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\S 1. Introduction

The idea of constant width has been developed in a somewhat different spirit,

as a topic in differential geometry, and the concept of “transnormality” has been
introduced as the generalized one of constant width in a Riemannian manifold.

Let $M$ be a connected complete hypersurface of a connected complete Rieman-
nian manifold $\overline{M}$. For each $x\in M$, there exists, up to parametrization, a unique

geodesic $\tau_{x}$ of $\overline{M}$ which intersects $M$ orthogonally at $x$ . $M$ is called a transnormal
hypersurface of $\overline{M}$ if, for each pair $x,$ $y\in M$, the relation $y\in\tau_{x}$ implies that $\tau_{x}=\tau_{y}$ .
For a transnormal hypersurface $M$, we define an equivalence relation $\sim$ on $M$ as
follows; for $x,$ $y\in M,$ $x\sim y$ means that $y\in\tau_{x}$ . Then we can consider the quotient

space $\hat{M}=M/\sim$ with the quotient topology with respect to this relation. We call
$M$ an r-transnormal hypersurface if the natural projection of $M$ onto $\hat{M}$ is an
r-fold covering map.

Topological structures of transnormal submanifolds are full of interest and
have been investigated from various angles (for example, see [3]). On the other
hand, differential geometric structures of 2-transnormal hypersurfaces in a space
form have been given in [2] and [4].

Recentry, the author has studied in [5] differential geometric structures of

compact 2-transnormal hypersurfaces in a complex space form. The purpose of
this paper is to generalize the result in [5] to the case where 2-transnormal
hypersurfaces are complete. Namely we shall prove that 2-transnormal hyper-

surfaces in a Kaehler manifold of negative constant holomorphic sectional curvature

are tubes over some submanifolds or geodesic hyperspheres if any principal curva-
ture is constant.

\S 2. Preliminalies

First we shall review the definition of the function $L_{p}$ on $M$ for some point
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$p\in M$, which plays an impotant part to investigate the properties of transnormal
submanifolds.

If $M$ is an r-transnormal hypersurface and if there exists a point $p\in M$ satis-
fying the condition $ C(p)\cap M=\Phi$ , then the differential function $L_{p}$ on $M$ is defined
by

$L_{p}(x)=d_{\overline{H}}(p, x)^{2}$ for any $x\in M$,

where $C(p)$ is the cut locus of $p$ in $\overline{M}$ and $d\overline{u}$ denotes the distance function in $\overline{M}$.
It is well known that any transnormal hypersurface has no intersection with its
focal set. Therefore, the function $L_{p}$ is the Morse function.

Next we describe relevant concept and formulas used for the proof of Mair.
Theorem.

From now on, let $\overline{M}$ be a simply connected complete Kaehler manifold of
negative constant holomorphic sectional curvature $k$ (for convenience, we will
assume $k=-4$), $\dim_{C}\overline{M}=m$ and $M$ be a connected complete 2-transnormal real
hypersurface in $\overline{M}$. Note that the cut locus $C(p)$ of any point $p\in M$ is empty
because of the negativity of the holomorphic sectional curvature of $\overline{M}$. Then, for
any point $p\in M$, the Morse function $L_{p}$ can be defined.

Since $M$ is 2-transnormal, for any point $x\in M$, there exists the unique point
$\tilde{x}\in M$ such that $\tilde{x}\sim x$ and $\tilde{x}\neq x$ . It is known that $\tilde{x}$ is a critical point of $L_{x}$ .
which is called an antipodal point of $x$, and we call $d\overline{u}(x,\tilde{x})$ the width of $M$ as
a subset of $\overline{M}$, which is constant on $M$.

Let $\gamma(x,\tilde{x})$ be the minimizing normal geodesic segment from $x$ to the antip-
odal point $\tilde{x}$ of $x$ . We denote by $N(x)$ the initial vector $\gamma^{\prime}(0)$ of $\gamma(x,\tilde{x})$ and
$E(x)=JN(x)$ , where $J$ is the complex structure of $\overline{M}$. We call $N(x)$ an inward
unit normal vector at $x$ and $E(x)$ an almost contact structure vector at $x$ .

