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REGULAR GAMMA RINGS
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0. Introduction

Let $M$ and $\Gamma$ be additive abelian groups. If for all $a,b,c\in M$ and $\alpha,\beta,\gamma\in\Gamma$ ,
the conditions

(1) $a\alpha b\in M,$ $\alpha a\beta\in\Gamma$ ,
(2) $(a+b)\alpha c=a\alpha c+b\alpha c,$ $a(\alpha+\beta)b=a\alpha b+a\beta b,$ $a\alpha(b+c)=a\alpha b+a\alpha c$ ,

$(\alpha+\beta)a\gamma=\alpha a\gamma+\beta a\gamma,$ $\alpha(a+b)\beta=\alpha a\beta+\alpha b\beta,$ $\alpha a(\beta+\gamma)=\alpha a\beta+\alpha a\gamma$ ,
(3) $(a\alpha b)\beta c=a(\alpha b\beta)c=a\alpha(b\beta c),$ $(\alpha a\beta)b\gamma=\alpha(a\beta b)\gamma=\alpha a(\beta b\gamma)$ ,

are satisfied, then $M$ is called a weak gamma ring in the sense of Nobusawa and
denoted by $(\Gamma, M)_{wN}$ .

In this note $(\Gamma, M)$ denotes $(\Gamma, M)_{wN}$ , unless otherwise specified.
A gamma ring $(\Gamma, M)$ is regular if for each $a\in M$ there exists $\delta\in\Gamma$ such

that $a\delta a=a$ . For a left R-module $M$, letting $\Gamma=Hom_{R}(M, R)$ , we have a gamma
ring $(\Gamma, M)$ . A left R-module $M$ is called regular, if for any element $m\in M$

there exists $f\in Hom_{R}(M, R)$ with $(mf)m=m,$ $[8]$ . Thus, the concept of regular
gamma rings is a natural generalization of regular modules.

In this note, we study various properties of regular gamma rings. In 1, we
obtain a couple of necessary and sufficient conditions that $(\Gamma, M)$ is regular, and
then characterize a commutative regular Nobusawa gamma ring as a subdirect
sum of gamma fields (Th. 1.7).

In 2, we define a regular ideal and prove a basic theorem: If $J\subseteq K$ are two

ideals in $M$, then, $K$ is regular if and only if $J$ and $K/J$ are both regular (Th.

2.2). If $\ovalbox{\tt\small REJECT}$ is the class of all regular gamma rings, then this theorem shows that
te is a radical class. Next, we introduce the concept of a weakly nilpotent ele-
ment, and we obtain that a non-zero subdirectly irreducible regular gamma ring
with no non-zero weakly nilpotent elements is a division gamma ring (Th. 2.11).

In 3, we obtain relations among the regularities of the operator rings $L,$ $R$

and a gamma ring $(\Gamma, M)$ as follows: If $(\Gamma, M)$ has the left and right unities,
then the following conditions are equivalent: (1) $L$ is regular; (2) $R$ is regular;
(3) $M$ is regular (Th. 3.2). By this theorem, we have that, when $Mod- R\approx$
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Mod-L, $R$ is regular if and only if $L$ is regular (Corollary 3.5). Furthermore,

we show that if $(\Gamma, M)$ is a semi-prime gamma ring with min-r and min-l con-
ditions, every left (right) L-module and every left (right) R-module are regular.
In particular, $L,$ $M$ and $R$ are regular (Th. 3.8).

In 4, we consider the regularity of a Morita context $(Q, R, S, T, \mu, \nu)$ , where
$\mu,$ $\nu$ are surjective. Here, it is not assumed that $Q,$ $R$ have unities nor that $S,$ $T$

are unital. We obtain an extension (Th. 4.1) of Theorem 3.2.

For the definitions of the following basic notions in gamma rings we refer,

respectively, to [3] for the right operator ring $R$ , the left operator ring $L$ , a right
(left, two-sided) ideal of $M,$ $|a>,$ $[N, \Phi]$ , where $N\subseteq M$ and $\Phi\subseteq\Gamma$ and to [4] for
semiprime ideals, nilpotent elements, the right unity and the left unity.

1. Regular Gamma Rings.

1.1 DEFINITION. A gamma ring $(\Gamma, M)$ is regular if for each $x\in M$ there
exists $\delta\in\Gamma$ such that $x\delta x=x$ . We abbreviate this as $\Lambda f$ is regular, when $\Gamma$ is
understood.

1.2 THEOREM. For a gamma ring $(\Gamma, M)$ with the left and right unities,

the following conditions are equivalent:
(1) $(\Gamma, M)$ is regular.
(2) Every principal right ideal of $M$ is generated by an idempotent of

the left operator ring $L$ .
(2’) Every principal left ideal of $M$ is generated by an idempotent of the

right operator ring $R$ .
(3) Every finitely generated right ideal of $M$ is generated by an idempo-

tent of the left operator ring $L$ .
(3’) Every finitely generated left ideal of $M$ is generated by an idempotent

of the right operator ring $R$ .

PROOF. We note that for any $a\in M|a>=a\Gamma M$, since $|a>=Za+a\Gamma M\subseteq$

$a\Gamma M$ ( $Z$ is the set of all integers.)

