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MINIMAL IMMERSION OF SURFACES IN QUATERNIONIC
PROJECTIVE SPACES

By

Ahmad ZANDI

Abstract. For a minimal immersion of a surface in a quaternionic
Kéahler manifold a concept of non-degeneracy is defined. Then using
a theorem on elliptic differential systems we show a non-degenerate
surface is in a sense generic, and around each point with possible
exception of an isolated set of degenerate points we can define a
smooth Darboux frame. The frame is continuous at a degenerate
point.

Next, by reducing the structure group we define a symmetric
sextic form of type (6,0) and we show in the case that ambient
space is HP" this form is a holomorphic (abelian) differential. The
last section is a brief note on the relation of our work to Glaze-
brook’s twistor spaces for HP™.

Introduction.

In recent years the study of minimal immersions of oriented surfaces into
compact manifolds especially S®, CP™ and HP™ has attracted a lot of attention.
One basic idea originally due to H. Hopf is to define on the strface symmetric
differentials of type (1,0) by reducing the structure group. The minimality
condition is used next to prove they are holomorphic. The surfaces for which
these forms vanish form a class that in many cases can be constructed using
holomorphic or algebraic maps. For the case of S™ cf. Calabi [2], Chern [3],
Chern-Wolfson [4] and Bryant [1], also for CP" cf. Chern-Wolfson and
Wolfson [9]. For a different approach cf. Eells-Wood [6] in case of CP" and
Glazebrook [7], for HP™,

In this paper we use the method of moving frames and the structure equa-
tions of quaternionic K&hler manifolds (cf. [10]) to study minimal immersions
of oriented surfaces in HP™. First we define a concept of non-degeneracy for
immersions of surfaces in quaternionic Kihler manifolds. Then we prove that
non-degenerate minimal immersions are in a sense generic. Finally as an in-
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variant of a minimal immersion in HP", n>1, we define a sextic differential
form on the surface and show it is in fact a holomorphic (abelian) differential.
The last section is a brief note on the relation of our work to Glazebrook’s and
his twistor spaces.

I would like to thank my advisor, Professor S. Kobayashi, for guidance.

§0. Notations and Conventions.

For basic definitions and notations about the skew field of quaternions, cf.

Chevalley [5].
We recall that if g= H, where H is the skew field of quaternions, then
9=q¢'+59", 4¢,9¢'=C.
In the same way for any A=sWXgrH, where W is a real vector space.
A=A"+7A", A, A7eWRrC .

We use the above notation of prime and double prime throughout the paper,
which are called complex and quaternionic imaginary parts, respectively.

We also notice that if 8, o= A(T*M)RrH are of degree p, g respectively,
then

0 N No=(—1)Pa NG .

Also the extension of the symmetric product is no longer symmetric but it satisfies

0-0=a-0,
where 8, w are as above.
We agree, unless otherwise stated, on the following range of indices:
1<i, 7, -+ =2
1<A, B, --- <N or 4n
3<r,s,--=Nor 4n
1<a, B, - =n
324, 4, - =n.

We also assume M is an oriented surface, X a Riemannian manifold and
f: M—X is an immersion.

§1. Quaternionic Kihler Manifolds.

For more detail regarding this section cf. Zandi [10].
A quaternionic metric manifold X is a Riemannian manifold of dimension
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4n where the structure group can be reduced to Sp(n)-Sp(l)=Sp(n)XxXSp(l)/
CentercSO(4n). In other words around each point p=X there is a coframe
{0,, ---, 0,,} called admissible coframe such that the forms

wa:1®0a+i®0n+a+]®02n+a+k®03n+a (11)

in T*X@gH are defined up to ¢.swsd Where (gap)ESp(n) and g Sp(l).

Using the Sp(1) part of the structure group we can locally define three auto-
morphisms of TX, F,, F,, F, which are called the standard automorphisms. In
more detail let {e;, ---, e;,} be a frame dual to an admissible coframe and let

Filea)=—¢n+a
Filenia)=ca 1

Fl(ezn+a):e:3n+a

J (1.2)

Fi(esnia)=—0Con+a-

Similarly using multiplication by 7 and % on the right hand side of w,, F, and
F; can be defined. Notice that {F,, F,, F;} is defined up to an element of SO (3).

