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Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature $c$ is
called a complex space form. The complete and simply connected complex space
form of complex dimension $n$ consists of a complex projective space $P^{n}C$ , a
complex Euclidean space $C^{n}$ or a complex hyperbolic space $H^{n}C$ , according as
$c>0,$ $c=0$ or $c<0$ .

Many subjects for real hypersurfaces of a complex projective space $P^{n}C$

have been studied [1], [4], [5] and [6]. One of which, done by Kimura [6],

asserts the following interesting result.

THEOREM K. There are no real hypersurfaces of $P^{n}C$ with parallel Ricci
tensor on which $ J\xi$ is principal, where $\xi$ denotes the unit normal and $J$ is the com-
plex structure of $P^{n}C$ .

A Riemannian curvature of a Riemannian manifold $M$ is said to be harmonic
if the Ricci tensor $S$ satisfies the Codazzi equation, that is,

(0.1) $\nabla_{X}S(Y, Z)-\nabla_{Y}S(X, Z)=0$

for any tangent vector fields $X,$ $Y$ and $Z$ , where $\nabla$ denotes the Riemannian con-
nection of $M$. This condition is essentially weaker than that of the parallel

Ricci tensor [2]. From this point of view, Kwon and Nakagawa [5] extends
recently the following:

THEOREM K-N. There are no real hypersurfaces with harmonic curvature of
$P^{n}C$ on which $ J\xi$ is principal.

Now we are interested in these problems in the case of $c<0$ , that is, the
ambient space is a complex hyperbolic space $H^{n}C$ . Montiel [7] stated that there
are no Einstein real hypersurfaces in $H^{n}C$ , and classified the pseudo-Einstein

real hypersurfaces of $H^{n}C$. In this paper, we will prove
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THEOREM. There are no real hypersurfaces with harmonic curvature of $H^{n}C$

on which $ J\xi$ is principal.

We also obtain Kimura’s theorem when the ambient space is a complex
hyperbolic space as a corollary.

1. Preliminaries.

We begin with recalling fundamental formulas on real hypersurfaces of a
complex hyperbolic space. Let $M$ be a real hypersurface of a complex hyper-
bolic space $H^{n}C(n\geqq 2)$ , endowed with the Bergman metric tensor $g$ of constant
holomorphic sectional curvature $-4$ , and let $J$ be the complex structure of $H^{n}C$.
For any $X$ tangent to $M$, we put

(1.1) $ JX=PX+\omega(X)\xi$ ,

where $PX$ and $\omega(X)\xi$ are, respectively, the tangent and normal components of
$M$. Then $P$ is a tensor field of type $(1, 1)$ and $\omega$ a l-form over $M$. We denote
by $E$ the tangent vector field $-J\xi$ . Then it is well known that $M$ admits an
almost contact metric structure $(P, E, \omega, g)$ . Let $\sigma$ be a second fundamental
form of $M$ and $A$ a shape operator derived from $\xi$ . The covariant derivative
$\nabla_{X}P$ of the structure tensor $P$ is denoted by $\nabla_{X}P(Y)=\nabla_{X}(PY)-P\nabla_{X}Y$ . Then it
follows from the Gauss and Weingartan formulas that the structure $(P, E, \omega, g)$

satisfies

(1.2) $\nabla_{X}P(Y)=-g(AX, Y)E+\omega(Y)AX$ ,

$\nabla_{x}E=PAX$

for any tangent vectors $X$ and $Y$ on $M$, where $\nabla$ denotes the Riemannian con-
nection of the hypersurface.

Since $H^{n}C$ is of constant holomorphic sectional curvature $-4$ , the Gauss and
Codazzi equations are respectively given:

(1.3) $R(X, Y)Z=-\{g(Y, Z)X-g(X, Z)Y+g(PY, Z)PX-g(PX, Z)PY$

$+2g(X, PY)PZ\}+g(AY, Z)AX-g(AX, Z)AY$ ,

(1.4) $\nabla_{X}A(Y)-\nabla_{Y}A(X)=-\{\omega(X)PY-\omega(Y)PX+2g(X, PY)E\}$ .
By the Gauss equation, The Ricci tensor $S$ of $M$ is given by

