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REGULAR GAMMA RINGS

By

Shoji KyuNo, Nobuo NOBUSAWA and Mi-Soo B. SMITH

0. Introduction

Let M and I' be additive abelian groups. If for all a,b,ce M and «,8,7rl’,
the conditions

(1) aabeM, aapel,

(2) (a+b)ac=aac+bac, a(a+ B)b=aab+apfb, aa(b+c)=aab+aac,

(a+ P ay=aay+par, a(a+b)B=aaB+abP, aa(f+7r)=aaf+aay,

(3) (aab)pc=a(abf)c=aa(bfc), (aaB)byr=a(afb)r=aa(Bby),
are satisfied, then M is called a weak gamma ring in the sense of Nobusawa and
denoted by (I", M)wn.

In this note (I", M) denotes (I', M)wn, unless otherwise specified.

A gamma ring (I, M) is regular if for each aeM there exists 6l such
that ada=a. For a left R-module M, letting I'=Homzr(M, R), we have a gamma
ring (I", M). A left R-module M is called regular, if for any element me M
there exists fe Homz(M, R) with (mf)m=m, [8]. Thus, the concept of regular
gamma rings is a natural generalization of regular modules.

In this note, we study various properties of regular gamma rings. In 1, we
obtain a couple of necessary and sufficient conditions that (I, M) is regular, and
then characterize a commutative regular Nobusawa gamma ring as a subdirect
sum of gamma fields (Th. 1.7).

In 2, we define a regular ideal and prove a basic theorem: If JCK are two
ideals in M, then, K is regular if and only if J and K/J are both regular (Th.
2.2). If 2 is the class of all regular gamma rings, then this theorem shows that
R is a radical class. Next, we introduce the concept of a weakly nilpotent ele-
ment, and we obtain that a non-zero subdirectly irreducible regular gamma ring
with no non-zero weakly nilpotent elements is a division gamma ring (Th. 2.11).

In 3, we obtain relations among the regularities of the operator rings L, R
and a gamma ring (I", M) as follows: If (I", M) has the left and right unities,
then the following conditions are equivalent: (1) L is regular; (2) R is regular;
(3) M is regular (Th. 3.2). By this theorem, we have that, when Mod-R=~
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Mod-L, R is regular if and only if L is regular (Corollary 3.5). Furthermore,
we show that if (I", M) is a semi-prime gamma ring with min-» and min-/ con-
ditions, every left (right) L-module and every left (right) R-module are regular.
In particular, L, M and R are regular (Th. 3.8).

In 4, we consider the regularity of a Morita context (Q, R, S, T, ¢, v), where
u, v are surjective. Here, it is not assumed that @, R have unities nor that S, T
are unital. We obtain an extension (Th. 4.1) of Theorem 3.2.

For the definitions of the following basic notions in gamma rings we refer,
respectively, to for the right operator ring R, the left operator ring L, a right
(left, two-sided) ideal of M, |a>, [N, ®], where NCM and @C I and to for
semiprime ideals, nilpotent elements, the right unity and the left unity.

1. Regular Gamma Rings.

1.1 DEFINITION. A gamma ring (I", M) is regular if for each x& M there
exists 6" such that xdxr=x. We abbreviate this as M is regular, when I is
understood.

1.2 THEOREM. For a gamma ring (I', M) with the left and right unities,
“the following conditions are equivalent :

(1) ', M) is regular.

(2) Every principal right ideal of M is generated by an idempotent of
the left operator ring L.

(2") Every principal left ideal of M is generated by an idempotent of the
right operator ring R.

(3) Ewvery finitely generated right ideal of M is generated by an idempo-
tent of the left operator ring L.

(3) Ewvery finitely generated left ideal of M is generated by an idempotent
of the right operator ring R.

PrROOF. We note that for any aeM |a>=al'M, since |a>=Za+al MC
al’M. (Z is the set of all integers.)

(1)=>(2): Suppose that for each ae M there exists I such that ada=a.
Then [a, 0][a, 0]=[a, 0] and so [a, 0] is an idempotent in L. Since al M=
adal’MCadM, al' M=adM. Thus, |a> =adM.