DEFINITION 1.1. Let X be a quaternionic metric manifold. Let {w,} and
{F\, F,, Fs} be as above. X is called Kidhler if there exist quaternionic forms
{was} and o such that

dw,= %waﬁ/\a)ﬁ +w. Aw

Wapt+@5a=0 (1.3)
o-+w=0.
Equivalently X is quaternionic Kéhler if there exist real forms {¢;;} such that
it } (1.4)
(Pij_l_(/in:O;

where D is the Riemannian covariant derivative.
We call w.p,  the quaternionic connection forms of X and define the
quaternionic curvature forms as follows,

Qa :dwa _Za)a /\a)
5 8 7 rﬂ} L5)
Q=do—w .
REMARK 1.2. When n=2, X has constant scaler curvature R and
Q= R DD N\ W, . (1.6)

T 16n(n+2) 4
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REMAK 1.3. Under change of quaternionic coframe
@a=qap®s], (1.7)

the connection and curvature forms change according to

Bap=204Ga; Jpr+20a;0;20 82

r Yragg (1.8)
d=qwi—qdq.
ga ={qa ‘Q Zq_ 2
- 8 reraq g } (1.9)
Q0=q807.

REMARK 1.4. For X=HP"™ which is of constant quaternionic sectional
curvature we have

Qaﬁz—wtx/\@ﬂ } (1 10)

Q:_Zaa/\wa .

§2. General Theory of Minimal Immersions in Quaternionic Kéhler
Manifolds.

Let f: M—X be an immersion of an oriented surface in a Riemannian mani-
fold X of dimension N. Let {e;, :--, ey} be an orthonormal frame along M on
X, so that {e;, e¢,} is an oriented orthonormal frame for M (tangent to M).
The dual coframe {8,, ---, @5} satisfies

f*0,=0 on M for 3Zr<N,

and {f*d,, f*@,} forms an oriented orthonormal coframe on M.
A frame (coframe) as above is called a Darboux frame (coframe) for f: M—X.
Let {645} be the Levi-Civita connection forms of X with respect to a
Darboux coframe. Then the second fundamental forms II,, 3<»=<N are defined
as follows:

o,= —é; 6:,-0;,,=—>6.0,; (symmetric product)

where by 6;, 6,, we mean f*@; f*@,;, but from now one we drop f* when
there is no danger of confusion. We also put
{ orizzhrijoj
hrijzhrji .
Hence
Hrzzhrijoiej-
]
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DEFINITION 2.1. Let f: M—X be an immersion. f is minimal if the traces
of all the second fundamental forms vanish. In otheer words
;hm:o, 3=<r=<N. (2.1)
It is well known that ¢=0,+70. defines an integrable almost complex (hence

complex) structure on M by choosing ¢ to be a (1.0) form. Now we have the
following whose proof is clear.

PROPOSITION 2.2. Let f: M—X be a minimal immersion. Let {6, ---, Ox}
be a Darboux coframe. Then

0,,+:0,,=0mod & }
0,1—i0,,=0mod p.

(2.2)

Let f: M—X be a minimal immersion where M is an oriented surface and
X a quaternionic Kdhler manifold of real dimension 4n>4. Let x&X and let
{e;, e;} be an orthonormal frame on M around x. It is clear that whether
{e,, e,} are quaternionic linearly independent as vectors of TX is independent of
the choice of the frame {e,, ¢,}. Hence we can have the following definition:

DEFINITION 2.3. x&M is a non-degenerate point or f is non-degenerate at
x if {e,, e,} as above are quaternionic linearly independent as vectors of T ,X.
We also need the following:

DEFINITION 2.4. Let f: M— X be an immersion. Let x&M. A quaternionic
coframe {w,} around f(x)e X is called a quaternionic Darboux coframe if

w,= - =w,=0 on M. (2.4)

PRropPOSITION 2.5. Let f: M—X be an immersion. Then around each non-
degenerate x=M there exists a smooth quatermionic Darboux coframe.

PROOF. Let x&M be a non-degenerate point and {e¢;, ¢} an orthonormal
frame around x. Since {e;, e,} is quaternionic linearly independent at x it is
linearly independent in a neighborhood of x. We complete {e,, ¢,} to a quater-
nionic basis for 7X and dualize to get a quaternionic Darboux coframe around
fx)eX.

