{-l}\neq y_{-l}$ , where $l=k-$

$M^{-}(x_{1n})$ .
By Claim 2, $1/2m$ is an expansive constant for $\varphi$ . Thus $\varphi$ is expansive.
To prove that $\varphi$ has P.O. T. P. we need the following mappings $\alpha$ and $\beta$ .
For every $ f\in\cup$ { $D(i,$ $j):i,$ $j\in Z$ with $i\leqq-n$ and $n\leqq j$ } let us set

$\alpha(f)=\max$ { $g:g<\varphi(h)$ for every $h\in D^{Z}$ with $f<h$ }.

For every $ g\in\cup$ { $D(i,$ $j):i,$ $j\in Z$ with $i\leqq-m$ and $m\leqq j$ } let us set

$\beta(g)=\max$ { $f:f<\varphi^{-1}(h)$ for every $h\in D^{Z}$ with $g<h$ }.

We shall show that $\varphi$ has P.O. T. P.
Let $\epsilon_{1}>0$ . We take $\delta=1/N$ such that $1/N<\min\{\epsilon_{1},1/2m\}$ . Let $\{x^{i} ; i\in Z\}$

be a $\delta$-pseudo-orbit of $\varphi$ . Let $K(-1)=-N-1$ . By induction on $0\leqq i\in Z$, we
choose $K(i)$ and $y_{j}\in D_{j}$ for every $j,$ $K(i-1)<j\leqq K(i)$ , satisfying the following
conditions:

(d) $K(i-1)<K(i)$ ,

(e) $c^{+}(\alpha^{i}(y^{i}))=N$,
(f) $\alpha^{i}(y^{i})_{1N}=x^{k_{1N}}$ ,

where $y^{i}=(y_{-N}, y_{-N+1}, \cdots, y_{K(i)})\in D(-N, K(i))$ .
In case $i=0$ , let $K(O)=N$ and for every $j,$ $-K(-1)<j\leqq K(O)$ , let $y_{j}=x_{j}^{0}$ .

Assume that $K(i)$ and $y_{j},$ $K(i-1)<$ ] $\leqq K(i)$ , are chosen such that the above con-
ditions hold. Let us set $K(i+1)=K(i)+M^{+}(\alpha^{i}(y^{i})_{1n})$ and $y_{j}=x_{J}^{i}\ddagger_{N-K(i+1)}^{1}$ for
every $j,$ $K(i)<$ ] $\leqq K(i+1)$ . It is easy to check that all induction hypothesis are
satisfied. Let $L(1)=N+1$ . By induction on $0\geqq i\in Z$, similarly as above, we
choose $L(i)$ and $y_{j}\in D_{j}$ for every $j,$ $L(i)\leqq j<L(i+1)$ , satisfying the following
conditions:
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(g) $L(i)<L(i+1)$ ,

(h) $c^{-}(\beta^{-i}(y^{i}))=-N$,

(i) $\beta^{-i}(y^{i})_{1N}=x^{k_{1N}}$ ,

where $y^{i}=(y_{L(i)}, y_{L(i)+1}, \cdots , y_{N})\in D(L(i), N)$ . Let us set $y=(\cdots, y_{-1}, y_{0}, y_{1}, \cdots)$

$\in D^{Z}$ . Then for every $i\geqq 0$ we have $\varphi^{i}(y)>\alpha^{i}(y^{i})$ and $\alpha^{i}(y^{i})_{1N}=x\dagger N$ . This im-
plies that $\varphi^{i}(y)_{1N}=x\dagger N$ and therefore we have $d(\varphi^{i}(y), x^{i})<1/N<\epsilon_{1}$ . For every
$i\leqq 0$ we have $\varphi^{i}(y)>\beta^{-i}(y^{i})$ and $\beta^{-i}(y^{i})_{1N}=x^{i_{|N}}$ . This implies that $\varphi^{i}(y)_{1N}=x^{i_{|N}}$

and therefore we have $d(\varphi^{i}(y), x^{i})<1/N<\epsilon_{1}$ . Hence $\{x^{i} ; i\in Z\}$ is $\epsilon_{1}$ -traced by

$y$ . Therefore $\varphi$ has P.0. T. P.
We show that $ ff(\varphi, \psi)<\epsilon$ . By the construction of $\varphi,$ $\varphi((A_{f}))=A_{g(f)}$ for every

$f\in D(-n, n)$ . For every $x\in D^{Z}$ , we have $x\in A_{f}$ for some $f\in D(-n, n)$ . Thus,
by (c), we have $\varphi(x)\in\varphi(A_{f})=A_{g(f)}\subset A_{h(f)}$ . On the other hand, by (b), we have
$\psi(x)\in\psi(A_{f})\subset A_{h(f)}$ . From diam $ A_{h(f)}=1/(k+1)<\epsilon$ it follows that $d(\varphi(x), \psi(x))$

$<\epsilon$ . Hence we have $ d(\varphi, \psi)<\epsilon$ . Theorem 1 has been proved.