(2)>(3): It suffices to show that for any a, be M, |a> +|b> =tM, where
t is an idempotent in L. By (2), |a>=hM, h®’=he L, and |b>=fM where f?
=feL. Then, since b—hbefM+hM, |b—hb>C fM+hM, and so hM+-|b—hb>
ChM+fM. On the other hand, b=hb+b—hbe hM+|b—hb>, whence fM=|b>
ChM+|b—hb>. Thus, hM+fMChM+\b—hb>. Therefore, hM+fM=hM+
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|b—hb>. Again by (2) |b—hb>=sM, where s?=s=L. Then, hsM=h|b—hb>
=0, and it follows that As=hs?=0. So if g=s—sh, then g is an idempotent and
orthogonal to A. Since sg=g and gs=s, we see that gM=sM=|b—hb>. Therefore,
la>+|b>=hM+gM. Since h and g are orthogonal, we have |a> +|b> = (h+g) M.

(3)=>(1): Suppose that for any xe M, |x>=hM, where h*=he L. Then,
xr=hy=h%y=h(hy)=hx, where ye M. On the other hand, hL=[AM, I'1=[|x>,
=[Zx+x'M, I'C[x, I'], which implies A=h?=[z, 0], where 6I'. Hence

r=hx=[x, 0 ]Jx=x0x. O

1.3 DEFINITION. A gamma ring (I', M) is right semi-hereditary if every
finitely generated right ideal of M is a projective R-module. A right ideal [ in
M is called essential if for every non-zero right ideal A in M, IN As0. Let (M)
be the set of all essential right ideals in M, and Z,(M) ={xe M|xI"I=0 for some
Ico(M)Y. (', M) is called a right nonsingular gamma ring if Z,(M)=0. Sim-
ilarly, a left semi-hereditary gamma ring and a left nonsingular gamma ring are

defined.

1.4 CoOROLLARY. Let (I', M) be a regular gamma ring. Then
(1) Al one-sided ideals in M are idempotent.
(2) All two-sided ideals in M are semi-prime.
(3) The Jacobson radical of M is zero.
(4) 'y, M) with the left and right unities is right and left semi-hered-
itary.
(5) ', M) is right and left nonsingular.

ProoOF. Let J be a right ideal of M. Since M is regular, for each xeJ
xyx=x for some yeI'. Consequently, x=xyxeJl'J and so J=JI['J. Thus, we
have (1).

Let I be a two-sided ideal of M. If A is a two-sided ideal in M such that
AT'ACI, then ACI, because by (1) A=AI'A. Hence we have (2).

To show (3), suppose that e is right quasi-regular and e=ede. Then, there
exists &R such that [d, e]or=7r-+[0, €]—[0, e]r=0. It follows [J, e]=[0, e]o0
=[0, e]o([0, eJor)=([0, e]o[0, e])or=[0, e]Jor=0. Thus, e=ede=e[d, e]=€0=0.
Recall that J(M)={eeM)|{e) is right quasi-reqular}. Since {(¢)=0, e=0 and so
JM) =0.

Now we prove (4). By Theorem 1.2.(3), every finitely generated right
ideal in M may be written as AM, where h’=heLlL. Let A={xe M|hx=0}.
Clearly A is a right ideal in M. For any xeM, x=hx+ (x—hx), and M=hMDPA,
because if achMNA then a=ha=0. Thus, hM is a direct summand of M and
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so every finitely generated right ideal in M is a projective R-module. Similarly
it can be proved that (I", M) is left semi-hereditary.

For (5), let J be an essential right ideal in M. Suppose that al'J=0 for
some a= M, and that there exists d&I" such that ada=a. Then, adMNJ=0, for
if xeadMNJ then x=adx=0. Since J is essential, adM=0 and so a=0. Sim-

ilarly we obtain the same result for left ideals. O

Given an ideal I in M, we form a residue class gamma ring (I'/I*, M/I),
where I*={ye'|MyMCI}.