(1) $\Rightarrow(2)$ : Suppose that for each $a\in M$ there exists $\delta\in\Gamma$ such that $a\delta a=a$ .
Then $[a, \delta][a, \delta]=[a, \delta]$ and so $[a, \delta]$ is an idempotent in $L$ . Since $a\Gamma M=$

$a\delta a\Gamma M\subseteq a\delta M,$ $a\Gamma M=a\delta M$. Thus, $|a>=a\delta M$.
(2) $\Rightarrow(3)$ : It suffices to show that for any $a,$ $b\in M,$ $|a>+|b>=tM$, where

$t$ is an idempotent in $L$ . By (2), $|a>=hM,$ $h^{2}=h\in L$, and $|b>=fM$ where $f^{2}$

$=f\in L$ . Then, since $b-hb\in fM+hM$, $b- hb>\subseteq fM+hM$, and so $hM+|b-hb>$
$\subseteq hM+fM$. On the other hand, $b=hb+b-hb\in hM+|b-hb>$ , whence $fM=|b>$
$\subseteq hM+|b- hb>$ . Thus, $hM+fM\subseteq hM+|b- hb>$ . Therefore, $hM+fM=hM+$
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$|b-hb>$ . Again by (2) $b- hb>=sM$, where $s^{2}=s\in L$ . Then, $hs\Lambda I=h|b-hb>$

$=0$ , and it follows that $hs=hs^{2}=0$ . So if $g=s-sh$ , then $g$ is an idempotent and
orthogonal to $h$ . Since $sg=g$ and $gs=s$ , we see that $gM=sM=|b-hb>$ . Therefore,

$|a>+|b>=hM+gM$ Since $h$ and $g$ are orthogonal, we have $|a>+|b>=(h+g)M$.
(3) $\Rightarrow(1)$ : Suppose that for any $x\in M,$ $|x>=hM$, where $h^{2}=h\in L$ . Then,

$\gamma j=hy=h^{2}y=h(hy)=hx$, where $y\in M$. On the other hand, $hL=[hM, \Gamma]=[|x>$ ,

$\Gamma]=[Zx+x\Gamma M, \Gamma]\subseteq[x, \Gamma]$ , which implies $h=h^{2}=[x, \delta]$ , where $\delta\in\Gamma$ . Hence
$x=hx=[x, \delta]x=x\delta x$ . $\square $

1.3 DEFINITION. A gamma ring $(\Gamma, \Lambda f)$ is right semi-hereditary if every
finitely generated right ideal of $\Lambda I$ is a projective R-module. A right ideal $I$ in
$M$ is called essential if for every non-zero right ideal $A$ in $M,$ $I\cap A\neq 0$ . Let $\varphi(M)$

be the set of all essential right ideals in $M$, and $Z_{r}(M)=\{x\in M|x\Gamma I=0$ for some
$I\in\varphi(M)\}$ . $(\Gamma, M)$ is called a right nonsingular gamma ring if $Z_{r}(M)=0$ . Sim-

ilarly, a left semi-hereditary gamma ring and a left nonsingular gamma ring are
defined.

1.4 COROLLARY. Let $(\Gamma, M)$ be a regular gamma ring. Then
(1) All one-sided ideals in $M$ are idempotent.
(2) All two-sided ideals in $M$ are semi-prime.
(3) The Jacobson radical of $M$ is zero.
(4) $(\Gamma, M)$ with the left and right unities is right and left semi-hered-

itary.
(5) $(\Gamma, M)$ is right and left nonsingular.

PROOF. Let $J$ be a right ideal of $M$ Since $M$ is regular, for each $x\in J$

$x\gamma x=x$ for some $\gamma\in\Gamma$ . Consequently, $x=x\gamma x\in J\Gamma J$ and so $J=J\Gamma J$. Thus, we
have (1).

Let $I$ be a two-sided ideal of $M$ If $A$ is a two-sided ideal in $M$ such that
$A\Gamma A\subseteq I$, then $A\subseteq I$, because by (1) $A=A\Gamma A$ . Hence we have (2).

To show (3), suppose that $e$ is right quasi-regular and $e=e\delta e$ . Then, there
exists $r\in R$ such that $[\delta, e]\circ r=r+[\delta, e]-[\delta, e]r=0$ . It follows $[\delta, e]=[\delta, e]\circ O$

$=[\delta, e]\circ([\delta, e]\circ r)=([\delta, e]\circ[\delta, e])\circ r=[\delta, e]\circ r=0$ . Thus, $e=e\delta e=e[\delta, e]=e0=0$ .
Recall that $J(M)=$ { $ e\in M|\langle e\rangle$ is right quasi-reqular}. Since $\langle e\rangle=0,$ $e=0$ and so
$J(M)=0$ .

Now we prove (4). By Theorem 1.2.(3), every finitely generated right
ideal in $M$ may be written as $hM$, where $h^{2}=h\in L$ . Let $A=\{x\in M|hx=0\}$ .
Clearly $A$ is a right ideal in $M$ For any $x\in M,$ $x=hx+(x-hx)$ , and $M=hM\oplus A$,

because if $a\in hM\cap A$ then $a=ha=0$ . Thus, $hM$ is a direct summand of $M$ and
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so every finitely generated right ideal in $M$ is a projective $R\cdot module$ . Similarly
it can be proved that $(\Gamma, M)$ is left semi-hereditary.

