A NOTE ON REAL HYPERSURFACES OF A COMPLEX HYPERBOLIC SPACE

By

He-Jin Kim

Introduction.

A Kaehlerian manifold of constant holomorphic sectional curvature c is called a complex space form. The complete and simply connected complex space form of complex dimension n consists of a complex projective space $P^{n} C$, a complex Euclidean space C^{n} or a complex hyperbolic space $H^{n} C$, according as $c>0, c=0$ or $c<0$.

Many subjects for real hypersurfaces of a complex projective space $P^{n} C$ have been studied [1], [4], [5] and [6]. One of which, done by Kimura [6], asserts the following interesting result.

Theorem K. There are no real hypersurfaces of $P^{n} C$ with parallel Ricci tensor on which $J \xi$ is principal, where ξ denotes the unit normal and J is the complex structure of $P^{n} C$.

A Riemannian curvature of a Riemannian manifold M is said to be harmonic if the Ricci tensor S satisfies the Codazzi equation, that is,

$$
\begin{equation*}
\nabla_{X} S(Y, Z)-\nabla_{Y} S(X, Z)=0 \tag{0.1}
\end{equation*}
$$

for any tangent vector fields X, Y and Z, where ∇ denotes the Riemannian connection of M. This condition is essentially weaker than that of the parallel Ricci tensor [2]. From this point of view, Kwon and Nakagawa [5] extends recently the following:

Theorem K-N. There are no real hypersurfaces with harmonic curvature of $P^{n} C$ on which $J \xi$ is principal.

Now we are interested in these problems in the case of $c<0$, that is, the ambient space is a complex hyperbolic space $H^{n} C$. Montiel [7] stated that there are no Einstein real hypersurfaces in $H^{n} C$, and classified the pseudo-Einstein real hypersurfaces of $H^{n} C$. In this paper, we will prove

Received September 4, 1987.

Theorem. There are no real hypersurfaces with harmonic curvature of $H^{n} \mathrm{C}$ on which J§ is principal.

We also obtain Kimura's theorem when the ambient space is a complex hyperbolic space as a corollary.

1. Preliminaries.

We begin with recalling fundamental formulas on real hypersurfaces of a complex hyperbolic space. Let M be a real hypersurface of a complex hyperbolic space $H^{n} C(n \geqq 2)$, endowed with the Bergman metric tensor g of constant holomorphic sectional curvature -4 , and let J be the complex structure of $H^{n} C$. For any X tangent to M, we put

$$
\begin{equation*}
J X=P X+\omega(X) \xi, \tag{1.1}
\end{equation*}
$$

where $P X$ and $\omega(X) \xi$ are, respectively, the tangent and normal components of M. Then P is a tensor field of type $(1,1)$ and ω a 1 -form over M. We denote by E the tangent vector field $-J \xi$. Then it is well known that M admits an almost contact metric structure (P, E, ω, g). Let σ be a second fundamental form of M and A a shape operator derived from ξ. The covariant derivative $\nabla_{X} P$ of the structure tensor P is denoted by $\nabla_{X} P(Y)=\nabla_{X}(P Y)-P \nabla_{X} Y$. Then it follows from the Gauss and Weingartan formulas that the structure (P, E, ω, g) satisfies

$$
\begin{align*}
& \nabla_{X} P(Y)=-g(A X, Y) E+\omega(Y) A X, \tag{1.2}\\
& \nabla_{X} E=P A X
\end{align*}
$$

for any tangent vectors X and Y on M, where ∇ denotes the Riemannian connection of the hypersurface.

Since $H^{n} C$ is of constant holomorphic sectional curvature -4 , the Gauss and Codazzi equations are respectively given:

$$
\begin{align*}
R(X, Y) Z= & -\{g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X-g(P X, Z) P Y \tag{1.3}\\
& +2 g(X, P Y) P Z\}+g(A Y, Z) A X-g(A X, Z) A Y
\end{align*}
$$

$$
\begin{equation*}
\nabla_{X} A(Y)-\nabla_{Y} A(X)=-\{\omega(X) P Y-\omega(Y) P X+2 g(X, P Y) E\} \tag{1.4}
\end{equation*}
$$