1.5 THEOREM. A gamma ring (I'y M) is regular if and only if the fol-

lowing (1), (2) and (3) hold.
(1) M is semi-prime,
(2) The union of any chain of semi-prime ideals of M is semi-prime,
(3) M/P are regular for all prime ideals P of M.

PrROOF. Let M be regular. Corollary 1.4 (2) shows that all ideals in M are
semi-prime, whence (1) and (2) hold. (3) obviously holds, for, (z+P)(r+
P (ax+ P)=xyx+P=x+P.

Conversely, assume that (1), (2) and (3) hold. If M is not regular, then
there is ae M such that a&al’a. By (2), there is a semi-prime ideal I in M
which is maximal among semi-prime ideals such that ae&al’a+ 1. Note that {0}
is a semi-prime ideal of M such that a&al'a+ {0}. M/I is not regular, because
otherwise, for any xeM, (z+I)(+I*)(x+I)=x+1 would imply zexl"xz+1, a
contradiction. Hence, by (3) I is not prime. Thus, there are ideals A and B
which properly contain I and A’BCI. Indeed, since A&I and BEI, ISA+T
and ISB+1. If we set A+I=A’ and B+I1I=PB’, then A/I'B'=AI'B+ICI+1=1
and IGA’ and IS B’. Thus, we can take A, B instead of A’, B’ from the begin-
ning. Now set P={xeM|xI'BCI} and Q={xeM|P['xCI}. Since I is semi-
prime, P and Q are semi-prime. For, KI'KC P5>KI'KI'BCI->KI'BI'KI'BCKI"
KIBCcI=>KIBCI>KCP, and U'UcQ=>Prurucl>PrurprucpPruru
cIo>PruciUcq.
Since (PNQ)I(PNQ)SPIrQcl, we have PNQ<I. Clearly, ACP and BCQ,
and hence P and Q properly contain I. By the maximality of I, there exist
elements 7, we I’ such that a—arae P and a—awacs Q. Then, a—a(y+w—raw)a
=a—ara— (a—ara)wac P. Also a—a(y+o—raw)a=a—awa—ay(a—awa)<q.
It follows that acalla+ PNQ<al'a+1, which is a contradiction. Hence, M is
regular. O

1.6 COROLLARY. A gamma ring (I', M) is regular if and only if all ideals
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of M are idempotent and M|P are regular for all prime ideals P of M.
Proor. If all ideals of M are idempotent, all ideals of M are semi-prime. [

1.7 THEOREM. A commutative regular Nobusawa gamma ring with more
than one element is a subdirect sum of gamma fields.

PROOF. A regular gamma ring has no non-zero nilpotent elements. For,
suppose (ar)?a=0 for any y&I'. Then we have a=(ad)™a=0 since there exists
de I such that a=ada. A homomorhpic image of a regular gamma ring is regular,
and so it has no non-zero nilpotent elements. Then, the theorem follows imme-
diately from Theorems 3 and 4 in [5]. O

2. Regular Ideals

2.1 DEFINITION. A two-sided ideal J in M is regular if for each x&J there
exists y€J* such that xzyx=ux, where J*={rel'|MyMcJ}.

2.2 THEOREM. Let JCK be two-sided ideals in M. Then K is regular if
and only if J and K/J are both regular.

Proor. Let J*={rel'|MyMcJ} and K¥={rel'|MyM<K}. Then (J*, J),
(K*, K) and (K*/J*, K/J) are gamma rings. Suppose that K is regular. For
each k=K there exists yeK* such that krk=k. Thus, (k+J)(G+J*)(k+J)=
krk+J=k+J and so K/J is regular.

Given xeJ, we have xdx=x for some d = K¥, since J©K. Then, o =0xdJ*,
for MoM=MéxoMcZJoMCJ. Hence, xwxr=x0xéx=x0x=ux, and so J is regular.