For (5), let $J$ be an essential right ideal in $M$. Suppose that $a\Gamma J=0$ for
some $a\in\lrcorner tX$, and that there exists $\delta\in\Gamma$ such that $a\delta a=a$ . Then, $a\delta M\cap J=0$ , for
if $x\in a\delta M\cap J$ then $x=a\delta x=0$ . Since $J$ is essential, $a\delta M=0$ and so $a=0$ . Sim-
ilarly we obtain the same result for left ideals. $\square $

Given an ideal $I$ in $M$, we form a residue class gamma ring $(\Gamma/I^{*}, M/I)$ ,

where $I^{*}=\{\gamma\in\Gamma|M\gamma M\subseteq I\}$ .

1.5 THEOREM. A gamma ring $(\Gamma, M)$ is regular if and only if the fol-
lowing (1), (2) and (3) hold.

(1) $M$ is semi-prime,
(2) The union of any chain of semi-prime ideals of $M$ is $se\prime ni$ .prime,
(3) $M/P$ are regular for all prime ideals $P$ of $M$.

PROOF. Let $M$ be regular. Corollary 1.4 (2) shows that all ideals in $M$ are
semi-prime, whence (1) and (2) hold. (3) obviously holds, for, $(x+P)(\gamma+$

$P^{*})(x+P)=x\gamma x+P=x+P$.
Conversely, assume that (1), (2) and (3) hold. If $M$ is not regular, then

there is $a\in M$ such that $a\not\in a\Gamma a$ . By (2), there is a semi-prime ideal $I$ in $M$

which is maximal among semi-prime ideals such that $a\not\in a\Gamma a+I$. Note that $\{0\}$

is a semi-prime ideal of $M$ such that $a\not\in a\Gamma a+\{0\}$ . $M/I$ is not regular, because
otherwise, for any $x\in M,$ $(x+I)(\gamma+I^{*})(x+I)=x+I$ would imply $x\in x\Gamma x+I$, a
contradiction. Hence, by (3) $I$ is not prime. Thus, there are ideals $A$ and $B$

which properly contain $I$ and $A\Gamma B\subseteq I$. Indeed, since $A\xi I$ and $B\not\subset I,$ $I\subsetneq A+I$

and $I\subsetneqq B+I$. If we set $A+I=A^{\prime}$ and $B+I=B^{\prime}$ , then $A^{\prime}\Gamma B^{\prime}=A\Gamma B+I\subseteq I+I=I$

and $I\subsetneq A^{\prime}$ and $I\subsetneq B^{\prime}$ . Thus, we can take $A,$ $B$ instead of $A^{\prime},$
$B^{\prime}$ from the begin-

ning. Now set $P=\{x\in Mx\Gamma B\subseteq I\}$ and $Q=\{x\in MP\Gamma x\subseteq I\}$ . Since $I$ is semi-
prime, $P$ and $Q$ are semi-prime. For, $ K\Gamma K\subseteq P\Rightarrow K\Gamma K\Gamma B\subseteq I\Rightarrow K\Gamma B\Gamma K\Gamma B\subseteq K\Gamma$

$K\Gamma B\subseteq I\Rightarrow K\Gamma B\subseteq I\Rightarrow K\subseteq P$, and $U\Gamma U\subseteq Q\Rightarrow P\Gamma U\Gamma U\subseteq I\Rightarrow P\Gamma U\Gamma P\Gamma U\subseteq P\Gamma U\Gamma U$

$\subseteq I\Rightarrow P\Gamma U\subseteq I\Rightarrow U\subseteq Q$ .
Since $(P\cap Q)\Gamma(P\cap Q)\subseteq P\Gamma Q\subseteq I$, we have $P\cap Q\subseteq I$. Clearly, $A\subseteq P$ and $B\subseteq Q$ ,

and hence $P$ and $Q$ properly contain $I$. By the maximality of $I$, there exist
elements $\gamma,$

$\omega\in\Gamma$ such that $a-a\gamma a\in P$ and $a-a\omega a\in Q$ . Then, $a-a(\gamma+\omega-\gamma a\omega)a$

$=a-a\gamma a-(a-a\gamma a)\omega a\in P$. Also $a-a(\gamma+\omega-\gamma a\omega)a=a-a\omega a-a\gamma(a-a\omega a)\in Q$ .
It follows that $a\in a\Gamma a+P\cap Q\subseteq a\Gamma a+I$, which is a contradiction. Hence, $M$ is
regular. $\square $

1.6 COROLLARY. A gamma ring $(\Gamma, M)$ is regular if and only if all ideals
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of $M$ are idempotent and $M/P$ are regular for all prime ideals $P$ of $M$.
PROOF. If all ideals of $M$ are idempotent, all ideals of $M$ are semi-prime. $\square $

1.7 THEOREM. A commutative regular Nobusawa gamma ring with more
than one element is a subdirect sum of gamma fields.

PROOF. A regular gamma ring has no non-zero nilpotent elements. For,
suppose $(a\gamma)^{n}a=0$ for any $\gamma\in\Gamma$ . Then we have $a=(a\delta)^{m}a=0$ since there exists
$\delta\in\Gamma$ such that $a=a\delta a$ . A homomorhpic image of a regular gamma ring is regular,
and so it has no non-zero nilpotent elements. Then, the theorem follows imme-
diately from Theorems 3 and 4 in [5]. $\square $

2. Regular Ideals

2.1 DEFINITION. A two-sided ideal $J$ in $M$ is regular if for each $ x\in$ ] there
exists $\gamma\in J^{*}$ such that $x\gamma x=x$ , where $j*=\{\gamma\in\Gamma|M\gamma M\subseteq J\}$ .