By the Gauss equation, The Ricci tensor S of M is given by

$$
\begin{equation*}
S(X, Y)=-\{(2 n+1) g(X, Y)-3 \omega(X) \omega(Y)\}+h g(A X, Y)-g(A X, A Y), \tag{1.5}
\end{equation*}
$$

where h denotes the trace of the shape operator A.
From now on, we assume that the structure vector field E is principal,
thot is, E is eigenvector of A associated with eigenvalue α. Then equation (1.2) implies that

$$
\begin{equation*}
\nabla_{X} A(E)=d \alpha(X) E+\alpha P A X-A P A X, \tag{1.6}
\end{equation*}
$$

which together with (1.4) yields

$$
\begin{align*}
& 2 A P A=\alpha(A P+P A)-2 P, \tag{1.7}\\
& \beta(A P+P A)=0, \quad d \alpha=\beta \omega,
\end{align*}
$$

where $\beta=d \alpha(E)$. Taking account of (1.4) (1.6) and (1.7), it is easy to see that

$$
\begin{align*}
& \nabla_{X} A(E)=\alpha(P A-A P) X / 2+P X+\beta \omega(X) E, \tag{1.8}\\
& \nabla_{E} A(X)=\alpha(P A-A P) X / 2+\beta \omega(X) E .
\end{align*}
$$

2. Proof of the Theorem.

At first we determine the hypersurface M satisfying (0.1). Using (1.5), we see that (0.1) is equivalent to

$$
\begin{align*}
& h\left\{g\left(\nabla_{X} A(Y)-\nabla_{Y} A(X), Z\right)+g\left(\nabla_{X} A(Y)-\nabla_{Y} A(X), A Z\right)-g\left(\nabla_{X} A(Z), A Y\right)\right. \tag{2.1}\\
& \left.+g\left(\nabla_{Y} A(Z), A X\right)\right\}+\left(\nabla_{X} h\right) g(A Y, Z)-\left(\nabla_{Y} h\right) g(A X, Z)+3\{g(P A X, Y) \omega(Z) \\
& +g(P A X, Z) \omega(Y)-g(P A Y, X) \omega(Z)-g(P A Y, Z) \omega(X)\}=0
\end{align*}
$$

for any vector fields X, Y and Z tangent to M. Putting $Z=E$ in (2.1) and taking account of (1.8), we have

$$
\begin{equation*}
\alpha\left(P A^{2}+A^{2} P\right) / 2+2(P A+A P)-\alpha A P A-2(\alpha-h) P=0 . \tag{2.2}
\end{equation*}
$$

Similarly, putting $X=E$ in (2.1), we also obtain

$$
\begin{equation*}
-(3 P A-A P)+\alpha(P A-A P)(\alpha-A) / 2-(h-\alpha) P+\gamma A-\alpha d h \otimes E=0, \tag{2.3}
\end{equation*}
$$

where $\gamma=d h(E)$.
Now first of all we prove that the principal curvature α is constant. Suppose that there exist points x at which $\beta(x) \neq 0$. Then we have $A P+P A=0$ and $A P A=-P$ by means of (1.7), Taking a principal vector X orthogonal to E with principal curvature λ, we find $\lambda= \pm 1$ and $-\lambda$ is also a principal curvature. This implies that $h=\alpha$ and hence $\alpha P=0$ at x by means of (1.7) and (2.2), which together with (2.3) yields $\lambda=0$. A contradiction. So we have $\beta=d \alpha(E)=0$ on M. Moreover using (1.7), we have $d \alpha(X)=0$ for any X orthogonal to E. Consequently, we can say that α is constant. Moreover it is non-zero. In fact, suppose that $\alpha=0$. Then we can verify, making use of (2.2) and (2.3), that it follows that

$$
-4 P A-2 h P+\gamma A=0 .
$$

Let X be a principal vector with principal curvature λ which is orthogonal to E. Then by means of above equation, we have $(4 \lambda+2 h) P X-\gamma \lambda X=0$, which implies that $2 \lambda+h=0$ and $\gamma \lambda=0$, because X and $P X$ are mutually orthogonal. This implies that the trace of A satisfies $h=\alpha+(2 n-2) \lambda=-(n-1) h$, which means that $\lambda=h=0$, and hence M is totally geodesic. Thus it is a contradiction.