(1.5) $S(X, Y)=-\{(2n+1)g(X, Y)-3\omega(X)\omega(Y)\}+hg(AX, Y)-g(AX, AY)$ ,

where $h$ denotes the trace of the shape operator $A$ .
From now on, we assume that the structure vector field $E$ is principal,
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thot is, $E$ is eigenvector of $A$ associated with eigenvalue $\alpha$ . Then equation (1.2)

implies that

(1.6) $\nabla_{X}A(E)=d\alpha(X)E+\alpha PAX-$ APAX,

which together with (1.4) yields

(1.7) $2APA=\alpha(AP+PA)-2P$ ,

$\beta(AP+PA)=0$ , $ d\alpha=\beta\omega$ ,

where $\beta=d\alpha(E)$ . Taking account of (1.4) (1.6) and (1.7), it is easy to see that

(1.8) $\nabla_{X}A(E)=\alpha(PA-AP)X/2+PX+\beta\omega(X)E$ ,

$\nabla_{E}A(X)=\alpha(PA-AP)X/2+\beta\omega(X)E$ .

2. Proof of the Theorem.

At first we determine the hypersurface $M$ satisfying (0.1). Using (1.5), we
see that (0.1) is equivalent to

(2.1) $h\{g(\nabla_{X}A(Y)-\nabla_{Y}A(X), Z)+g(\nabla_{X}A(Y)-\nabla_{Y}A(X), AZ)-g(\nabla_{X}A(Z), AY)$

$+g(\nabla_{Y}A(Z), AX)\}+(\nabla_{X}h)g(AY, Z)-(\nabla_{Y}h)g(AX, Z)+3\{g(PAX, Y)\omega(Z)$

$+g(PAX, Z)\omega(Y)-g(PAY, X)\omega(Z)-g(PAY, Z)\omega(X)\}=0$

for any vector fields $X,$ $Y$ and $Z$ tangent to $M$. Putting $Z=E$ in (2.1) and
taking account of (1.8), we have

(2.2) $\alpha(PA^{2}+A^{2}P)/2+2(PA+AP)-\alpha APA-2(\alpha-h)P=0$ .

Similarly, putting $X=E$ in (2.1), we also obtain

(2.3) $-(3PA-AP)+\alpha(PA-AP)(\alpha-A)/2-(h-\alpha)P+\gamma A-\alpha dh\otimes E=0$ ,

where $\gamma=dh(E)$ .
Now first of all we prove that the principal curvature $\alpha$ is constant. Sup-

pose that there exist points $x$ at which $\beta(x)\neq 0$ . Then we have $AP+PA=0$
and $APA=-P$ by means of (1.7). Taking a principal vector $X$ orthogonal to $E$

with principal curvature $\lambda$ , we find $\lambda=\pm 1$ and $-\lambda$ is also a principal curvature.
This implies that $ h=\alpha$ and hence $\alpha P=0$ at $x$ by means of (1.7) and (2.2), which
together with (2.3) yields $\lambda=0$ . A contradiction. So we have $\beta=d\alpha(E)=0$ on
$M$. Moreover using (1.7), we have $d\alpha(X)=0$ for any $X$ orthogonal to $E$ . Con-
sequently, we can say that $\alpha$ is constant. Moreover it is non-zero. In fact,
suppose that $\alpha=0$ . Then we can verify, making use of (2.2) and (2.3), that it
follows that

$-4PA-2hP+\gamma A=0$ .
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Let $X$ be a principal vector with principal curvature $\lambda$ which is orthogonal to
$E$ . Then by means of above equation, we have $(4\lambda+2h)PX-\gamma\lambda X=0$ , which
implies that $2\lambda+h=0$ and $\gamma\lambda=0$ , because $X$ and $PX$ are mutually orthogonal.
This implies that the trace of $A$ satisfies $h=\alpha+(2n-2)\lambda=-(n-1)h$ , which
means that $\lambda=h=0$ , and hence $M$ is totally geodesic. Thus it is a contradiction.