2.2 THEOREM. Let $J\subseteq K$ be two-sided ideals in M. Then $K$ is regular if
and only if $J$ and $K/J$ are both regular.

PROOF. Let $J^{*}=\{\gamma\in\Gamma|M\gamma M\subseteq J\}$ and $K^{*}=\{\gamma\in\Gamma|M\gamma M\subseteq K\}$ . Then $(J^{*}, J)$ ,

$(K^{*}, K)$ and $(K^{*}/J^{*}, K/J)$ are gamma rings. Suppose that $K$ is regular. For
each $k\in K$ there exists $\gamma\in K^{*}$ such that $k\gamma k=k$ . Thus, $(k+J)(\gamma+J^{*})(k+J)=$

$k\gamma k+J=k+J$ and so $K/J$ is regular.
Given $x\in J$, we have $x\delta x=x$ for some $\delta\in K^{*}$ , since $J\subseteq K$. Then, $\omega=\delta x\delta\in J^{*}$ ,

for $M\omega M=M\delta x\delta M\subseteq J\delta M\subseteq J$. Hence, $x\omega x=x\delta x\delta x=x\delta x=x$, and so $J$ is regular.
Conversely, assume that $J$ and $K/J$ are both regular. For a given $a\in K,$ $a+$

$J=(a+J)(\gamma+J^{*})(a+J)=a\gamma a+J$, where $\gamma\in K^{*}$ from the regularity of $K/J$. Hence,

$a-a\gamma a\in J$, for some $\gamma\in K^{*}$ . Consequently, $a-a\gamma a=(a-a\gamma a)\omega(a-a\gamma a)$ , where $\omega$

$\in j*$ . Then,

$a=a-a\gamma a+a\gamma a$

$=(a-a\gamma a)\omega(a-a\gamma a)+a\gamma a$

$=a(\omega-\gamma a\omega)(a-a\gamma a)+a\gamma a$

$=a(\omega-\gamma a\omega-\omega a\gamma+\gamma a\omega a\gamma)a+a\gamma a$

$=a(\omega-\gamma a\omega-\omega a\gamma+\gamma a\omega a\gamma+\gamma)a$

$=a\lambda a$ , where $\lambda=\omega-\gamma a\omega-\omega a\gamma+\gamma a\omega a\gamma+\gamma\in K^{*}$ ,

because $J^{*}\subseteq K^{*}$ and $K^{*}$ is an ideal in $\Gamma$ .
Therefore, $K$ is regular. $\square $

2.3 REMARK. Let 2 be the class of all regular gamma rings. Theorem 2.2
shows \dagger hat $\ovalbox{\tt\small REJECT}$ is a radical class, since other two conditions: $\ovalbox{\tt\small REJECT}$ is homomorphically
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closed and $\ovalbox{\tt\small REJECT}$ has the inductive property are trivially satisfied.
(See, for instance, [7]) In fact, a radical $N$ for any gamma ring $(\Gamma, M)$ may
be defined by the conditions in Proposition 2.6.

2.4 PROPOSITI0N. Any finite subdirect sum of regular Nobusawa gamma
rings is regular.

$PR\infty F$ . It suffices to show that a subdirect sum of two regular Nobusawa gamma
rings is regular. Suppose that $M$ has two ideals $J$ and $K$ such that $J\cap K=0$ . Then
$J^{*}\cap K^{*}=0$ , where $J^{*}=\{\gamma\in\Gamma|M\gamma M\subseteq J\}$ and $K^{*}=\{\gamma\in\Gamma|M\gamma M\subseteq K\}$ . For, if $\gamma\in J^{*}$

$\cap K^{*}$ , then $M\gamma M\subseteq J\cap K=0$ and $\gamma=0$ . Let the gamma rings $(\Gamma/J^{*}, M/J)$ and
$(\Gamma/K^{*}, M/K)$ be both regular. Consider the homomorhpism

$(\varphi, \theta)$ : $(J^{*}, J)\rightarrow(J^{*}+K^{*}/K^{*}, J+K/K)$

where
$\theta$ is the natural epimorphism: $J\rightarrow J+K/K,$ $x\theta=x+K$ and $Ker\theta=J\cap K=0$ ,

$\varphi$ is the natural epimorphism: $J^{*}\rightarrow J^{*}+K^{*}/K^{*},$ $\alpha\varphi=\alpha+K^{*}$ and $Ker\varphi=J^{*}\cap K^{*}$

$=0$ .
Then
$(x\alpha y)\theta=x\alpha y+K=(x+K)(\alpha+K^{*})(y+K)=x\theta\alpha\varphi y\theta$ , and $(\alpha x\beta)\varphi=\alpha x\beta+K^{*}=(\alpha+$

$ K^{*})(x+K)(\beta+K^{*})=\alpha\varphi x\theta\beta\varphi$ . Hence, $(\varphi, \theta)$ is an isomorphism from $(J^{*}, J)$ onto
$(J^{*}+K^{*}/K^{*}, J+K/K)$ . Since $J+K/K$ is an ideal in $M/K,$ $J+K/K$ is regular.
Theorem 2.2 shows $J$ is regular. Hence, $J$ and $M/J$ are regular, and again by
Theorem 2.2 $M$ is regular. $\square $

2.5 REMARK. A subdirect sum of infinitely many regular Nobusawa gamma
rings need not be regular. For example, $(Z, Z)$ is the subdirect sum of infinitely
many regular Nobusawa gamma rings $(Z/(p), Z/(p))$ , where $p$ runs through
all prime numbers.