Next, the constancy of the mean curvature h will be proved. Replacing X and Z by E and making use of (1.8), equation (2.1) becomes

$$
\begin{equation*}
\alpha(\gamma \omega-d h)=0 \tag{2.4}
\end{equation*}
$$

Since α is non-zero constant, equation (2.4) yields

$$
\operatorname{grad} h=\gamma E,
$$

from which we have

$$
d \gamma(X) \omega(Y)-d \gamma(Y) \omega(X)=-\gamma g((P A+A P) X, Y)
$$

for any X and Y, because of the fact that $g\left(\nabla_{X} \operatorname{grad} h, Y\right)=g\left(\nabla_{Y} \operatorname{grad} h, X\right)$. Suppose that there exist points x at which $\gamma(x) \neq 0$. Putting $Y=E$ in the above equation, we have $d \gamma=d \gamma(E) \omega$ and hence it implies that $P A+A P=0$. Making use of the same discussion as above, we get $P=0$, which is a contradiction. Thus γ vanishes identically and by (2.4) h must be constant.

Lemma. Let M be a real hypersurfaces with harmonic curvature of $H^{n} C$. If the structure vector E is principal, then all principal curvatures are constant and the number of distinct principal curvatures is at most 5.

Proof. Let X be a principal vector orthogonal to E with principal curvature λ. Then it follows from (1.7) that

$$
\begin{equation*}
(2 \lambda-\alpha) A P X=(\alpha \lambda-2) P X . \tag{2.5}
\end{equation*}
$$

Fix any point q of M such that

$$
\lambda_{1}(q)=\cdots=\lambda_{s}(q)=\alpha / 2, \quad \lambda_{s+1}(q) \neq \alpha / 2, \cdots, \lambda_{2 n-2}(q) \neq \alpha / 2,
$$

where $0 \leqq s \leqq 2 n-2$. Then there exists a neighborhood W_{λ} of q such that $\lambda_{r} \neq$ $\alpha / 2$ on W_{λ}, where $r \geqq s+1$. For $\lambda=\lambda_{r}, Y=P X$ is also a principal vector on the open set W_{λ} and its corresponding principal curvature is given by $\mu=(\alpha \lambda-2) /$ $(2 \lambda-\alpha)$. Hence (2.3) is reduced to

$$
\begin{equation*}
(3 \lambda-\mu)-\alpha^{2}(\lambda-\mu) / 2+\alpha(\lambda-\mu) \lambda / 2+(h-\alpha)=0 . \tag{2.6}
\end{equation*}
$$

Accordingly the principal curvature $\lambda=\lambda_{r}$ is the roots of the following cubic equation with constant coefficients:

$$
\begin{equation*}
\alpha x^{3}-2\left(\alpha^{2}-3\right) x^{2}+\left(\alpha^{3}-5 \alpha+2 h\right) x-(\alpha h-2)=0 . \tag{2.7}
\end{equation*}
$$

It means that the number of distinct principal curvatures for any fixed point q is at most 5 and λ_{r} are constant on W_{λ}.

Next we will show that all principal curvatures are constant. Suppose that there exist a point y in W_{λ} and an index a at which $\lambda_{a}(y) \neq \alpha / 2, a \leqq s$. Then y is a distinct point from q. Let W_{a} be the set consisting of points of W_{λ} at which $\lambda_{a} \neq \alpha / 2$. By the same discussion as above λ_{a} are constant on W_{a} and hence the continuity of λ_{a} shows that W_{a} is closed. Without loss of generality, we may assume that W_{λ} is connected. In fact, we may take a connected components of W_{λ} if necessary. Since W_{a} is open and closed in the connected set W_{λ}, we conclude W_{a} is empty, that is, $\lambda_{a}=\alpha / 2$ for any $a \leqq s$ on W_{2}. Accordingly all principal curvatures are constant in W_{λ} and hence W_{λ} is equal to M, that is, all principal curvatures are constant on M.

Finally, we are going to prove the main theorem mentioned in the Introduction. Let X be a principal vector orthogonal to E with principal curvature $\lambda(\neq \alpha / 2)$. Then $P X$ is also a principal vector with principal curvature $\mu=(\alpha \lambda-2) /$ $(2 \lambda-\alpha)$. It follows from (2.7) that λ satisfies

$$
\alpha \lambda^{3}-2\left(\alpha^{2}-3\right) \lambda^{2}+\left(\alpha^{3}-5 \alpha+2 h\right) \lambda-(\alpha h-2)=0 .
$$

Suppose that $\lambda \neq \mu$. It follows from (2.6) that

$$
\begin{equation*}
\alpha \lambda^{2}-2\left(\alpha^{2}-4\right) \lambda+\alpha\left(\alpha^{2}-5\right)=0 . \tag{2.3}
\end{equation*}
$$