Next, the constancy of the mean curvature $h$ will be proved. Replacing $X$

and $Z$ by $E$ and making use of (1.8), equation (2.1) becomes

(2.4) $\alpha(\gamma\omega-dh)=0$

Since $\alpha$ is non-zero constant, equation (2.4) yields

$gradh=\gamma E$ ,

from which we have

$d\gamma(X)\omega(Y)-d\gamma(Y)\omega(X)=-\gamma g((PA+AP)X, Y)$

for any $X$ and $Y$ , because of the fact that $g(\nabla_{X}gradh, Y)=g(\nabla_{Y}gradh, X)$ .
Suppose that there exist points $x$ at which $\gamma(x)\neq 0$ . Putting $Y=E$ in the above
equation, we have $ d\gamma=d\gamma(E)\omega$ and hence it implies that $PA+AP=0$ . Making
use of the same discussion as above, we get $P=0$ , which is a contradiction.
Thus $\gamma$ vanishes identically and by (2.4) $h$ must be constant.

LEMMA. Let $M$ be a real hypersurfaces with harmonic curvature of $H^{n}C$.
If the structure vector $E$ is principal, then all principal curvatures are constant
and the number of distinct principal curvatures is at most 5.

PROOF. Let $X$ be a principal vector orthogonal to $E$ with principal curva-
ture $\lambda$ . Then it follows from (1.7) that

(2.5) $(2\lambda-\alpha)APX=(\alpha\lambda-2)PX$ .
Fix any point $q$ of $M$ such that

$\lambda_{1}(q)=\cdots=\lambda_{s}(q)=\alpha/2$ , $\lambda_{s+1}(q)\neq\alpha/2,$
$\cdots,$ $\lambda_{2n-2}(q)\neq\alpha/2$ ,

where $0\leqq s\leqq 2n-2$ . Then there exists a neighborhood $W_{\lambda}$ of $q$ such that $\lambda_{r}\neq$

$\alpha/2$ on $W_{\lambda}$ , where $r\geqq s+1$ . For $\lambda=\lambda_{r},$ $Y=PX$ is also a principal vector on the
open set $W_{\lambda}$ and its corresponding principal curvature is given by $\mu=(\alpha\lambda-2)/$

$(2\lambda-\alpha)$ . Hence (2.3) is reduced to

(2.6) $(3\lambda-\mu)-\alpha^{2}(\lambda-\mu)/2+\alpha(\lambda-\mu)\lambda/2+(h-\alpha)=0$ .
Accordingly the principal curvature $\lambda=\lambda_{r}$ is the roots of the following cubic
equation with constant coefficients:
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(2.7) $\alpha x^{3}-2(\alpha^{2}-3)x^{2}+(\alpha^{3}-5\alpha+2h)x-(\alpha h-2)=0$ .

It means that the number of distinct principal curvatures for any fixed point $q$

is at most 5 and $\lambda_{r}$ are constant on $W_{\lambda}$ .
Next we will show that all principal curvatures are constant. Suppose that

there exist a point $y$ in $W_{\lambda}$ and an index $a$ at which $\lambda_{a}(y)\neq\alpha/2,$ $a\leqq s$ . Then
$y$ is a distinct point from $q$ . Let $W_{a}$ be the set consisting of points of $W_{\lambda}$ at
which $\lambda_{a}\neq\alpha/2$ . By the same discussion as above $\lambda_{a}$ are constant on $W_{a}$ and
hence the continuity of $\lambda_{a}$ shows that $W_{a}$ is closed. Without loss of generality,
we may assume that $W_{\lambda}$ is connected. In fact, we may take a connected com-
ponents of $W_{\lambda}$ if necessary. Since $W_{a}$ is open and closed in the connected set
$W_{\lambda}$ , we conclude $W_{a}$ is empty, that is, $\lambda_{a}=\alpha/2$ for any $a\leqq s$ on $W_{\lambda}$ . Accord-
ingly all principal curvatures are constant in $W_{\lambda}$ and hence $W_{\lambda}$ is equal to $M$,

that is, all principal curvatures are constant on $M$.