2.6 PROPOSITION. For a gamma ring $(\Gamma, M)$ , set $N=$ { $ x\in M|\langle x\rangle$ is regular}.
Then,

(1) $N$ is a regular ideal in $M$,

(2) $N$ contains all regular ideals of $M$,

(3) $M/N$ has no non-zero regular ideals.

PROOF. Let $x,$ $y\in N$. Then $\langle y\rangle$ is regular and $\langle x\rangle+\langle y\rangle/\langle y\rangle$ is regular.
Hence by Theorem 2.2 $\langle x\rangle+\langle y\rangle$ is regular. For any $a\in\langle x\rangle+\langle y\rangle,$ $\langle a\rangle\subseteq\langle x\rangle+$

$\langle y\rangle$ . Theorem 2.2 shows $\langle a\rangle$ is regular, and so $a\in N$. Thus, $\langle x\rangle+\langle y\rangle\subseteq N$,

whence $N$ is an ideal in $M$. For any $x\in N$, since $\langle x\rangle$ is regular, there exists
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$\delta\in\langle x\rangle^{*}$ , where $\langle x\rangle^{*}=\{\gamma\in\Gamma|M\gamma M\subseteq\langle x\rangle\}$ , such that $x\delta x=x$ . Since $N$ is an ideal.
$\langle x\rangle\subseteq N$ and then $\langle x\rangle^{*}\subseteq N^{*}$ . Thus, $\delta\in N^{*}$ and $N$ is regular. This completes the
proof of (1).

To prove (2), let $A$ be any regular ideal in $M$. For any $a\in A,$ $\langle a\rangle\subseteq A$ .
Thus, by Theorem 2.2, $\langle a\rangle$ is regular and so $a\in N$. Hence $A\subseteq N$.

If $A/N$ is a non-zero regular ideal in $M/N,$ $A$ is regular by Theorem 2.2, and
$A$ contains $N$ properly, which contradicts to (2). $\square $

2.7 DEFINITION. An element $a\in M$ is said to be a weakly nilpotent element
if there exist a non-zero element $\gamma\in\Gamma$ and an integer $n>1_{-}$ such that $(a\gamma)^{n-1}a=0$ .

2.8 PROPOSITI0N. In a gamma ring $(\Gamma, M)$ with no non-zero weakly

nilpotent elements, every idempotent commutes with every element in $M$.

PROOF. Let $e\delta e=e,$ $\delta\in\Gamma$ , and $x\in M$. If $e=0,$ $e\delta x=0=x\delta e$ . Suppose $e\neq 0$ .
Then $\delta\neq 0$ . Since
$(e\delta x-e\delta x\delta e)\delta(e\delta x-e\delta x\delta e)=(e\delta x\delta e-e\delta x\delta e)([\delta, x]-[\delta, x\delta e])=0$ and $(\Gamma, M)$ has
no non-zero weakly nilpotent elements, $e\delta x-e\delta x\delta e=0$ or $e\delta x=ex\delta e$ . Similarly, $x\delta e$

$=e\delta x\delta e$, and so $e\delta x=x\delta e$ . $\square $

2.9 PROPOSITI0N. Let $(\Gamma, M)$ be a regular gamma ring with no non-zero
weakly nilpotent elements. Then

(1) Every principal one-sided ideal is generated by an idempotent which
commutes with any element in $M$

(2) Every one-sided ideal is a two-sided ideal.

PROOF. Let $a=a\delta a$ for some $\delta\in\Gamma$ . Then, $|a>=Za+a\Gamma M=a[\delta, Za]+a\Gamma M$

$=a\Gamma M=a\delta a\Gamma M\subseteq a\delta M$, and hence $|a>=a\delta M$. Proposition 2.8 shows that $a$ com-
mutes with any element in $M$. Thus we have (1).

To prove (2), let $A$ be a right ideal in $M$ For any $a\in A,$ $a\delta M\subseteq A$ , where
$a\delta a=a$ for some $\delta\in\Gamma$ . By Proposition 2.8 $a\delta M=M\delta a$ . Since $M\delta a=M\Gamma a,$ $M\Gamma a$

$\subseteq A$, and so $A$ is a left ideal. $\square $

2.10 DEFINITION. A gamma ring $(\Gamma, M)$ is said to be a division gamma
ring if $(\Gamma, M)$ has the strong left unity $[e, \delta]$ and the strong right unity $[\delta, e]$ ,

and if for each non-zero element $a\in M$ there exists $b\in M$ such that $a\delta b=b\delta a=e$ .
A gamma ring $(\Gamma, M)$ is said to be subdirectly irreducible if the intersection of
all non-zero ideals of $M$ is not zero.