From two equations obtained above it follows that

$$
\begin{equation*}
2 \lambda^{2}-2 h \lambda+\alpha h-2=0 . \tag{2.9}
\end{equation*}
$$

We assert that the operator P commutes with the shape operator A. If $s=2 n-2$, then the property $P A=A P$ is trivial. So suppose that $0<s<2 n-2$. Since there exists at least one principal vector associated with principal curvature $\alpha / 2$ by means of the supposition, the equation (2.5) emplies $\alpha= \pm 2$ and hence we get $\lambda \neq \mu$ for the principal curvature λ different from $\alpha / 2$. In fact, if $\lambda=\mu$, we see $\lambda^{2}-\alpha \lambda+1=0$, which means that $\lambda= \pm 1=\alpha / 2$. Then, from (2.8) and (2.9) we have $h=2\left(\alpha^{2}-4\right) / \alpha=0$ and $\lambda=-\mu= \pm 1$. On the other hand, h is given by $h=(s+2) \alpha / 2$, a contradiction. Accordingly we may only consider the case of $s=0$. Now, for a real hypersurface M of a complex hyperbolic space $H^{n} C$, one can construct a Lorentzian hypersurface N of an anti-de Sitter space $S_{1}^{2 n+1}$ which is a principal S^{1}-bundle over M with totally geodesic fibers and the projection $\pi: N \rightarrow M$ in such a way that the diagram

is commutative (i and i^{\prime} being respective isometric immersions). Let $\mu_{1}, \cdots, \mu_{2 n-1}$ be principal curvatures of M at any point x such that $\mu_{1}=\alpha$. Since the structure vector E is assumed to be principal, let $E_{1}, \cdots, E_{2 n-1}$ be an orthonormal basis of $T_{x} M$ with $A E_{1}=\alpha E_{1}$ and $A E_{a}=\mu_{a} E_{a}(a=2, \cdots, 2 n-1)$. Then horizontal lift $E_{a}{ }^{*}$ and a unit vector E^{\prime} form an orthonormal basis of $T_{2} N, \pi(z)=x$, with respect to the shape operator A^{\prime} of N is represented by

$$
\left(\begin{array}{cr|c}
0 & -1 & \\
1 & \alpha & 0 \\
\hline 0 & \mu_{\mu_{2 n 1}}
\end{array}\right)
$$

where the first submatrix corresponds to the restriction of A^{\prime} to the Lorentzian plane spanned by $\left\{E^{\prime}, E_{1}^{*}\right\}$. See Montiel [7]. This means that N is an isoparametric hypersurface of $S_{1}^{2 n+1}$ and hence a theorem due to Hahn [3] implies $\lambda \mu=1$. Thus the principal curvatures λ and μ satisfy $\lambda \mu=\alpha^{2}-5$ and $\lambda+\mu=4 / \alpha$ from (2.8), which implies that $4 n-2=0$ by the definition of the mean curvature, a contradiction. Hence we have $\lambda=\mu$, which implies $P A=A P$.

Therefore, we obtain $\lambda=(\alpha-h) / 2$ by means of (2.6) and hence, in spite of $s=0$ or $s>0$, we have $\alpha=h$, which enables us to obtain $\lambda=0$. Making use of (2.5) again, we have $P A=A P=0$ and hence $P=0$ by means of (1.7), which is a contradiction. Thus the theorem is completely proved.

Corollary. There are no real hypersurfaces of $H^{n} C$ with parallel Ricci tensor on which the structure vector E is principal.

References

[1] Cecil, T.E. and Ryan, R. J., Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc., 269 (1982), 481-499.
[2] Derziński, A., Compact Riemannian manifold with harmonic curvature and nonparallel Ricci tensor, Global Differential Geometry and Global Analysis. Lecture notes in Math., Springer, 838 (1979), 126-128.
[3] Hahn, J., Isoparametric hypersurfaces in the pseudo-Riemannian space form, Math. Z., 187 (1984), 195-208.
[4] Kon, M., Pseudo-Einstein real hypersurfaces in a complex space form, J. Diff,

Geom., 14 (1079), 339-354.
[5] Kwon, J.-H. and Nakagawa, H., A note on real hypersufaces of a complex projective space, preprint.
[6] Kimura, M., Real hypersurfaces in a complex projective space, Bull. Austral Math. Soc., 33 (1986), 383-387.
[7] Montiel, S., Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
[8] Yano, Y. and Kon, M., CR-submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser, 1983.

Kyungpook National University
Taegu, 635
Korea