Then, the Hessian $H$ of $L_{\tilde{x}}$ at critical point $x$ is given by

$ H(x, y)=2d\langle\{\coth(\delta\cdot I-S_{N(x)}\}X, Y\rangle$

$+2d\cdot\tanh(d)\langle E(x), X\rangle\langle E(x), Y\rangle$

for $X,$ $Y\in M_{x}$ ,

where $d=d_{\overline{M}}(x,\tilde{x})$ and $I$ denotes the identity transformation and $S$ is the second
fundamental tensor. See [5] for details.

In the sequel we assume that the almost contact structure vector $E(x)$ is a
principal vector with the principal curvature $\lambda(x)$ at each point $x\in M$ Further $\cdot$

more, we denote by $\nu(x, X)$ the principal curvature of $M$ at $x$ associated with the
principal vector $X$ orthogonal to $E(x)$ . Then we have the following proposition.

PROPOSITION 2.1 (Lemma 4.3 of [5]) At the antipodal point $\tilde{x}$ of $x$ ,
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(1) $\lambda(\tilde{x})=\frac{-2\sinh(2d)+\lambda(x)\cosh(2d)}{(\lambda(x)/2)\sinh(2d)-\cosh(2d)}$

(2) $\nu(\tilde{x},\tilde{X})=\frac{-\sinh(d)+\nu(x,X)\cosh(d)}{\nu(x,X)\sinh(d)-\cosh(d)}$

where $\tilde{X}$ is the tangent vector of $M$ at $\tilde{x}$ given by the parallel translation of $X$

along $\gamma(x,\tilde{x})$ and $d=d_{\overline{M}}(x,\tilde{x})$ .
Finally we shall consider some properties of a focal point of $M$ For each

$p\in M$, let $\gamma_{p}$ be the normal geodesic starting from $p$ perpendicularly to $M$ such
that $\gamma^{\prime}(0)=N(p)$ .

PROPOSITI0N 2.2 A point $x\in\overline{M}$ is a focal point of $M$ along geodesic $\gamma_{p}$ if
and only if $x=\gamma_{p}(r)$ where $2\coth(2r)=\lambda(p)$ or $\coth(r)=\nu(p, X)$ for some non-
zero principal curvature of $M$ at $p$ .

PROOF. $\gamma_{p}(r)$ is a focal point of $M$ along $\gamma_{p}$ if and only if there exists a
non-trivial $(M, p)$ -Jacobi field along $\gamma_{p}$ which vanishes at $\gamma_{p}(r)$ . For a non-zero
principal curvature of $M$ at $p$ , we can consider the $(M, p)$ -Jacobi field

$Y(t)=(\cosh(2t)-(\lambda(p)/2)\sinh(2t))J\gamma^{\prime}(t)$ or
$Z(t)=(\cosh(t)-\nu(p, X)\sinh(t))X(t)$ ,

where $X(t)$ is the parallel vector field along $\gamma_{p}$ with $X(O)=X$ which is principal
vector orthogonal to $E(p)$ . Then we obtain the assertion. q.e. $d$ .

REMARK 2.1 Since any transnormal hypersurface has no intersection with
its focal set, for any point $x\in M$ the folloings are true;

$2\cosh(2d)-\lambda(x)\sinh(2d)\neq 0$

$\cosh(d)-\nu(x, X)\sinh(d)\neq 0$ ,

where $d$ is a width of $M$ as a subset of $\overline{M}$.

REMARK 2.2 From the form of Hessian of $L_{\tilde{x}}$ at critical point $x$ , the index
of $L_{\tilde{x}}$ at $x$ is equal to the number of principal curvatures $\lambda$ and $\nu$ of $M$ at $x$ with
respect to $N(x)$ such that $\lambda>2\coth(2d)$ or $\nu>\coth(d)$ .

In the sequel, we label the principal curvatures $\nu$ from 1 to $2m-2$ as followings;
$\nu_{1}\geqq\nu_{2}\geqq\cdots\geqq\nu_{2m-2}$ .

PROPOSITION 2.3 If for some point $x\in M$, the index of $L_{x}$ at antipodal
point $\tilde{x}$ is $n$ , then, for any point $y\in M$, the index of $L_{y}$ at $\tilde{y}$ is also $n$ .