2.11 THEOREM. A non-zero subdirectly irreducible regular gamma ring

with no non-zero weakly nilpotent elements is a division gamma ring.
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PROOF. Let $(\Gamma, M)$ be a non-zero subdirectly irreducible regular gamma ring
with no non-zero weakly nilpotent elements. For each non-zero element $e\in M$ there
exists $\delta\in\Gamma$ such that $e\delta e=e$ . Proposition 2.8 shows that for any $x\in Me\delta x=x\delta e$ .
Let us consider two ideals $e\delta M$ and $A=\{x-e\delta x|x\in M\}$ , whose intersection is zero.
$M$ is subdirectly irreducible, so $e\delta M=0$ or $A=0$ . But $e\delta M\neq 0$, hence $A=0$ , and
thus $e\delta x=x\delta e=x$ . This means that $[e, \delta]$ and $[\delta, e]$ are the strong left and right
unities, respectively. Let $a$ be a non-zero element of $M$ Then, there exists $\omega\in\Gamma$

such that $a\omega a=a$ . By the observation made above, $a\omega x=x=x\omega a$ for any $x\in M$

and so $a\omega e=e=e\omega a$ , whence $(a\delta e)\omega e=e=e\omega(e\delta a)$ or $a\delta(e\omega e)=e=(e\omega e)\delta a$ . There-
fore, $(\Gamma, M)$ is a division gamma ring. $\square $

3. Relations among the regularities of the operator rings and a
gamma ring.

Assuming the existence of the left and right unities in a gamma ring $(\Gamma, M)$ ,

we prove that the left (right) operator ring $L(R)$ is regular if and only $M$ is
regular. From this, we can conclude that the regularity may be considered one
of Morita invariants.

For a ring $A$ we prepare the following:
3.1 PROPOSITION. For a ring $A$ with the unity, the following conditions

are equivalent:
(1) $A$ is regular.
(2) Every principal right (left) ideal of $A$ is generated by an idempotent.
(3) Every finitely generated right (left) ideal of $A$ is generated by an

idempotent.

The proof is analogous to the proof of Theorem 1.2. $\square $

3.2 THEOREM. Suppose $(\Gamma, M)$ has the left and right unities. Then, fol-
lowing conditions are equivalent:

(1) $L$ is regular. (2) $R$ is regular. (3) $M$ is regular.

PROOF. (2) $\Rightarrow(3)$ : Suppose that $R$ is regular and let $\lambda i\Gamma m$ , where $m\in M$,

be a principal left ideal of $M$. We shall show that there exists $e\in R$ such that
$e^{2}=e$ and $M\Gamma m=Me$ . Let $1_{L}=\Sigma[ei, \delta_{i}]$ , where $ei\in M,$ $\delta_{i}\in\Gamma$ . Then, $\Gamma=\Gamma\Sigma$

[ci, $\delta_{i}$ ] $=\Sigma\Gamma e_{i}\delta_{i}\subseteq\Sigma R\delta_{i}$ . Clearly, $\Sigma R\delta_{i}\subseteq\Gamma$ . Hence $\Gamma=\Sigma R\delta_{i}$ . So, $[\Gamma, m]=$

$\Sigma Rri$ , where $\gamma i^{=}[\delta_{i}, m]\in R$ . Since $R$ is regular by Proposition 3.1 $\Sigma Rr_{i}=Re$,

with $e\in R,$ $e^{2}=e$ . Now, $M\Gamma_{7}n=MRe=Me$, as reguired. By Theorem 1.2, $M$ is
regular.
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(3) $\Rightarrow(2)$ : Suppose that $M$ is regular, and let $Rr$ be a principal left ideal
of $R$ . Let $1_{R}=\Sigma[\epsilon_{j}, f_{j}]$ , where $\epsilon_{j}\in\Gamma$ and $f_{j}\in M$. Then, $ M=M1_{R}=\Sigma(M\epsilon_{j})f_{j}\subseteq$

$\Sigma Lf_{j}$ . Since $\Sigma Lf_{j}\subseteq M$, we have $M=\Sigma Lf_{j}$ . Then, $Mr=\Sigma Lmj$ , where $\prime nJ=f_{j}r$

$\in M$ . Since $M$ is regular, by Theorem 1.2 $\Sigma Lm_{j}=Me$, with $e\in R$ , $e^{2}=e$ .
Therefore, $Rr=\Gamma Mr=\Gamma Me=Re$ . By Proposition 3.1, $R$ is regular.

(1) $\Leftrightarrow(3)$ is proved analogously. $\square $

3.3 COROLLARY. Suppose $(\Gamma, M)$ has the left and right unities, and $R$ and
$L$ are the right and left operator rings, respectively. Then, for any positive

integers $m,$ $n,$ $R_{n}$ is regular if and only if $L_{m}$ is regular, where $R_{n}$ and $L_{m}$ denote
the total matrix rings of $n\times n$ matrices over $R$ and of $m\times m$ matrices over $L$ ,

respectively.

