COMPLETE 2-TRANSNORMAL HYPERSURFACES IN A KAEHLER MANIFOLD OF NEGATIVE CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

By

Fumiko OHTSUKA

§1. Introduction

The idea of constant width has been developed in a somewhat different spirit, as a topic in differential geometry, and the concept of "transnormality" has been introduced as the generalized one of constant width in a Riemannian manifold.

Let M be a connected complete hypersurface of a connected complete Riemannian manifold \overline{M} . For each $x \in M$, there exists, up to parametrization, a unique geodesic τ_x of \overline{M} which intersects M orthogonally at x. M is called a transnormal hypersurface of \overline{M} if, for each pair $x, y \in M$, the relation $y \in \tau_x$ implies that $\tau_x = \tau_y$. For a transnormal hypersurface M, we define an equivalence relation \sim on M as follows; for $x, y \in M$, $x \sim y$ means that $y \in \tau_x$. Then we can consider the quotient space $\hat{M} = M/\sim$ with the quotient topology with respect to this relation. We call M an *r*-transnormal hypersurface if the natural projection of M onto \hat{M} is an r-fold covering map.

Topological structures of transnormal submanifolds are full of interest and have been investigated from various angles (for example, see [3]). On the other hand, differential geometric structures of 2-transnormal hypersurfaces in a space form have been given in [2] and [4].

Recentry, the author has studied in [5] differential geometric structures of compact 2-transnormal hypersurfaces in a complex space form. The purpose of this paper is to generalize the result in [5] to the case where 2-transnormal hypersurfaces are complete. Namely we shall prove that 2-transnormal hypersurfaces in a Kaehler manifold of negative constant holomorphic sectional curvature are tubes over some submanifolds or geodesic hyperspheres if any principal curvature is constant.

§ 2. Preliminalies

First we shall review the definition of the function L_p on M for some point

Received August 22, 1986. Revised November 20, 1986.

Fumiko OHTSUKA

 $p \in M$, which plays an impotant part to investigate the properties of transnormal submanifolds.

If M is an r-transnormal hypersurface and if there exists a point $p \in M$ satisfying the condition $C(p) \cap M = \Phi$, then the differential function L_p on M is defined by

$$L_p(x) = d\overline{M}(p, x)^2$$
 for any $x \in M$,

where C(p) is the cut locus of p in \overline{M} and $d_{\overline{M}}$ denotes the distance function in \overline{M} . It is well known that any transnormal hypersurface has no intersection with its focal set. Therefore, the function L_p is the Morse function.

Next we describe relevant concept and formulas used for the proof of Mair. Theorem.

From now on, let \overline{M} be a simply connected complete Kaehler manifold of negative constant holomorphic sectional curvature k (for convenience, we will assume k=-4), dim_c $\overline{M}=m$ and M be a connected complete 2-transnormal real hypersurface in \overline{M} . Note that the cut locus C(p) of any point $p \in M$ is empty because of the negativity of the holomorphic sectional curvature of \overline{M} . Then, for any point $p \in M$, the Morse function L_p can be defined.

Since M is 2-transnormal, for any point $x \in M$, there exists the unique point $\tilde{x} \in M$ such that $\tilde{x} \sim x$ and $\tilde{x} \neq x$. It is known that \tilde{x} is a critical point of L_x , which is called *an antipodal point* of x, and we call $d_{\overline{M}}(x, \tilde{x})$ the width of M as a subset of \overline{M} , which is constant on M.

Let $\gamma(x, \tilde{x})$ be the minimizing normal geodesic segment from x to the antipodal point \tilde{x} of x. We denote by N(x) the initial vector $\gamma'(0)$ of $\gamma(x, \tilde{x})$ and E(x) = JN(x), where J is the complex structure of \overline{M} . We call N(x) an inward unit normal vector at x and E(x) an almost contact structure vector at x.

Then, the Hessian H of $L_{\bar{x}}$ at critical point x is given by

$$H(x, y) = 2d \langle \{ \coth(d) \cdot I - S_{N(x)} \} X, Y \rangle$$

+ 2d \cdot tanh(d) \langle E(x), X \rangle \langle E(x), Y \rangle
for X, Y \in M_x,

where $d = d_{\overline{M}}(x, \tilde{x})$ and I denotes the identity transformation and S is the second fundamental tensor. See [5] for details.

