COMPLETE 2-TRANSNORMAL HYPERSURFACES IN A KAEHLER MANIFOLD OF NEGATIVE CONSTANT HOLOMORPHIC SECTIONAL CURVATURE

By
Fumiko OHTsUKA

§ 1. Introduction

The idea of constant width has been developed in a somewhat different spirit, as a topic in differential geometry, and the concept of "transnormality" has been introduced as the generalized one of constant width in a Riemannian manifold.

Let M be a connected complete hypersurface of a connected complete Riemannian manifold \bar{M}. For each $x \in M$, there exists, up to parametrization, a unique geodesic τ_{x} of \bar{M} which intersects M orthogonally at $x . \quad M$ is called a transnormal hypersurface of \bar{M} if, for each pair $x, y \in M$, the relation $y \in \tau_{x}$ implies that $\tau_{x}=\tau_{y}$. For a transnormal hypersurface M, we define an equivalence relation \sim on M as follows; for $x, y \in M, x \sim y$ means that $y \in \tau_{x}$. Then we can consider the quotient space $\hat{M}=M / \sim$ with the quotient topology with respect to this relation. We call M an r-transnormal hypersurface if the natural projection of M onto \hat{M} is an r-fold covering map.

Topological structures of transnormal submanifolds are full of interest and have been investigated from various angles (for example, see [3]). On the other hand, differential geometric structures of 2 -transnormal hypersurfaces in a space form have been given in [2] and [4].

Recentry, the author has studied in [5] differential geometric structures of compact 2 -transnormal hypersurfaces in a complex space form. The purpose of this paper is to generalize the result in [5] to the case where 2 -transnormal hypersurfaces are complete. Namely we shall prove that 2 -transnormal hypersurfaces in a Kaehler manifold of negative constant holomorphic sectional curvature are tubes over some submanifolds or geodesic hyperspheres if any principal curvature is constant.

§ 2. Preliminalies

First we shall review the definition of the function L_{p} on M for some point

[^0]$p \in M$, which plays an impotant part to investigate the properties of transnormal submanifolds.

If M is an r-transnormal hypersurface and if there exists a point $p \in M$ satisfying the condition $C(p) \cap M=\Phi$, then the differential function L_{p} on M is defined by

$$
L_{p}(x)=d_{\bar{M}}(p, x)^{2} \quad \text { for any } x \in M
$$

where $C(p)$ is the cut locus of p in \bar{M} and $d_{\bar{M}}$ denotes the distance function in \bar{M}. It is well known that any transnormal hypersurface has no intersection with its focal set. Therefore, the function L_{p} is the Morse function.

Next we describe relevant concept and formulas used for the proof of Mair. Theorem.

From now on, let \bar{M} be a simply connected complete Kaehler manifold of negative constant holomorphic sectional curvature k (for convenience, we will assume $k=-4$), $\operatorname{dim}_{C} \bar{M}=m$ and M be a connected complete 2 -transnormal real hypersurface in \bar{M}. Note that the cut locus $C(p)$ of any point $p \in M$ is empty because of the negativity of the holomorphic sectional curvature of \bar{M}. Then, for any point $p \in M$, the Morse function L_{p} can be defined.

Since M is 2 -transnormal, for any point $x \in M$, there exists the unique point $\tilde{x} \in M$ such that $\tilde{x} \sim x$ and $\tilde{x} \neq x$. It is known that \tilde{x} is a critical point of L_{x}. which is called an antipodal point of x, and we call $d_{\bar{M}}(x, \tilde{x})$ the width of M as a subset of \bar{M}, which is constant on M.

Let $\gamma(x, \tilde{x})$ be the minimizing normal geodesic segment from x to the antipodal point \tilde{x} of x. We denote by $N(x)$ the initial vector $\gamma^{\prime}(0)$ of $\gamma(x, \tilde{x})$ and $E(x)=J N(x)$, where J is the complex structure of \bar{M}. We call $N(x)$ an invard unit normal vector at x and $E(x)$ an almost contact structure vector at x.

Then, the Hessian H of $L \tilde{x}$ at critical point x is given by

$$
\begin{aligned}
H(x, y)=2 d & \left\langle\left[\operatorname{coth}(d) \cdot I-S_{N(x)}\right\} X, Y\right\rangle \\
& +2 d \cdot \tanh (d)\langle E(x), X\rangle\langle E(x), Y\rangle \\
& \text { for } X, Y \in M_{x},
\end{aligned}
$$

where $d=d \bar{M}(x, \tilde{x})$ and I denotes the identity transformation and S is the second fundamental tensor. See [5] for details.

In the sequel we assume that the almost contact structure vector $E(x)$ is a principal vector with the principal curvature $\lambda(x)$ at each point $x \in M$. Furthermore, we denote by $\nu(x, X)$ the principal curvature of M at x associated with the principal vector X orthogonal to $E(x)$. Then we have the following proposition.

Proposition 2.1 (Lemma 4.3 of [5]) At the antipodal point \tilde{x} of x,

$$
\begin{align*}
& \lambda(\tilde{x})=\frac{-2 \sinh (2 d)+\lambda(x) \cosh (2 d)}{(\lambda(x) / 2) \sinh (2 d)-\cosh (2 d)} \tag{1}\\
& \nu(\tilde{x}, \tilde{X})=\frac{-\sinh (d)+\nu(x, X) \cosh (d)}{\nu(x, X) \sinh (d)-\cosh (d)} \tag{2}
\end{align*}
$$

where \tilde{X} is the tangent vector of M at \tilde{x} given by the parallel translation of X along $\gamma(x, \tilde{x})$ and $d=d_{\bar{M}}(x, \tilde{x})$.