PROOF. We assume that $\lambda(\tilde{x})>2\coth(2d)$ . Then $\nu_{i}(\tilde{x})>\coth(d)$ and $\nu_{j}(\tilde{x})$

$<\coth(d)(1\leqq i\leqq n-1, n\leqq j\leqq 2m-2)$ from Remark 2.2. In the sequel, adopt that
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$1\leqq a\leqq 2m-2,1\leqq i\leqq n-1$ and $n\leqq j\leqq 2m-2$ . Now we shall consider the set $D$ of
$M$ such that

$D=$ { $y\in M;\lambda(y)>2\coth(2d),$ $\nu_{i}(y)>\coth(d)$ and $\nu_{j}(y)<\coth(d)$ }.

Then $D$ is open and closed. In fact, each $\lambda$ and $\nu_{a}$ being continuous on $M$, for
any point $x\in D$ , there exists an open neighborhood of $x$ in $M$ contained in $D$ .
Thus $D$ is open. Next, for $x\in\overline{D}$ (closure of $D$), let $\{x_{m}\}$ be a sequence in $D$

such that $\lim_{m\rightarrow\infty}x_{m}=x$ . Then, by the continuity of $\lambda$ and $\nu_{a}$ , we have $\lim_{m\rightarrow\infty}$

$\lambda(x_{m})=\lambda(x)\geqq 2\coth(2d),$ $\lim_{m\rightarrow\infty}\nu_{i}(x_{m})=\nu_{i}(x)\geqq\coth(d)$ and $\lim_{m\rightarrow\infty}\nu_{j}(x_{m})=\nu_{j}$

$(x)\leqq\coth(d)$ . By Remark 2.1, we obtain that $\lambda(x)>2\coth(2d),$ $\nu_{i}(x)>\coth(d)$

and $\nu_{j}(x)<\coth(d)$ . Thus $D$ is closed. Hence $D=M$

If $\lambda(x)<2\coth(2d)$ , then it holds that $\nu_{i}(x)>\coth(d)$ and $\nu_{j}(x)<\coth(d)$ for
$1\leqq i\leqq n$ and $n+1\leqq.j\leqq 2m-2$ . By the same way as above,

$D=\{y\in M;\lambda(y)<2\coth(2d),$ $\nu_{i}(y)>\coth(d)$ and $\nu_{j}(y)<\coth(d)$

for $1\leqq i\leqq n,$ $n+1\leqq j\leqq 2m-2$ }

is open and closed. Hence $D=M$ q.e.d.

\S 3. Main Theorem

Now, we shall prove the following theorem using the results prepared.

THEOREM Let $\overline{M}$ be a simply connected complete Kaehler manifold of nega-

tive constant holomorphic sectional curvature $-4$ and $\dim_{C}\overline{M}=m$ . Let $M$ be a

connected complete 2-transnormal hypersurface of $\overline{M}$ and $d$ be the width of $M$ as
a subset of M. Suppose that, for a point $x\in M$, the index of $L_{x}$ at the antipodal

point $\tilde{x}$ is $n(\geqq 1)$ . For each point $x\in M$, the almost $co$ntact structure vector $E(x)$

is assumed to be a principal vector with principal curvature $\lambda(x)$ . Let $\nu_{1}(x)$

$\geqq\nu_{2}(x)\geqq\cdots\geqq\nu_{2m-2}(x)$ be other principal curvatures at $x\in M$ Then we have
followings.

(1) For each point of $M$, if $\lambda(>2\coth(2d)),$ $\nu_{i}$ (for $1\leqq i\leqq n-1$) and $\nu_{j}$ (for

$n\leqq j\leqq 2m-2)$ are bounded from either above or below by $2\coth(d),$ $\coth$

$(d/2)$ and $\tanh(d/2)$ respectively, then $\Lambda f$ is a tube of radius $d/2$ over
$(2m-n-1)/2$-dimensional complex totally geodesic submanifold.

(2) For each point of $M$, if $\lambda(<2\coth(2d)),$ $\nu_{i}$ (for $1\leqq i\leqq n$) and $\nu_{j}$ (for

$n+1\leqq j\leqq 2m-2)$ are bounded from either above or below by $2\tanh(d),$ $\coth$

$(d/2)$ and $\tanh(d/2)$ respectively, then $M$ is a tube of radius $d/2$ over
$(2m-n-1)$ -dimensional anti-holomorphic totally geodesic submanifold. $In$

particular, if $n=2m-1$ then this implies that $M$ is a geodesic hypersphere
with radius $d/2$ .
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PROOF. First we consider only the following case of (1);

$\lambda\geqq 2\coth(d),$ $\nu_{i}\geqq\coth(d/2)(1\leqq i\leqq n-1)$ and
$\nu_{j}\geqq\tanh(d/2)(n\leqq j\leqq 2m-2)$ .