In the sequel we assume that the almost contact structure vector E(x) is a principal vector with the principal curvature $\lambda(x)$ at each point $x \in M$. Furthermore, we denote by $\nu(x, X)$ the principal curvature of M at x associated with the principal vector X orthogonal to E(x). Then we have the following proposition.

PROPOSITION 2.1 (Lemma 4.3 of [5]) At the antipodal point \tilde{x} of x,

362

(1)
$$\lambda(\tilde{x}) = \frac{-2\sinh(2d) + \lambda(x)\cosh(2d)}{(\lambda(x)/2)\sinh(2d) - \cosh(2d)}$$

(2)
$$\nu(\tilde{x}, \tilde{X}) = \frac{-\sinh(d) + \nu(x, X)\cosh(d)}{\nu(x, X)\sinh(d) - \cosh(d)}$$

where \bar{X} is the tangent vector of M at \tilde{x} given by the parallel translation of X along $\gamma(x, \tilde{x})$ and $d=d_{\overline{M}}(x, \tilde{x})$.

Finally we shall consider some properties of a focal point of M. For each $p \in M$, let γ_p be the normal geodesic starting from p perpendicularly to M such that $\gamma'(0) = N(p)$.

PROPOSITION 2.2 A point $x \in \overline{M}$ is a focal point of M along geodesic γ_p if and only if $x = \gamma_p(r)$ where $2 \coth(2r) = \lambda(p)$ or $\coth(r) = \nu(p, X)$ for some nonzero principal curvature of M at p.

PROOF. $\gamma_p(r)$ is a focal point of M along γ_p if and only if there exists a non-trivial (M, p)-Jacobi field along γ_p which vanishes at $\gamma_p(r)$. For a non-zero principal curvature of M at p, we can consider the (M, p)-Jacobi field

 $Y(t) = (\cosh(2t) - (\lambda(p)/2)\sinh(2t))J\gamma'(t) \quad \text{or}$ $Z(t) = (\cosh(t) - \nu(p, X)\sinh(t))X(t),$

where X(t) is the parallel vector field along γ_p with X(0) = X which is principal vector orthogonal to E(p). Then we obtain the assertion. q.e.d.

REMARK 2.1 Since any transnormal hypersurface has no intersection with its focal set, for any point $x \in M$ the folloings are true;

$$2\cosh(2d) - \lambda(x)\sinh(2d) \neq 0$$

$$\cosh(d) - \nu(x, X)\sinh(d) \neq 0,$$

where d is a width of M as a subset of \overline{M} .

REMARK 2.2 From the form of Hessian of $L_{\bar{x}}$ at critical point x, the index of $L_{\bar{x}}$ at x is equal to the number of principal curvatures λ and ν of M at x with respect to N(x) such that $\lambda > 2 \coth(2d)$ or $\nu > \coth(d)$.

In the sequel, we label the principal curvatures ν from 1 to 2m-2 as followings; $\nu_1 \ge \nu_2 \ge \cdots \ge \nu_{2m-2}$.

PROPOSITION 2.3 If for some point $x \in M$, the index of L_x at antipodal point \tilde{x} is n, then, for any point $y \in M$, the index of L_y at \tilde{y} is also n.

PROOF. We assume that $\lambda(\tilde{x}) > 2 \coth(2d)$. Then $\nu_i(\tilde{x}) > \coth(d)$ and $\nu_j(\tilde{x}) < \coth(d)$ $(1 \le i \le n-1, n \le j \le 2m-2)$ from Remark 2.2. In the sequel, adopt that

363

 $1 \le a \le 2m-2$, $1 \le i \le n-1$ and $n \le j \le 2m-2$. Now we shall consider the set D of M such that

 $D = \{ y \in M; \lambda(y) > 2 \operatorname{coth}(2d), \nu_i(y) > \operatorname{coth}(d) \text{ and } \nu_j(y) < \operatorname{coth}(d) \}.$