When x&M is degenerate we have the following:

THEOREM 2.6. Let f: M—X be a minimal immersion. Then f is degenerate
in a neighborhood of any non-isolated degenerate point. Moreover around every
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1solated degenerate point there exists a continuously defined quaternionic Darboux
coframe.

PROOF. Let {e,, ¢,} be an oriented orthonormal frame around x&M. Let
{F,, F,, F;} be a set of standard transformation of T.X as in (1.2). It is clear
that x is a non-degenerate (degenerate) point if the dimension of the space
generated by {e,, e, Fole:); 1=:<52, 1Zp<3} is eight (four). Let x&M be a
degenerate point and let

v=((Fi(e1), er), {Filey), €5, {Fs(er), e2))ER?,

where {, ) is the Riemannian inner product. Since #+0, by applying an element
of SO(3) if necessary we can change F,, F;, F; so that =(0, a, 0). Hence we
can assume <{Fi(e,), ¢;>=0 and complete {e,, ¢,} to a Riemannian orthonormal
frame {e,}, 1=A<4n, for X along M such that e;,;,=Fi(es), 1=a=<2n. Let
Fo=u4peX¥QRep. From <{Fy(e,), e.>=0 we get u; ..+;=0, 157, j<2.

Consider now the following set of functions defined in a neighborhood U of X:

{uia, Ur,2n42, U22, Ug,an+1), 3<1=2n.

It is clear that these functions vanish simultaneously at a point of U if and only
if the point is degenerate. To keep things under control we list the formulas
we need.

{eq}, 1ZA<Z4n, is a Darboux frame for f: M— X such that
e2n+a=F1(ea,), léaézn.

{04}, 1< A<4n, is the Darboux coframe dual to {e,}.

o=¢,+10, is a basis for the space of (1,0)-form on M. 2.4
{Fy(ey), F3>=0
Fo=u,50.,.Q¢ep, u, ,ss04n).
uaptups=0.
Ui,zn+5=0, 1=4, j=2. /
Let {045} be the Levi-Civita connection forms. Then
De,=2045&ep
0.45+054=0, } &5

where D is the covariant derivative.
Since f: M—X is minimal, from Prop. 2.2 we have

0,,—i0,,=0mod ¢, 3<r<4dn. 2.6)
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Since X is quaternionic Kdhler from (1.4) we have

DF2:§D21F1+9023F3- (2.7)
We differentiate Fy=u,50,Qep to get
DFZZE(duAB+u0300A+uAcacB)0A®eB:§021FL+(P23F3- (28)
Let
Fi=P 50 ,Qez 2.9)
Then
Poy=Pipnia,20+6=0
Pa.2n+b:5ab (2. 10)
P2n+a.b:_5ab-
Since Fy;=F,F,, we have
FazuACPCB0A®eB° (2.11)
Substituting [2.10) and [2.11) into we obtain
duaptucgOcatuscOcs=@2Papt+PastiacPes. (2.12)
Using and we get for 3<2, u=<n,
dulE[2(2.01252;1—]_01p)up+2(§02352p+01,2n+y)u2n+,u] mOd(P }
du2n+2E[2<_¢2351p+02n+1.,uu,u)up+2(i01261p+0ly>u2n+y] mOdSD,

where ua=u;3—ius; and Upns 1 =1uy, 20421 Uz, 2042

Since the above system satisfies the conditions of Thm. in section 4 in
Chern we obtain that {u;, usn+21}, 3SA<2n, either identically vanish in a
neighborhood of x or they have an isolated zero at x. In other words f is
either degenerate in a neighborhood of x or x is an isolated degenerate point.

This completes the first part of the theorem.
To complete the proof we consider a smooth map on a neighborhood U of

an isolated degenerate point x& M,
F: U—‘{X} I Gr(8; TX):

where G,(8; TX) is the Grassman bundle of 8-planes in TX. From (2) in sec-
tion 4 of Chern F can be extended continuously to U, so that F(x) would
be contained in T,M. Therefore in a neighborhood of x we can continuously
choose a quaternionic basis {e.}, 1=<a<n, for TX so that e,, e, F(y), y&U.
The dual quaternionic coframe gives a desired Darboux coframe.

DEFINITION 2.7. A minimal immersion f: M—X is degenerate if it is
degenerate at every x& M.
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REMARK 2.8. From Thm. 2.6. we observe that if f is not degenerate then
the set of degenerate points are isolated. From now on we assume f is non-
degenerate.