From Proposition 2.1 and the above assumption,

$\lambda(\tilde{x})=\frac{-2\sinh(2d)+\lambda(x)\cosh(2d)}{(\lambda(x)/2)\sinh(2d)-\cosh(2d)}$ .
$\geqq 2\coth(c\circ$

$=2(1+\cosh(2d))/\sinh(2\circ$ .
Note here that $\lambda>2\coth(2d)$ , i.e. $(\lambda/2)\sinh(2d)-\cosh(2d)>0$ . Then this ine-
quality implies

$\lambda(x)\leqq 2(1+\cosh(2d))/\sinh(2d)=2\coth(d)$ .
Thus we obtain $\lambda\equiv 2\coth(d)$ .

Next we shall discuss $\nu_{a}$ . To begin with, we should note that $\nu(x, X)>$

coth(d) implies $\nu(\tilde{x},\tilde{X})>\coth(d)$ . In fact, we have the following inequality;

$\nu(\tilde{x},\tilde{X})\sinh(d)-\cosh(d)=1/\{(\nu(x, X)-\coth(d))\sinh(d)\}$ .
Furthermore note that $\nu_{i}>\coth(\phi$ and $\nu_{f}<\coth(d)$ . Then, by the same way as
above together with Proposition 2.1, we get $\nu_{i}\equiv\coth(d/2)$ and $\nu_{j}\equiv\tanh(d/2)$ .

In seven other cases of (1) and all cases of (2), we can prove similarly that
$\lambda$ and $\nu_{a}(1\leqq a\leqq 2m-2)$ are all constant.

Now, for $r\in R$, we consider a map $F_{r}$ : $M\rightarrow\overline{M}$ by

$F_{r}(x)=\exp(rN(x))$ $x\in M$,

where $N(x)$ denotes the inward unit normal vector at $x$ and $\exp$ is the exponential
map on the normal bundle of $M$ By the way, if $\lambda=2\coth(d)$ or $\nu=\coth(d/2)$ ,
then $(M, x)$ -Jacobi fields $Y(t)$ and $Z(t)$ along $\gamma_{x}$ in the proof of Proposition 2.2
vanish in $t=d/2$ . Hence the exponential map on the normal bundle of $M$ is
degenerate at $(d/2)N(x)$ for any point $x\in M$ in above situation, whose nullity is
$n$ . Therefore $F_{d/2}$ has constant rank $2m-n-1$ . By the inverse function theorem,

for $x_{0}\in M$, there exists an open neighborhood $W$ of $x_{0}$ such that $F_{d/2}(W)=V$ is
a $(2m-n-1)$ -dimensional real submanifold embedded in $\overline{M}$. Now, from Theorem
4.2 in [1] we can get the following fact; if $\lambda=2\coth(d)$ , then $JT_{p}^{\perp}V\subset T_{p}^{\perp}V$ , that
is, $V$ is complex, or if $\lambda\neq 2\coth(d)$ , then $JT_{p}^{\perp}V\subset T_{p}V$ , that is, $V$ is anti-holomor-
phic, where $T_{p}^{\perp}V$ is the complement of the tangent space $T_{p}V$ of $V$ at $p\in V$ .
From the completeness of $M$ a global version can be obtained. Namely, in the
case of (1) (resp. (2)) $M$ is a tube of radius $d/2$ over $(2m-n-1)/2$-dimensional
complex submanifold (resp. over $(2m-n-1)$ -dimensional anti-holomorphic sub-
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manifold). Furthermore also we have the following facts in general. (See section
5 in [1]); principal curvatures of $F_{r}(W$ are $2(\lambda\coth(2r)-2)/(2\coth(2r)-\lambda)$ and
($\nu_{a}\coth(r)$ -l)/(coth $(r)-\nu_{a}$) for $\lambda\neq 2\coth(2r)$ and $\nu_{a}\neq\coth(r)$ . Hence, substitu-
ting $r=d/2,$ $\lambda=2\tanh(i)$ and $\nu_{a}=\tanh(d/2)$ , we have that $(2m-n-1)$ -principal
curvatures of $F_{d/2}(M)$ are all zero in any cases. So $F_{d/2}(M)$ is totally geodesic
and we can get the theorem. q.e. $d$ .
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