Then D is open and closed. In fact, each λ and ν_a being continuous on M, for any point $x \in D$, there exists an open neighborhood of x in M contained in D. Thus D is open. Next, for $x \in \overline{D}$ (closure of D), let $\{x_m\}$ be a sequence in D such that $\lim_{m\to\infty} x_m = x$. Then, by the continuity of λ and ν_a , we have $\lim_{m\to\infty} \lambda(x_m) = \lambda(x) \ge 2 \operatorname{coth}(2d)$, $\lim_{m\to\infty} \nu_i(x_m) = \nu_i(x) \ge \operatorname{coth}(d)$ and $\lim_{m\to\infty} \nu_j(x_m) = \nu_j$ $(x) \le \operatorname{coth}(d)$. By Remark 2.1, we obtain that $\lambda(x) > 2 \operatorname{coth}(2d)$, $\nu_i(x) > \operatorname{coth}(d)$ and $\nu_j(x) < \operatorname{coth}(d)$. Thus D is closed. Hence D = M.

If $\lambda(x) < 2 \coth(2d)$, then it holds that $\nu_i(x) > \coth(d)$ and $\nu_j(x) < \coth(d)$ for $1 \le i \le n$ and $n+1 \le j \le 2m-2$. By the same way as above,

$$D = \{ y \in M; \lambda(y) < 2 \operatorname{coth}(2d), \nu_i(y) > \operatorname{coth}(d) \text{ and } \nu_j(y) < \operatorname{coth}(d) \\ \text{for } 1 \leq i \leq n, n+1 \leq j \leq 2m-2 \}$$

is open and closed. Hence D = M.

§ 3. Main Theorem

Now, we shall prove the following theorem using the results prepared.

THEOREM Let \overline{M} be a simply connected complete Kaehler manifold of negative constant holomorphic sectional curvature -4 and dim_c $\overline{M}=m$. Let M be a connected complete 2-transnormal hypersurface of \overline{M} and d be the width of M as a subset of \overline{M} . Suppose that, for a point $x \in M$, the index of L_x at the antipodal point \tilde{x} is $n(\geq 1)$. For each point $x \in M$, the almost contact structure vector E(x)is assumed to be a principal vector with principal curvature $\lambda(x)$. Let $\nu_1(x)$ $\geq \nu_2(x) \geq \cdots \geq \nu_{2m-2}(x)$ be other principal curvatures at $x \in M$. Then we have followings.

- (1) For each point of M, if λ(>2coth(2d)), ν_i(for 1≤i≤n-1) and ν_j(for n≤j≤2m-2) are bounded from either above or below by 2coth(d), coth (d/2) and tanh(d/2) respectively, then M is a tube of radius d/2 over (2m-n-1)/2-dimensional complex totally geodesic submanifold.
- (2) For each point of M, if λ(<2coth(2d)), v_i(for 1≤i≤n) and v_j(for n+1≤j≤2m-2) are bounded from either above or below by 2tanh(d), coth (d/2) and tanh(d/2) respectively, then M is a tube of radius d/2 over (2m-n-1)-dimensional anti-holomorphic totally geodesic submanifold. In particular, if n=2m-1 then this implies that M is a geodesic hypersphere with radius d/2.

364

q.e.d.

PROOF. First we consider only the following case of (1);

$$\lambda \ge 2 \operatorname{coth}(d), \ \nu_i \ge \operatorname{coth}(d/2) \ (1 \le i \le n-1) \text{ and}$$

 $\nu_j \ge \tanh(d/2) \ (n \le j \le 2m-2).$

From Proposition 2.1 and the above assumption,

$$\lambda(\tilde{x}) = \frac{-2\sinh(2d) + \lambda(x)\cosh(2d)}{(\lambda(x)/2)\sinh(2d) - \cosh(2d)}.$$

$$\geq 2\coth(d)$$

$$= 2(1 + \cosh(2d)) / \sinh(2d).$$

Note here that $\lambda > 2 \coth(2d)$, i.e. $(\lambda/2) \sinh(2d) - \cosh(2d) > 0$. Then this inequality implies

$$\lambda(x) \leq 2(1 + \cosh(2d)) / \sinh(2d) = 2\coth(d).$$

Thus we obtain $\lambda \equiv 2 \operatorname{coth}(d)$.