§3. Reduucton of the Structure Group.

We recall from §1, our convention on the range of indices. Let M be an
oriented connected surface, X a quaternionic K&dhler manifold and f: M—X a
non-degenerate [Remark (2.8)] minimal immersion. Let ¢ be a (1, 0)-form on M
such that dsjy=¢@.

Let x&M be a non-degenerate point. From Prop. (2.5), there exists a
quaternionic Darboux coframe {w.} around x. Hence,

f*wlzsl +4
Y s, e H
[rwy=s,0+1t:¢ 3.1
f*w,=0 3<AZn.
From now on we drop f* unless there is danger of confusion.
Notice that {w.} is defined up to
Ga=qap®Wpq 1
(Gap)ESP), q2=411=0, g Sp(D). ]

We proceed to reduce the structure group even further.
The Riemannian metric on X is defined by

(3.2)

ds’=@, 0+ - +&Bn @, .
Since ;=0 on M, the induced metric on M, dsy=¢¢@ satisfies the following
relation :
D, O+ By W= . 3.3)
Substituting in we obtain
|31|2+[32|2+[t1|2+”212:1}

3.4)
(§1t1+§2t2)’=0 .

From the first equation in (3.4) we obseve that (s, s,), (¢,, )& H cannot both be
the 0 vector. If necessary we can multiply w,’s by j on the right to make

(s1, $2)#(0,0). Therefore there exists a smooth family of matrices Q(x)=Sp(2)
such that

Q'[sy, s:1=*[8, 0] where 5,=C.

Let Q![t,, t.]1="[f,, f.]. Put Q=(g:;). We change w,, . by Q to get
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&

=5,0+13, 5, €C
FTRETRE, o } (3.5)

(2')2:{2@.
From the second equation in (3.4) we see that (f,)’=0. Hence #,=;%, where
#F;&€C. Now once more we transform &,, @ by the matrix

Lo
Q=| ]6519(2)
0 ¢

where ¢(x) is chosen smoothly so that gf,=C. This can be done since x&M
is non-degenerate and thus f,#0. Therefore we now have a quaternionic
Darboux coframe as follows:

W, =SQ+JTF
w,=jopty s,t, 0,7€C. (3.6)
0)1:0

In the above normalization we actually made ¢=0, but we write it as above to
preserve symmetry. Notice that now the non-degeneracy condition at x& M is
simply

st+07+0. (3.7)

At fhis point we check how much the structure group has been reduced.
Let Q=(g:)ESp2), q=Sp(1) be such that @;=2¢:w,§ for ¢=1, 2 are in the
normal form [(3.6). Since multiplication on the right by § preserves the normal
form including the non-generacy condition [3.7), we only have to consider
the change induced by @. Writing the equations out and using the non-
degeneracy condition we easily get

Gy JQye

Q:(QU):[

. :| ,  Qi1, Qi12, A3y, amEC and
JQz1 Qg
(3.8)

aan 27

a1y —ay
Ur——[ }EU(Z).

To see how the complex valued functions s, 7, g, ¢ in are changed when
w;’s are changed by the reduced structure group (3.8), we calculate the effect

s T
Sz[ } 3.9

é —t

of change on the matrix

Let g H, |q|=1. Write ¢g=¢’+/¢” and define
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V=[(f” q_/]eSU(Z). (3.10)

q q
Then S changes according to

S=usv, (3.11)

where U is defined in (3.8).

Now since S is non-degenerate [(3.7)] its first column is a non-zero vector.
Hence by choosing U properly and smoothly, we can make it to be {[s, 0], s€C.
Hence, S can be recuced to

§
[0 —t]'

Moreover by simple calculation we can make z(x)=0 (at one point). Hence
and are reduced to
W, =SQ+JjTE=Qp
W, =1{
I (3.12)
(1) =0
s, 7, t€C, 5t+#0, t(x)=0, p=s+j7, | p|*+[t]|*=L.

These last reductions are not geometrically significant, but they simplify the
calculations.

§4. Minimality Condition.
Following the notations and normalizations of the previous section we let
1 =w,p+1w;
do=lw,—@,p 4.1)
1=, 3Z22Zn.
Notice that
DN FaPa= 3 Ba* e 4.2)
Thus if we put
Pa=0ia-3+10ia-2+70ia-1+RO,a,

Then {0,}, 1< A<4n, form an oriented orthonormal Riemannian coframe. More-
over since restricted to M we have
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¢I:$0:01+i02
P2 =0 (4.3)
¢’Z:07

{64} is a Darboux coframe for f: M—X.