Conversely, assume that J and K/J are both regular. For a given ae K, a-
J=(a+J)(y+J*)(a+J)=ara+J, where ye K* from the regularity of K/J. Hence,
a—aracJ, for some yeK*. Consequently, a—ara=(a—ara)w(a—ayra), where o
eJ*. Then,

a=a—ayra+tara
=(a—ara)w(a—aya) +ara
=q(w—raw)(a—ara) +ara
=a(w—raw—way+raway)a+ara
=a(w—raw—way+raway+7)a
=ala, where A=w—7aw—way+yaway+yeK*,
because J*C K* and K* is an ideal in I.

Therefore, K is regular. [

2.3 REMARK. Let 2 be the class of all regular gamma rings. Theorem 2.2

shows that ® is a radical class, since other two conditions: 2 is homomorphically
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closed and % has the inductive property are trivially satisfied.
(See, for instance, [7]) In fact, a radical N for any gamma ring (I, M) may
be defined by the conditions in Proposition 2.6.

2.4 PROPOSITION. Any finite subdirect sum of regular Nobusawa gamma
rings is regular.

ProOF. It suffices to show that a subdirect sum of two regular Nobusawa gamma
rings is regular. Suppose that M has two ideals J and K such that JNK=0. Then
J*NK*=0, where J*={re'\MyMcJ} and K¥={re'|MyMZK}. For, if reJ*
NK*, then MyrMcJNK=0 and y=0. Let the gamma rings (I"/J*, M/J) and
(I'/K*, M/K) be both regular. Consider the homomorhpism

(p, 0): (J*, D—>(J*+K*/K¥, J+K/K)
where

0 is the natural epimorphism: J—J+K/K, 20=x+K and Ker §=JNK=0,
¢ is the natural epimorphism: J*—J*+K*/K* ap=a+K* and Ker ¢=J*NK*
=0.

Then

(xay)f=zay+ K= (x+K) (a+ K*) (y+ K) =zxbapyl, and (axf)p=axf+K*= (a+
K*) (x+K)(B+K*)=apxb0B¢p. Hence, (¢, §) is an isomorphism from (J*, J) onto
(J*+K*/K*, J+ K/K). Since J+K/K is an ideal in M/K, J+K/K is regular.
Theorem 2.2 shows J is regular. Hence, J and M/J are regular, and again by
Theorem 2.2 M is regular. O

2.5 REMARK. A subdirect sum of infinitely many regular Nobusawa gamma
rings need not be regular. For example, (Z, Z) is the subdirect sum of infinitely
many regular Nobusawa gamma rings (Z/(p), Z/(p)), where p runs through

all prime numbers.

2.6 PROPOSITION. For a gamma ring(I"', M), set N={xc M|{x) is regular}.
Then,
(1) N is a regular ideal in M,
(2) N contains all regular ideals of M,
(3) M/N has no non-zero regular ideals.

Proor. Let x,yeN. Then (y) is regular and <{x>+<{y>/{y) is regular.
Hence by Theorem 2.2 {(x)>+{y) is regular. For any ac{x)+{(y), {a)=<{x>+
{y>. Theorem 2.2 shows {(a) is regular, and so aeN. Thus, <>+ {¥)SN,

whence N is an ideal in M. For any x& N, since {x) is regular, there exists
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de{x)*, where (x)>*={rel'|MyMc<{x)}, such that xdx=x. Since N is an ideal.
(>SN and then {(x)*CN*, Thus, 6 N* and N is regular. This completes the
proof of (1).

To prove (2), let A be any regular ideal in M. For any acA, <{a)ZA.
Thus, by Theorem 2.2, {a) is regular and so ac N. Hence ACN.

If A/N is a non-zero regular ideal in M/N, A is regular by Theorem 2.2, and
A contains N properly, which contradicts to (2). O

2.7 DEFINITION. An element acM is said to be a weakly nilpotent element
if there exist a non-zero element ye I’ and an integer n>1 such that (ar)”» ta=0.

2.8 PROPOSITION. In a gamma ring (I", M) with no non-zero weakly

nilpotent elements, every idempotent commutes with every element in M.