PROOF. Consider the matrix gamma ring $(\Gamma_{n,m}, M_{m,n})$ over $(\Gamma, M)$ . Then
$R_{n}=[\Gamma_{n,m}, M_{m,n}]$ and $L_{m}=[M_{m,n}, \Gamma_{n,m}]$ are the right and left operator rings of
$(\Gamma_{n,m}, M_{m,n})$ , respectively. $\square $

3.4 REMARK. In Corollary 3.3, put $m=1$ , then $R_{n}$ is regular if and only if
$L$ is regular. Also we know $L$ is regular if and only if $R$ is regular. Hence,

we have $R_{n}$ is regular if and only if $R$ is regular. Likewise, $R_{n}$ is regular if and
only if $M_{m,n}$ is regular, and $R$ is regular if and only if $M$ is regular. Hence, $M$

is regular if and only if $M_{m,n}$ is regular.

Now, let $R$ and $R^{\prime}$ be ordinary rings with the unities. Suppose the categories

Mod-R and Mod-R’ are equivalent, written $Mod- R\approx Mod- R^{\prime}$ . Then, there exist

bimodules $R^{\prime P_{R}},{}_{R}P_{R^{\prime}}^{\prime}$ and a Morita context $(R, R^{\prime}, P, P^{\prime}, \tau, \mu)$ for which $\tau$ and
$\mu$ are surjective, so Morita I holds (see [2, p. 178]). Thus, $(P^{\prime}, P)$ forms a gamma

ring having the right operator ring $R$ and the left operator ring $R^{\prime}$ . Thus,

Theorem 3.2 shows the following:

3.5 COROLLARY. If $R$ and $R^{\prime}$ are rings with the unities and $Mod- R\approx$

Mod-R’, then $R$ is regular if and only if $R^{\prime}$ is regular.

By this corollary, the regularity may be considered as one of Morita invariants.

3.6 DEFINITION. A left R-module $M$ is called regular if, given any element
$m\in M$, there exists $f\in Hom_{R}(M, R)$ with $(mf)m=m$ .

Chung and Luh [1] proved the following:

3.7 THEOREM. Let $R$ be a ring with unity. For unital left R-modules,

the following conditions are equivalent:
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(1) $R$ is a seme-simple artinian ring.

(2) Every R-module is regular.
(3) Every simple R-module is regular.

Using Theorem 3.7 we have

3.8 THEOREM. Let $(\Gamma, M)$ be a semi-prime gamma ring with min-r and
min-l conditions. Let $L$ and $R$ be the left and right operator rings respectively.

Then, every left (right) L-module and every left (right) R-module are regular.

In particular, $L,$ $M$ and $R$ are regular.

PROOF. First we note that by Corollaries 3.6 and 3.7 in [4] $M$ has the left
unity $1_{L}$ and the right unity $1_{R}$ . Here, $1_{L}=\Sigma_{i}[ei, \delta_{i}]$ , where $[e_{1}, \delta_{1}],$

$\cdots,$
$[e_{n}, \delta_{n}]$

are mutually orthogonal primitive idempotents. Similarly for $1_{R}$ . Thus,
$L=\oplus_{i}[ei, \delta_{i}]L=\oplus_{i}L[ei, \delta_{i}]$ , where $[ei, \delta_{i}]L$ and $L[ei, \delta_{i}]$ are right and left

minimal ideals respectively. Hence, $L$ is left and right artinian. So, we have
$L=\oplus_{i,j}[ei, \delta_{i}]L[e_{j}, \delta_{j}]$ , where $[ei, \delta_{i}]L[e_{j}, \delta_{j}]$ are division rings. Thus, $L$

is a semi-simple artinian ring. By Theorem 3.7, every left (right) L-module is
regular. In particular, $L$ is regular as $s$ left (right) L-module. Since $L$ has the
unity $1_{L},$ $L=End(LL)(End(L_{L}))$ , and so $L$ is regular as a ring, because for any
$h\in L$ there exists $h^{\prime}\in End(LL)=L$ such that $hh^{\prime}h=h$ . Now by Theorem 3.2 $M$

is regular. Similarly, every left (right) R-module is regular, and in particular $R$

is regular. $\square $

4. Regularity of Morita pairs.

Let $(Q, R, S, T, \mu, \nu)$ be a Morita context, where $Q$ and $R$ are rings, $S$ and
$T$ are bimodules such that $S=QSR$ and $T=RT_{Q}$ , and $\mu$ and $\nu$ are mappings such
that $\mu:S\otimes_{R}T\rightarrow Q$ and $\nu:T\otimes_{Q}S\rightarrow R$ . For $s,$

$s^{\prime}\in S$, and $t,$
$t^{\prime}\in T$, denote

$st=\mu(s\otimes t)\in Q,$ $ts=\nu(t\otimes s)\in R$ ,
$sts^{\prime}=(st)s^{\prime}\in S,$ $tst^{\prime}=(ts)t^{\prime}\in 7^{\tau}$.

Due to the associative laws in a Morita context, the conditions (1), (2) and (3)

of $0$ are satisfied, and we obtain a gamma ring $(T, S)$ .
Conversely, if $(\Gamma, M)$ is a gamma ring with the left and the right operator

rings $L$ and $R$ , we obtain a Morita context $(L, R, M, \Gamma, \mu, \nu)$ . However, note

that $Q$ and $R$ of a Morita context are not the operator rings of a gamma ring
$(T, S)$ , because $S$ (or $T$ ) is not necessarily a faithful module.