Now we differentiate ¢,’s, evaluate them at x and use the fact that ¢,=0,
a>1, ¢7=0. Throughout we use the structure equation (1.3).

First we differentiate ¢, to get

dp=dw, 5—o, \Ndp+dt N@,+tw, N
=(w A0+ 0 AW+, AN@)S—o, ANdp+dt N\D,
FH{ o1 AW+ W20 AW+ @2 A @)
=0 ASQ+ W ANtG+ s Aw)S§—sp A\Ndp+dt Atp

+t(§¢/\w1z+f§0/\w22+w/\ﬁ0)- g
Let
Slzlslzwu-i-twf
4.4)
Se=t|2ws;—sd p+ s®3
Since ¢7=0 on M, we put d¢7=0 in the above calculations to get
(87— stal) No—((S§—35t)w) Ag=0.
Hence by Cartan’s lemma we obtain
St —stwl,=ap+B@
{-stol=ap+s } (4.5)
Si—Stwly=—Bp+r¢

Next we differentiate ¢,. Similar calculations as above and separating the
complex parts of quaternionic forms we obtain

SRi—iR;=a’o+p'¢ }
w,='0+7'¢

(4.6)

and

sR//+szwll :a” + I/¢
i+ set=a’otp } 4.7

—tR{+' 0 =p"p+1"¢,
where R, and R, are defined by

R,=di+iw,—wt

Ri=dp—wns+sw. }

4.8)

Finally differentiating ¢;=0 gives
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WL S=ap+bp
i } “.9)
wt=bp+cp, a,b, ccH.

Using the minimality of the immersion, from (2.2) and uniqueness of the
Riemannian connection forms, we conclude that 8, §’, 8”7 and b in (4.5), (4.6),
(4.7) and (4.9) all vanish. Therefore after substituting for S,, S,, R, and R,
from (4.4) and (4.8) into (4.5), (4.6) and (4.7) we obtain

| s]%wlh 412w’ — stol,=0mod ¢ \
|t 2w, +5d7t+5w” —Stw,=0mod &
s(dt+tw),—tw')—1(ds— sws,+sw’)=0mod ¢
w;=—mod &
e (4.10)
st —tw”)+ s*w;=0mod ¢
—Hdr—swi+50")+ o, =0mod ¢

WH=a;p, a,H

W=, c:€H. /
From the fifth and sixth equations of we get respectively
to” —swl,=tw}, mod ¢
So—tol,+dr=swf,mod &.

Substituting these into the first and second equations of respectively, we

obtain
| s|?wfi+ |t |0, =w0{;=0mod ¢

[t 2w+ | s|P0w,=w=0mod &.
Hence these and the fourth equation of give
oy, =0mod ¢
@1, =0mod ¢ 4.11)

w3 =—o,=0mod &.

§5. Construction of the Sextic Form on M.

We recall from and (3.8) that the structure group Sp(n)-Sp(1) has been
reduced to the subgroup consisting of A-g, where A=(q.p), 1=, f<n, satisfies
¢1:=¢:2=0 and Q=gq;;, 1=j, j<2 is as in (3.8).

Now under this reduced group we calculate the effect of change of quater-
nionic coframe w, to @.=q.s0sd, on the forms given in [4.1I1). From the equa-
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tion for the change of connection forms (1.8) we have

Bap=0Gay JsrTqar®radpa-

Thus from the above we obtain

0311:dQ11 it dQ12 *Jr2 @101 11+ G120217 11+ 11012012+ §12W22F 52 6.1
(7)22:(1421 '(721+d(]22 ‘q-22+6121w11q-21‘i‘(]zzwqul+(]21C012522+(]22(022(722 . (52)
67121:(1(]21 “Ju+ d422 *J12 T Q2101111 G20W21G 11+ G21W12F 12+ G22Wa2G 15 5.3

From (3.8) we have ¢;1=ai1, ¢22=02, ¢12=J@2, ¢a1=Jas. Therefore we
observe that the first two terms in (5.1) and (5.2) are complex and the first two
terms in (5.3) are imaginary quaternionic. Hence these terms do not cortribute
to the quaternionic imaginary parts of &, @.» and the complex part of @.;.
Thus we obtain

o=atwh+2a,,0,,05:+ at, o3,
D= A5011 — 202, Q203+ Q507> ' (6.4)
By =— 11321001 (11Q20— Ay A1) W51+ Q32012055 .