4. Proof of Theorem 2.

Let $d$ be the Euclidean metric on $S=\{0,1,1/2,1/3, \cdots\}$ . Note that a map-
ping $\varphi:S\rightarrow S$ is a homeomorphism if and only if $\varphi$ is one-to-one, onto and
$\varphi(0)=0$ . For every $n\in N$ we set $S_{n}=\{1/(n-1), 1/(n-2), \cdots , 1\}$ .

(a) Let $\psi\in \mathcal{H}(S)$ and $\epsilon_{0}>0$ . We construct $\varphi\in \mathcal{E}(S)$ such that $d(\varphi, \psi)<\epsilon_{0}$ .
To do this, we take $n\in N$ with $1/n<\epsilon_{0}$ . For every $m\in N,$ $m<n$ , we take
$x_{m}\in S$ such that $\psi(x_{m})=1/m$ . Let $l=\max\{1/x_{m} ; m<n\}+1$ . For every $k\in N$,
$k\geqq l$ , let us set

$\varphi(1/k)=\left\{\begin{array}{l}1/(k-2)\\1/(k+2)\\1/(l+1)\end{array}\right.$ $ifififk=l+2i-1forsomei\in Nk=lk=l+2iforsomei\in N$

For every $m\in N,$ $m<n$ , let us set $\varphi(x_{m})=1/m(=\psi(x_{m}))$ . Let $\varphi(0)=0$ , and for
every $x\in S_{l}-\{x_{m} : m<n\}$ let $\varphi(x)$ be an element of $S_{l}-S_{n}$ such that $\varphi(x)\neq\varphi(x^{\prime})$

for every $x,$ $x^{\prime}\in S_{l}-\{x_{m} : m<n\}$ with $x\neq x^{\prime}$ . Then $\varphi$ is one-to-one, onto and
$\varphi(0)=0$ . Thus $\varphi\in \mathcal{H}(S)$ . By the construction of $\varphi$ , it is obvious that $ d(\varphi, \psi)\leqq$

$1/n<\text{\’{e}}_{0}$ . Let $c=1/(2l^{2}+2l)$ . Note that $U_{c}(1/l)=\{1/l\}$ . We show that $c$ is an
expansive constant for $\varphi$ . Let $x,$ $y\in S$ with $x\neq y$ . We may assume that $x\neq 0$ .
If $x\in S_{l}$ , then $d(x, y)>c$ . If $x\not\in S_{l}$ , then $\varphi^{i}(x)=1/l$ for some $i\in Z$, and there-
fore $d(\varphi^{i}(x), \varphi^{i}(y))>c$ . Hence we have $\varphi\in \mathcal{E}(S)$ .

(b) Let $\psi\in \mathcal{H}(S)$ and $\epsilon_{0}>0$ . We costruct $\varphi\in \mathcal{P}(S)$ such that $d(\varphi, \psi)<\epsilon_{0}$ .
Let $n,$

$l$ and $x_{m},$ $m<n$ , be as in (a). For every $x\in S_{l}$ let $\varphi(x)$ be as in (a).
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For every $x\in S-S_{l}$ let $\varphi(x)=x$ . Then, similarly as in (a), we have $\varphi\in \mathcal{H}(S)$

and $d(\varphi, \psi)<\epsilon_{0}$ . To prove that $\varphi$ has P. $0$ . T. P. let $\epsilon_{1}>0$ . Take $k\in N$ with
$1/k<\min\{\epsilon_{1},1/1\}$ . Let $\delta=1/(k^{2}+k)$ . Note that $U_{\delta}(1/])=\{1/j\}$ for every $j\in N$,
$j\leqq k$ . It suffices that every $\delta$-pseudo-orbit of $\varphi$ can be $\epsilon_{1}$ -traced by some point

of $S$ . Let $\{y_{i} : i\in Z\}$ be a $\delta$-pseudo-orbit of $\varphi$ . If $y_{0}\in S-S_{k}$ , then $y_{i}\leqq 1/n<\epsilon_{1}$

for every $i\in Z$ . Thus $\{y_{i} : i\in Z\}$ is $\epsilon_{1}$ -traced by $y_{0}$ . If $y_{0}\in S_{k}$ , then $y_{i}=\varphi^{i}(y_{0})$

for every $i\in Z$ . Thus $\{y_{i} : i\in Z\}$ is $\epsilon_{1}$ -traced by $y_{0}$ . Hence $\varphi$ has P.O. T. P.
(c) Let $\varphi\in \mathcal{E}(S)$ with an expansive constant $c$ . It is enough to prove that