PROOF. Let ede=e, 6=, and xeM. If e=0, edx=0=xde. Suppose e=0.
Then 0x0. Since
(ebx—edxde)d(edxr —edxde) = (edxde—edxde) ([0, x]1—[0, xde])=0 and (I', M) has
no non-zero weakly nilpotent elements, edx—edxde=0 or edx=exde. Similarly, xde

=edxde, and so edxr=xle. [

2.9 PROPOSITION. Let (I', M) be a regular gamma ring with no non-zero
weakly nilpotent elements. Then
(1) Every principal one-sided ideal is generated by an idempotent which
commutes with any element in M.
(2) Ewvery one-sided ideal is a two-sided ideal.

PROOF. Let a=ada for some deI'. Then, |a>=Za+al'M=a[0, Zal+al'M
=al'M=adal'MZadM, and hence |a>=adM. Proposition 2.8 shows that a com-
mutes with any element in M. Thus we have (1).

To prove (2), let A be a right ideal in M. For any a€ A, adMC A, where
ada=a for some dI'. By Proposition 2.8 adM=»Moda. Since Moa=MI"a, MI'a
cA, and so A is a left ideal. O

2.10 DEFINITION. A gamma ring (I', M) is said to be a division gamma
ring if (I', M) has the strong left unity [e, 6] and the strong right unity [, €],
and if for each non-zero element ac M there exists b M such that adb=>bda=e.
A gamma ring (I, M) is said to be subdirectly irreducible if the intersection of

all non-zero ideals of M is not zero.

2.11 THEOREM. A non-zero subdirectly irreducible regular gamma ring

with no non-zero weakly nilpotent elements is a division gamma ring.
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ProOOF. Let (I', M) be a non-zero subdirectly irreducible regular gamma ring
with no non-zero weakly nilpotent elements. For each non-zero element e M there
exists 0’ such that ede=e. Proposition 2.8 shows that for any xe M edx=xde.
Let us consider two ideals edM and A= {x—edx|xze M}, whose intersection is zero.
M is subdirectly irreducible, so edM=0 or A=0. But edM=+0, hence A=0, and
thus edxr=xde=x. This means that [e, d] and [0, e] are the strong left and right
unities, respectively. Let a be a non-zero element of M. Then, there exists we I’
such that awa=a. By the observation made above, awxr=zx=zxwa for any reM
and so awe=e=ewa, whence (ade)we=e=ew(eda) or ad(ewe) =e¢= (ewe)da. There-

fore, (I, M) is a division gamma ring. O

3. Relations among the regularities of the operator rings and a
gamma ring.

Assuming the existence of the left and right unities in a gamma ring (I", M),
we prove that the left (right) operator ring L(R) is regular if and only M is
regular. From this, we can conclude that the regularity may be considered one

of Morita invariants.

For a ring A we prepare the following:
3.1 PROPOSITION. For a ring A with the unity, the following conditions
are equivalent :
(1) A is regular.
(2) Every principal right (left) ideal of A is generated by an idempotent.
(3) Every finitely generated right (left) ideal of A is generated by an
idempotent.

The proof is analogous to the proof of Theorem 1.2. O

3.2 THEOREM. Suppose (', M) has the left and right unities. Then, fol-
lowing conditions are equivalent :
(1) L is regular. (2) R is regular. (3) M is regular.

PrROOF. (2)=(3): Suppose that R is regular and let MI'm, where me M,
be a principal left ideal of M. We shall show that there exists e R such that
e?=e¢ and MI'm=Me. Let 1,=3ei, 0:], where esc M, é;c’. Then, I'=I'Y
Lei, 0:1=3) Ies0:<>RI;. Clearly, 2IR0;SI'. Hence I'=3XRdi. So, [I', m]=
S Rri, where r;=[d;, m]e R. Since R is regular by Proposition 3.1 3 Rr;=Re,
with ee R, e?=e. Now, MI'm=MRe=DMe, as reguired. By Theorem 1.2, M is

regular.
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(3)=>(2): Suppose that M is regular, and let Rr be a principal left ideal
of R. Let 1z=X[¢y, f7], where e;& " and fj&€M. Then, M=Mlr=3 (Mej)f;S
SYLfj. Since ILf;S M, we have M= Lf;. Then, Mr=3Lmj;, where mj=fr
eM. Since M is regular, by Theorem 1.2 XLmj=DMe, with ecR, e*=e.
Therefore, Rr=IMr=IMe=Re. By Proposition 3.1, R is regular.