The relations in can be summarized in the following matrix form:

@ —ann o, —w;
[ B J::U [ }‘U (5.5)
— @y @Y — W, 143
where U= U(2) is defined in (3.8).

Using @a=¢qaswsd [(1.7)], we also calculate the effect of change of a coframe
on (w,-w,)’. First

1]

@1 027=21¢1;0;7 * 0] aj=21G1:0:D;]2 5
=(1101@,J21+ §11@01D2F 22+ 12021021+ G120 D275
Hence taking the complex parts from both sides and using (3.8) we get
(@1 @) =(A118 22+ 12001 )@, - @) =det (U )w, - @,) . (5.6)
We also observe from (3.12) that
;- B, =(s¢p+ard)-to=st¢e’+ jript.
Hence

((U]_ . 52)'—: SZSDz .

Therefore (w,-@,)" is a symmetric complex form of type (2,0). Also from [(4.11),
the elements of the matrix
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i —w

|:_(0§1 55’2]

are 1-forms of type (1,0). Thus the determinant of the above matrix (w! @%—
(@3,)?) is a symmetric form of type (2,0). Let

ol —wéx}

’ ="
—Wz  Wae

A=[(w, @,)']*-det [ (5.9)
Then from (5.7) and (5.8), A is a sextic form of type (6,0). From [5.5) and
and the fact that U is unitary hence |det(U)|=1, we observe that A is
globally defined.

§6. The Case of X=HP".

When the ambient space X is HP'=S"*, the problem has been extensively
studied (cf. Calabi [2], Chern [3], Chern-Wolfson [4], Bryant [1]). In fact
that case falls under the class of degenerate immersions by our definition (2.3).
For n>1 we have the following:

THEOREM 6.1. Let f: M—HP™" be a non-degenerate minimal immersion, where
M is an oriented surface. Then the 6-form A in is a holomorphic (abelian)
differential of order 6 on M.

PROOF. Let ¢=Adz where z is a local complex coordinate on M. From
(3.12) and (4.11) we can write

wi=adz, w;=Bdz, 0|=yrdz, 0j=
(6.1)
ow=adz, w}),=bdz, w;,,=cdz.
From structure equation (1.3) we have
do, =0, N0+ 0 A0+, \NO.
Hence
doi=o ANO— o\ A&+ 0L A0 — 0L N+ A0 —&] Ao” .
Therefore after substitution of (6.1) into the above, we obtain
doi=d(adz)=daNdz=(aw{,—aw’+Fw”")N\dz
Thus,
da=(aw{;—aw’ +jw”’)mod dz. (6.2)

Similarly differentiating w, gives
df=(—Bwi,+ pa’'—Fw},) mod dz. (6.3)
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To find the derivatives of a, b, ¢ we ploced as follows. From (1.5) and
(1.10) we have

dwaﬂ——";war/\wrﬁ—-wa/\&iﬁ 6.4)

Using we calculate dw!,, dw), and dw},. From for a=f=1 we have

dw, = N\ 01+ 012 N\ W1+ ;0)11 AN@ 1 —0 NGy . (6.5)
From and w,s+@z.=0 we have

2O NOH=2D—On NOn=—28a /N 01902(; laz|DeAE,
which is complex and hence does not contribute to dw?,. Also from (3.12) we have
o NGB=PPNPF=|D|*¢ NG,
which is again complex. Therefore from we obtain
doli=[(w]i+jol) N @i+ joi)+(@:+ jol) Alw:+jwi))]”
=20 N0+ Ao+ ol Ao, .