Next we shall discuss ν_a . To begin with, we should note that $\nu(x, X) > \operatorname{coth}(d)$ implies $\nu(\tilde{x}, \tilde{X}) > \operatorname{coth}(d)$. In fact, we have the following inequality;

$$\nu(\tilde{x}, \tilde{X})\sinh(d) - \cosh(d) = 1/\{(\nu(x, X) - \coth(d))\sinh(d)\}.$$

Furthermore note that $\nu_i > \coth(d)$ and $\nu_j < \coth(d)$. Then, by the same way as above together with Proposition 2.1, we get $\nu_i \equiv \coth(d/2)$ and $\nu_j \equiv \tanh(d/2)$.

In seven other cases of (1) and all cases of (2), we can prove similarly that λ and $\nu_a (1 \le a \le 2m-2)$ are all constant.

Now, for $r \in \mathbf{R}$, we consider a map $F_r: M \longrightarrow \overline{M}$ by

$$F_r(x) = \exp(rN(x)) \qquad x \in M,$$

where N(x) denotes the inward unit normal vector at x and exp is the exponential map on the normal bundle of M. By the way, if $\lambda = 2 \coth(d)$ or $\nu = \coth(d/2)$, then (M, x)-Jacobi fields Y(t) and Z(t) along γ_x in the proof of Proposition 2.2 vanish in t=d/2. Hence the exponential map on the normal bundle of M is degenerate at (d/2)N(x) for any point $x \in M$ in above situation, whose nullity is n. Therefore $F_{d/2}$ has constant rank 2m-n-1. By the inverse function theorem, for $x_0 \in M$, there exists an open neighborhood W of x_0 such that $F_{d/2}(W) = V$ is a (2m-n-1)-dimensional real submanifold embedded in \overline{M} . Now, from Theorem 4.2 in [1] we can get the following fact; if $\lambda = 2 \coth(d)$, then $JT_p^{\perp}V \subset T_p^{\perp}V$, that is, V is complex, or if $\lambda \neq 2 \coth(d)$, then $JT_p^{\perp}V \subset T_pV$, that is, V is anti-holomorphic, where $T_p^{\perp}V$ is the complement of the tangent space T_pV of V at $p \in V$. From the completeness of M a global version can be obtained. Namely, in the case of (1) (resp. (2)) M is a tube of radius d/2 over (2m-n-1)/2-dimensional complex submanifold (resp. over (2m-n-1)-dimensional anti-holomorphic sub-

Fumiko Ohtsuka

manifold). Furthermore also we have the following facts in general. (See section 5 in [1]); principal curvatures of $F_r(M)$ are $2(\lambda \coth(2r)-2)/(2\coth(2r)-\lambda)$ and $(\nu_a \coth(r)-1)/(\coth(r)-\nu_a)$ for $\lambda \neq 2\coth(2r)$ and $\nu_a \neq \coth(r)$. Hence, substituting r=d/2, $\lambda=2\tanh(d)$ and $\nu_a=\tanh(d/2)$, we have that (2m-n-1)-principal curvatures of $F_{d/2}(M)$ are all zero in any cases. So $F_{d/2}(M)$ is totally geodesic and we can get the theorem. q.e.d.

References

- [1] Montiel, S., Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
- [2] Matsuda, H. and Kitahara, H., Complete two-transnormal hypersurfaces in a space form of non-positive curvature, Ann. Sci Kanazawa uni., 11 (1974), 41-48.
- [3] Nishikawa, S., Transnormalhypersurfaces—Generalized constant width for Riemannian manifolds—, Tôhoku Math. J., **25** (1973), 451-459.
- [4] Nishikawa, S., Compact two-transnormal hypersurfaces in a space of constant curvature, J. Math Soc. Japan, **26** (1974), 625-635.
- [5] Ohtsuka, F., Compact 2-transnormal hypersurface in a Kaehler manifold of constant holomorphic sectional curvature, Tsukuba J. Math., 10 (1986), 47-55.

Department of Mathematics Faculty of Science Ibaraki University Mito Ibaraki, 310 Japan