Finally, we are going to prove the main theorem mentioned in the Intro-
duction. Let $X$ be a principal vector orthogonal to $E$ with principal curvature
$\lambda(\neq\alpha/2)$ . Then $PX$ is also a principal vector with principal curvature $\mu=(\alpha\lambda-2)/$

$(2\lambda-\alpha)$ . It follows from (2.7) that $\lambda$ satisfies

$\alpha\lambda^{3}-2(a^{2}-3)\lambda^{2}+(a^{3}-5a+2h)\lambda-(\alpha h-2)=0$ .
Suppose that $\lambda\neq\mu$ . It follows from (2.6) that

(2.3) $\alpha\lambda^{2}-2(\alpha^{2}-4)\lambda+\alpha(\alpha^{2}-5)=0$ .
From two equations obtained above it follows that

(2.9) $2\lambda^{2}-2h\lambda+\alpha h-2=0$ .
We assert that the operator $P$ commutes with the shape operator $A$ . If

$s=2n-2$ , then the property $PA=AP$ is trivial. So suppose that $0<s<2n-2$ .
Since there exists at least one principal vector associated with principal curva-
ture $\alpha/2$ by means of the supposition, the equation (2.5) emplies $\alpha=\pm 2$ and
hence we get $\lambda\neq\mu$ for the principal curvature $\lambda$ different from $\alpha/2$ . In fact, if
$\lambda=\mu$ , we see $\lambda^{2}-\alpha\lambda+1=0$ , which means that $\lambda=\pm 1=\alpha/2$ . Then, from (2.8)

and (2.9) we have $h=2(\alpha^{2}-4)/\alpha=0$ and $\lambda=-\mu=\pm 1$ . On the other hand, $h$ is
given by $h=(s+2)\alpha/2$ , a contradiction. Accordingly we may only consider the
case of $s=0$ . Now, for a real hypersurface $M$ of a complex hyperbolic space
$H^{n}C$ , one can construct a Lorentzian hypersurface $N$ of an anti-de Sitter space
$S_{1}^{2n+1}$ which is a principal $S^{1}$-bundle over $M$ with totally geodesic fibers and the
projection $\pi;N\rightarrow M$ in sueh a way that the diagram
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$MN\rightarrow^{\prime}H^{n}\underline{i}iS_{1}^{2n+1}\downarrow_{c}$

is commutative ( $i$ and $i^{\prime}$ being respective isometric immersions). Let $\mu_{1},$ $\cdots,$ $\mu_{2n-1}$

be principal curvatures of $M$ at any point $x$ such that $\mu_{1}=\alpha$ . Since the struc-

ture vector $E$ is assumed to be principal, let $E_{1},$
$\cdots,$

$E_{2n-1}$ be an orthonormal
basis of $T_{x}M$ with $AE_{1}=\alpha E_{1}$ and $AE_{a}=\mu_{a}E_{a}(a=2, \cdots, 2n-1)$ . Then horizontal
lift $E_{a}^{*}$ and a unit vector $E^{\prime}$ form an orthonormal basis of $T_{2}N,$ $\pi(z)=x$ , with
respect to the shape operator $A^{\prime}$ of $N$ is represented by

$(\frac{0-1\alpha}{0}\frac{01}{\mu_{2}}1|_{1_{\mu_{2n1}})}$

where the first submatrix corresponds to the restriction of $A^{\prime}$ to the Lorentzian
plane spanned by $\{E^{\prime}, E_{1}^{*}\}$ . See Montiel [7]. This means that $N$ is an iso-
parametric hypersurface of $S_{1}^{2n+1}$ and hence a theorem due to Hahn [3] implies
$\lambda\mu=1$ . Thus the principal curvatures $\lambda$ and $\mu$ satisfy $\lambda\mu=\alpha^{2}-5$ and $\lambda+\mu=4/\alpha$

from (2.8), which implies that $4n-2=0$ by the definition of the mean curvature,

a contradiction. Hence we have $\lambda=\mu$ , which implies $PA=AP$.
Therefore, we obtain $\lambda=(\alpha-h)/2$ by means of (2.6) and hence, in spite of

$s=0$ or $s>0$ , we have $\alpha=h$ , which enables us to obtain $\lambda=0$ . Making use of
(2.5) again, we have $PA=AP=0$ and hence $P=0$ by means of (1.7), which is a
contradiction. Thus the theorem is completely proved.

COROLLARY. There are no real hypersurfaces of $H^{n}C$ with parallel Ricci
tensor on which the structure vector $E$ is principal.
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