Hence substituting (6.1) into the above gives

do!,=d(adz)=daNdz=(—2aw,+2cw,)\dz.
Thus
da=2(—aw;+cw;)moddz. (6.6)

Similarly differentiating w,, and using we get
db=2(bw};—cw’)mod dz. (6.7)
To calculate dc, we differentiate w,, and use as before to get,
AWy 1 =Wy N @11+ W20 N\ @y, -+ ;ng A@11—@, N\ @y .
From we have
;wzz/\m;——EZJE)M/\wu:—ZgoEz/\azgo.
Let ;c',zale. Then
Swa Awn=—@ANe=—@(A'+ A" ) Ne=7A"o NG,

which is quaternionic imaginary and thus does not contribute to dw;. Also
from (3.12) we obtain

W \ND=tp \N(3@— jr@)=(—jI)p A X,
which is again quaternionic imaginary. Therefore

dwélz(wﬂ/\wll_l"ww/\wm)’ ’



438 Ahmad ZANDI

and similar substitutions as before lead to

dojp=d(cdz)=dc Ndz=(—cw|,+cwj,— a@dl,+bw)Ndz.

Hence
de=(—cw},+cwh—awl,+bwl)mod dz. (6.8)
Now from [(6.2) and [6.3) we get
d(aB)=2af[af(w],—w;)+7(fo” —awl,)]mod dz. (6.9)

From (3.12) and (6.1) we have

w=sp=adz

Using ¢=41dz, we get a=s4, B=t2. Hence from the sixth equation of
we obtain
" —awl,=1A0" — sAol,= (0" — sol,

=0mod ¢=0mod dz.
Substituting above in we obtain

d(aB)>=2(af)(w;—wjs)moddz. (6.10)
Also using (6.6), and (6.8) we obtain
d(ab—c*)=—2(ab—c*)(w},—wj,) mod dz. (6.11)

Now for the proof of the theorem we recall from (5.9)
A=(w]- &, [w}r@f— (@5, ]=(af)(ab—c*)dz".
Hence from [6.10) and [6.11) we finally get
d[(aB)*(ab—c*)]=0mod dz.

Therefore A is holomorphic.

§ 7. Isotropic Minimal Surfaces in HP".

In this section we try to explain the relation between our work and
Glazebrook’s isotropic minimal surfaces [7]. The section is brief and mainly
restricted to HP?2.

We recall that HP*=Sp(n+1)/Sp(n) X Sp(1). When the subgroup Sp(n)x Sp(1)
is reduced to Sp(n)xU(l) we get Sp(n+1)/Sp(n)xXU(1)=CP?*"*' which is the
standard twistor space. If Sp(n)XSp(l) is reduced to U(n)XSp(l) we get
Glazebrook’s twistor space (Glazebrook [7,87]) which is again a complex manifold.
We give the following definition of an isotropic minimal immersion in HP™".
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For details cf. Glazebrook [7].

DEFINITION 7.1. A minimal immersion of a surface in HP™ is isotropic
provided that it can be lifted in a “natural” way as a holomorphic or antiholo-
morphic map to Z=Sp(n+1)/U(n)XSp(1).

Now in the case of HP?, for example, from (3.8) we see the Sp2)xSp(l)
is reduced naturally to U(2)xSp(1). Therefore the surface can be lifted not to
the standard twistor space Sp(3)/Sp(2) X Sp(1)=C P?® but to Glazebrook’s twistor
space Z=Sp(3)/U(2)x Sp(1).

The standard method of reduction of G-structures gives a set of quaternionic
I-forms {¢s, ¢s, s, 1<4, 7<2} and 2-forms {¥;;} on Z. These forms satisfy
the same structure equations as w’s [(1.3), (1.5), (1.6) and (1.10)]. The difference
is that on Z, {¢1, $%, &s, P4, Pla, $1h, ¢5.} form a basis for forms of type (1,0).
(The reason for this basis being non-symmetrical is that the embedding of U(2)
in Sp(2) in (3.8) is not the natural one.) These (1,0)-forms satisfy the integra-
bility conditions of Newlander-Nirenberg and define a complex structure on Z.
It is easy to see that for the lift of M to Z we also have the same equations
for ¢’s as we had for w’s. Hence (3.12) and (4.11) become

Pi=P{=¢i=¢4=0 modgo}
h=¢H=¢=0mod ¢.

(7.1)

Therefore to get a holomorphic curve in Z we must have ¢{,=¢5,=¢:,=0, on
M. Notice that the sextic form 4 in (5.9) is, up to a non-zero factor, equal to

1i¥h—(d12)’. Hence to get a holomorphic curve in Z it is necessary but not
evidently sufficient to have 4=0. This could expiain why not all minimal im-
mersions of S? in (for instance) HP? are isotropic, even though A=0 for S?
(Riemann-Roch).
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