For a Morita context, we let $ST=\{\Sigma s_{i}t_{i}\},$ $7^{\tau}S=\{\Sigma t_{i}s_{i}\}$ . For the case $Q=ST$

and $R=TS$ we say that $Q$ and $R$ are related through a Morita context, or simply
$(Q, R)$ is a Morita pair, [6]. Let $(L, R)$ be a Morita pair, where $L=ST$ and
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$R=TS$. Define $L_{0}=\{h\in L|Th=0\},$ $R_{0}=\{r\in R|rT=0\}$ , and $S_{0}=\{s\in S|TsT=0\}$ .
$L_{0}$ and $R_{0}$ are ideals of $L$ and of $R$ , respectively, and $S_{0}$ is an L-R-submodule
of $S$. It is easy to see that $S_{0}T\subseteq L_{0}$ and $TS_{0}\subseteq R_{0}$ . When $S$ is a finitely generated
left L- module, we simply say that $LS$ is finitely generated. The same convention
is used for $S_{R},$ $RT$ and $T_{L}$ . With the notations above, we have the following
theorem :

4.1 THEOREM. Suppose that $LS,$ $S_{R},$ $RT$ and TL are all finitely generated.
Then, the following conditions are equivalent.

(1) $L/L_{0}$ is a regular ring.
(2) $R/R_{0}$ is a regular ring.
(3) For any element $s\in S$, there exists an element $t\in T$ such that $sts\equiv s$

mod $S_{0}$ .

PROOF. The proof consists of the following four steps.

Step 1. Suppose that TL is finitely generated. Then (1) implies (3).

Proof of Step 1. Suppose that (1) holds. Since TL is finitely generated, we
have $T=\sum t_{i}L,$ $(t_{i}\in T)$ . For any element $s\in S,$ $sT=\sum st_{i}L$ . Here $st_{i}L$ are prin-

cipal right ideals of $L$, and since $L/L_{0}$ is regular, there exists $e\in L$ such that
$e^{2}\equiv emod L_{0}$ and $\Sigma st_{i}L\equiv eLmod L_{0}$ . So, $sT\equiv eLmod L_{0}$ . Then, there exists an
element $t_{0}\in T$ such that $st_{0}\equiv emod L_{0}$ . On the other hand, for any $t\in T,$ $st\equiv eh$

$mod L_{0}$ with some $h\in L$ . Therefore, $est\equiv e^{2}h\equiv eh\equiv stmod L_{0},$ $(es-s)t\equiv 0mod L_{0}$ ,
and hence $(st_{0}s-s)t\in L_{0}$ . This implies that $T(st_{0}s-s)t=0$ for any $t$ . We have
shown that $st_{0}s-s\in S_{0}$ . So, (3) holds.

Step 2. Suppose that $LS$ is finitely generated. Then, (3) implies (2).

Proof of Step 2. Suppose that (3) holds. Since $LS$ is finitely generated, $S=$

$\Sigma Lui(ui\in S)$ . For any element $r\in R,$ $Sr=\Sigma Luir=\Sigma Ls_{i}$ , where $s_{i}=u_{i}r\in S$. By
(3), there exist $t_{i}$ such that $s_{i}t_{i}si\equiv simod S_{0}$ . Let $e_{i}=t_{iSi}\in R$ . Then, $e_{i}^{2}=t_{i}srt_{i^{S}i}$

$\equiv t_{i}s_{i}mod R_{0}$ , as $TS_{0}\subseteq R_{0}$ . Hence, $e_{i}^{2}\equiv e_{i}mod R_{0}$ . Clearly, $ Re_{i}=Rt_{i}s_{i}=TSt_{i}s\iota\subseteq$

TLsi. On the other hand, $TLs_{i}\equiv TLsit_{i}simod R_{0}$ , and TLsitisi $=TLs_{i}ei\subseteq Re\iota$ .
So, $TLsi\equiv Reimod R_{0}$ . Hence, $Rr\equiv\Sigma Reimod R_{0}$ . By a well known argument

in ring theory, we have that $\Sigma Rei\equiv Remod R_{0}$ with $e^{2}\equiv emod R_{0}$ . Thus, every
principal left ideal of $R/R_{0}$ is generated by an idempotent and hence $R/R_{0}$ is
regular. Thus, (3) holds.

Step 3. Suppose that $RT$ is finitely generated. Then, (2) implies (3).

Proof of Step 3. The proof is similar to the proof of the step 1, using $R$ in
place of $L$ , and changing the order of multiplication. Namely, let $T=\Sigma Rt_{i}$ and
$Ts=\Sigma Rt_{i}s$. We can show that there exists $e\in R$ such that $e^{2}\equiv emod R_{0}$ and
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$Ts\equiv Remod R_{0}$ . Then, $e\equiv t_{0}smod R_{0}$ with some $t_{0}$ . We can also show that
$t(st_{0}s-s)\equiv 0mod R_{0}$ , and hence $st_{0}s\equiv smod S_{0}$ .

Step 4. Suppose that SR is finitely generated. Then (3) implies (1).

Proof of Step 4. The proof is similar to the proof of Step 2. $\square $

4.2 C0ROLLARY. Suppose that $LS$ and TL are finitely generated. Assume,

further, that $rR=0$ implies $r=0$ . Then, $R$ is regular if $L$ is regular.
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