$\varphi\not\in \mathcal{P}(S)$ . We take $n\in N$ with $1/n<c$ . Assume that $1/m$ is a periodic point for
every $m\in N$, $m<n$ . Then $\cup\{0rb(1/m):m<n\}$ is finite, where Orb $(x)=$

$\{\varphi^{i}(x):i\in Z\}$ . Pick up a point $x\in S-(\cup\{Orb(1/m):m<n\}\cup\{0\})$ . Then we
have Orb $(x)\subset S-S_{n}$ , therefore $d(\varphi^{i}(x), \varphi^{i}(0))\leqq 1/n<c$ for every $i\in Z$. This is
a contradiction. Take $m<n$ such that $1/m$ is not a periodic point. Let $\epsilon=$

$1/(m^{2}+m)$ . For every $\delta>0$ we can take $l\in N$ such that $\varphi^{\iota-1}(1/m)<\delta$ and
$\varphi^{-l}(1/m)<\delta$ , because $\lim_{i\rightarrow\infty}\varphi^{i}(1/m)=0$ the $\lim_{i\rightarrow\infty}\varphi^{-i}(1/m)=0$ . Let us set

$y_{2kl+j}=\left\{\begin{array}{l}\varphi^{J}(1/m)\\\varphi^{j- 2l}(1/m)\end{array}\right.$
$ifif$ $0\leqq j\leqq l-1l\leqq j\leqq 2l$

Then $\{y_{i} : i\in Z\}$ is a $\delta$-pseudo-orbit of $\varphi$ . Assume that $\{y_{i} : i\in Z\}$ is $\epsilon$ -traced
by $y\in S$ . Since $U_{6}(1/m)=\{1/m\}$ and $y_{2kl}=1/m$ for every $k\in Z$, we have $\varphi^{2kl}(y)$

$=1/m$ for every $k\in Z$ . This implies that $1/m$ is a periodic point. This is a
contradiction. Hence $S$ has no expansive homeomorphism with P.O. T. P.

5. A zero-dimensional space having no expansive homeomorphism.

S. Fujii [4] proved that a space $X$ is zero-dimensional if and only if the
identity mapping $id_{X}$ has P.O. T. P. So every zero-dimensional space has at
least one homeomorphism with P.0. T. P. We know ([2], or see [5]) that the
unit interval has no expansive homeomorphism. However, as far as the author
knows it is unknown whether there is a zero-dimensional space having no ex-
pansive homeomorphism. In this section we construct such a space $X$ . Note
that the space $X$ above is contained in the Cantor set, because the Cantor set is
universal for the class of zero-dimensional spaces.

Let $C\subset[0,1]$ be the Cantor set and $S=\{0,1,1/2, \cdots\}$ a convergent sequence.
Let $X_{n}=(C\oplus S^{n})/\{0,0_{n}\}$ be the quotient space obtained by identifying $\{0,0_{n}\}$ to

a point $x_{n}$ , where $O\in C$ and $0_{n}=(0,0, \cdots, 0)\in S^{n}$ , for every $n\in N$, and let $X_{0}=$

$\{x_{0}\}$ be a one-point space. Let $X=\cup\{X_{n} : n\in N\cup\{0\}\}$ . We give $X$ a topology
as follows. Let $\mathscr{Q}(x)=$ { $U:U$ is a neighborhood of $x$ in $X_{n}$ } for every $x\in X$,
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$n\in N$, and $\mathscr{D}(x_{0})=\{\cup\{X_{i} : j\leqq i\}\cup X_{0} : j\in N\}$ . Then $\{\mathscr{D}(x):x\in X\}$ is a neigh-
borhood system. Obviously the space $X$ with the topology generated by { $9(x)$ :
$x\in X\}$ is compact, metrizable and zero-dimensional. Next we show that $X$ has
no expansive homeomorphism. To do this let $\varphi$ be a homeomorphism of $X$.
The point $x_{n}$ is the only point that has arbitrarily small neighborhoods contain-
ing a set homeomorphic to the Cantor set, a set homeomorphic to $S^{n}$ , and no
set homeomorphic to $S^{n+1}$ . Therefore we have $\varphi(x_{n})=x_{n}$ for every $n\in N$.
Thus $\varphi$ has infinitely many fixed points. Hence $\varphi$ is not expansive.

After I finished writing an early version of this paper, I knew that T. Shi-
momura [7] also proved Theorem 1, independently.
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