(1)&=(3) is proved analogously. O

3.3 COROLLARY. Suppose (I'y M) has the left and right unities, and R and
L are the right and left operator rings, respectively. Then, for any positive
integers m, n, Rn is regular if and only if Ln is regular, where Ry and Ly denote
the total matriz rings of nXn matrices over R and of mXm matrices over L,

respectively.

PrROOF. Consider the matrix gamma ring (I'n,m, Mm,n) over (I', M). Then
Rn=[Inym; Mm,n] and Lum=[Mmn,n, I'n,n] are the right and left operator rings of
(nymy Mm,n), respectively. O

3.4 REMARK. In Corollary 3.3, put m=1, then R, is regular if and only if
L is regular. Also we know L is regular if and only if R is regular. Hence,
we have R, is regular if and only if R is regular. Likewise, Ry is regular if and
only if M, is regular, and R is regular if and only if M is regular. Hence, M

is regular if and only if Mun,» is regular.

Now, let R and R’ be ordinary rings with the unities. Suppose the categories
Mod-R and Mod-R’ are equivalent, written Mod-R~Mod-R’. Then, there exist
bimodules z’Pr, rP’r’ and a Morita context (R, R’, P, P/, =, ) for which = and
¢ are surjective, so Morita I holds (see [2, p. 178]). Thus, (P, P) forms a gamma
ring having the right operator ring R and the left operator ring R’. Thus,
Theorem 3.2 shows the following:

3.5 COROLLARY. If R and R’ are rings with the unities and Mod-R~
Mod-R’, then R is regular if and only if R’ is regular.

By this corollary, the regularity may be considered as one of Morita invariants.

3.6 DEFINITION. A left R-module M is called regular if, given any element
me M, there exists fe Homr(M, R) with (mf)m=m.
Chung and Luh [1] proved the following:

3.7 THEOREM. Let R be a ring with unity. For wunital left R-modules,

the following conditions are equivalent :
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(1) R is a seme-simple artinian ring.
(2) Every R-module is regular.
(3) Every simple R-module is regular.

Using Theorem 3.7 we have

3.8 THEOREM. Let (I'y M) be a semi-prime gamma ring with min-r and
min-I conditions. Let L and R be the left and right operator rings respectively.
Then, every left (right) L-module and every left (right) R-module are regular.
In particular, L, M and R are regular.

ProOOF. First we note that by Corollaries 3.6 and 3.7 in [4] M has the left
unity 1z and the right unity 1z. Here, 12=3):[e:, 0:], where [ey, 0:], -+, [€n, 0n]
are mutually orthogonal primitive idempotents. Similarly for 1z. Thus,

L=%ilei, 0:]L=P:L[ei, 6:], where [ei, 6;]L and L[es, 0:] are right and left
minimal ideals respectively. Hence, L is left and right artinian. So, we have

L=®s,jles, 0i]L[ey, 0,1, where [ei, 0:]L[ej, 0,] are division rings. Thus, L
is a semi-simple artinian ring. By Theorem 3.7, every left (right) L-module is
regular. In particular, L is regular as s left (right) L-module. Since L has the
unity 1z, L=End(:L) (End(Lz)), and so L is regular as a ring, because for any
he L there exists i’ End(LL)=L such that ”k’h=h. Now by Theorem 3.2 M
is regular. Similarly, every left (right) R-module is regular, and in particular R

is regular. O

4. Regularity of Morita pairs.

Let (Q, R, S, T, p, v) be a Morita context, where @ and R are rings, S and
T are bimodules such that S=¢Sr and T=zTg, and ¢ and v are mappings such
that ¢: SQrRT—Q and v: T®e¢S—R. For s, 'S, and ¢, ¢’ T, denote

st=p(sQRt)eQ, ts=v(tRs)ER,

sts' =(st)s’e S, tst’'=@s)t'eT.
Due to the associative laws in a Morita context, the conditions (1), (2) and (3)
of 0 are satisfied, and we obtain a gamma ring (7T, S).

Conversely, if (I", M) is a gamma ring with the left and the right operator
rings L and R, we obtain a Morita context (L, R, M, I', p, v). However, note
that @ and R of a Morita context are not the operator rings of a gamma ring
(T, S), because S (or T) is not necessarily a faithful module.

For a Morita context, we let ST = {Xsit:}, T'S={3tis:}). For the case Q =ST
and R=TS we say that @ and R are related through a Morita context, or simply
(Q, R) is a Morita pair, [6]. Let (L, R) be a Morita pair, where L=ST and
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R=TS. Define Ly={heL|Th=0}, Ry={reR|rT=0}, and So={s€S|TsT=0}.
L, and R, are ideals of L and of R, respectively, and S, is an L-R-submodule
of S. It is easy to see that SyT'C Lo and T'SoSR,. When S is a finitely generated
left L- module, we simply say that .S is finitely generated. The same convention

is used for Sg, g7 and Tr. With the notations above, we have the following
theorem :

4.1 THEOREM. Suppose that S, Sr, rT and TL are all finitely generated.
Then, the following conditions are equivalent.
(1) LJ/L, is a regular ring.
(2) R/Ry is a regular ring.
(3) For any element s=.S, there exists an element t€T such that sis=s
mod So.

PrRooOF. The proof consists of the following four steps.

Step 1. Suppose that 77 is finitely generated. Then (1) implies (3).

Proof of Step 1. Suppose that (1) holds. Since 7% is finitely generated, we
have T=X>t:L, (¢;&€T). For any element se.S, sT=2>sz:L. Here st;L are prin-
cipal right ideals of L, and since L/L, is regular, there exists e L such that
e?=e¢ mod Ly, and Xst;:L=el mod L,. So, sT=el mod L,. Then, there exists an
element t,e T such that sty=e mod Lo,. On the other hand, for any te T, st=eh
mod L, with some he L. Therefore, est=e?h=eh=st mod Ly, (es—s)t=0 mod L,,
and hence (stos—s)teL,. This implies that T (stps—s)t=0 for any z. We have
shown that stes—seS,. So, (3) holds.

Step 2. Suppose that .S is finitely generated. Then, (3) implies (2).

Proof of Step 2. Suppose that (3) holds. Since .S is finitely generated, S=
N Lui(uieS). For any element r&R, Sr=3)Luswr =3 Ls;, where s;=uwreS. By
(3), there exist #; such that s;#;si=s; mod So. Let es=tis:€R. Then, €2 =t:sit:s4
=¢45¢ mod Ry, as TSoC Ry,. Hence, e2=e; mod R,. Clearly, Re;=Rtisi=TSts5i<
TLs;. On the other hand, T Ls;=T Ls;tisi mod Ry, and T Ls;itisi=T Lsie: < Re;.
So, TLs;=Re; mod R,. Hence, Rr=3Re; mod R,. By a well known argument
in ring theory, we have that 3IRe;=Re mod R, with e?=e mod R,. Thus, every
principal left ideal of R/R, is generated by an idempotent and hence R/R, is
regular. Thus, (3) holds.

Step 3. Suppose that g7 is finitely generated. Then, (2) implies (3).

Proof of Step 3. The proof is similar to the proof of the step 1, using R in
place of L, and changing the order of multiplication. Namely, let 7'=3R¢; and
Ts=3 Rtis. We can show that there exists ee R such that e?=e¢ mod R, and



382 Shoji KyuNo, Nobuo NOBUSAWA and Mi-Soo B. SMITH

Ts=Re mod R,. Then, e=tys mod R, with some #,,. We can also show that
t(stos—s)=0 mod R,, and hence sto,s=s mod So.
Step 4. Suppose that Sk is finitely generated. Then (3) implies (1).
Proof of Step 4. The proof is similar to the proof of Step 2. O

4.2 COROLLARY. Suppose that LS and TL are finitely generated. Assume,
further, that rR=0 implies r=0. Then, R is regular if L is regular.
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