Finally we shall consider some properties of a focal point of M. For each $p \in M$, let γ_{p} be the normal geodesic starting from p perpendicularly to M such that $\gamma^{\prime}(0)=N(p)$.

Proposition 2.2 A point $x \in \bar{M}$ is a focal point of M along geodesic γ_{p} if and only if $x=\gamma_{p}(r)$ where $2 \operatorname{coth}(2 r)=\lambda(p)$ or $\operatorname{coth}(r)=\nu(p, X)$ for some nonzero principal curvature of M at p.

Proof. $\quad \gamma_{p}(r)$ is a focal point of M along γ_{p} if and only if there exists a non-trivial (M, p)-Jacobi field along γ_{p} which vanishes at $\gamma_{p}(r)$. For a non-zero principal curvature of M at p, we can consider the (M, p)-Jacobi field

$$
\begin{aligned}
& Y(t)=(\cosh (2 t)-(\lambda(p) / 2) \sinh (2 t)) J \gamma^{\prime}(t) \quad \text { or } \\
& Z(t)=(\cosh (t)-\nu(p, X) \sinh (t)) X(t),
\end{aligned}
$$

where $X(t)$ is the parallel vector field along γ_{p} with $X(0)=X$ which is principal vector orthogonal to $E(p)$. Then we obtain the assertion.

REMARK 2.1 Since any transnormal hypersurface has no intersection with its focal set, for any point $x \in M$ the folloings are true;

$$
\begin{aligned}
& 2 \cosh (2 d)-\lambda(x) \sinh (2 d) \neq 0 \\
& \cosh (d)-\nu(x, X) \sinh (d) \neq 0,
\end{aligned}
$$

where d is a width of M as a subset of \bar{M}.
Remark 2.2 From the form of Hessian of $L_{\tilde{x}}$ at critical point x, the index of $L_{\tilde{x}}$ at x is equal to the number of principal curvatures λ and ν of M at x with respect to $N(x)$ such that $\lambda>2 \operatorname{coth}(2 d)$ or $\nu>\operatorname{coth}(d)$.

In the sequel, we label the principal curvatures ν from 1 to $2 m-2$ as followings; $\nu_{1} \geqq \nu_{2} \geqq \cdots \geqq \nu_{2 m-2}$.

Proposition 2.3 If for some point $x \in M$, the index of L_{x} at antipodal point \tilde{x} is n, then, for any point $y \in M$, the index of L_{y} at \tilde{y} is also n.

Proof. We assume that $\lambda(\tilde{x})>2 \operatorname{coth}(2 d)$. Then $\nu_{i}(\tilde{x})>\operatorname{coth}(d)$ and $\nu_{j}(\tilde{x})$ $<\operatorname{coth}(d) \quad(1 \leqq i \leqq n-1, n \leqq j \leqq 2 m-2)$ from Remark 2.2. In the sequel, adopt that
$1 \leqq a \leqq 2 m-2,1 \leqq i \leqq n-1$ and $n \leqq j \leqq 2 m-2$. Now we shall consider the set D of M such that

$$
D=\left\{y \in M ; \lambda(y)>2 \operatorname{coth}(2 d), \nu_{i}(y)>\operatorname{coth}(d) \text { and } \nu_{j}(y)<\operatorname{coth}(d)\right\}
$$

Then D is open and closed. In fact, each λ and ν_{a} being continuous on M, for any point $x \in D$, there exists an open neighborhood of x in M contained in D. Thus D is open. Next, for $x \in \bar{D}$ (closure of D), let $\left\{x_{m}\right\}$ be a sequence in D such that $\lim _{m \rightarrow \infty} x_{m}=x$. Then, by the continuity of λ and ν_{a}, we have $\lim _{m \rightarrow \infty}$ $\lambda\left(x_{m}\right)=\lambda(x) \geqq 2 \operatorname{coth}(2 d), \quad \lim _{m \rightarrow \infty} \nu_{i}\left(x_{m}\right)=\nu_{i}(x) \geqq \operatorname{coth}(d)$ and $\lim _{m \rightarrow \infty} \nu_{j}\left(x_{m}\right)=\nu_{j}$ $(x) \leqq \operatorname{coth}(d)$. By Remark 2.1, we obtain that $\lambda(x)>2 \operatorname{coth}(2 d), \nu_{i}(x)>\operatorname{coth}(d)$ and $\nu_{j}(x)<\operatorname{coth}(d)$. Thus D is closed. Hence $D=M$.

If $\lambda(x)<2 \operatorname{coth}(2 d)$, then it holds that $\nu_{i}(x)>\operatorname{coth}(d)$ and $\nu_{j}(x)<\operatorname{coth}(d)$ for $1 \leqq i \leqq n$ and $n+1 \leqq j \leqq 2 m-2$. By the same way as above,

$$
\begin{array}{r}
D=\left\{y \in M ; \lambda(y)<2 \operatorname{coth}(2 d), \nu_{i}(y)>\operatorname{coth}(d) \text { and } \nu_{j}(y)<\operatorname{coth}(d)\right. \\
\\
\text { for } 1 \leqq i \leqq n, n+1 \leqq j \leqq 2 m-2\}
\end{array}
$$

is open and closed. Hence $D=M$.
q.e.d.

§ 3. Main Theorem

Now, we shall prove the following theorem using the results prepared.
ThEOREM Let \bar{M} be a simply connected complete Kaehler manifold of negative constant holomorphic sectional curvature -4 and $\operatorname{dim}_{C} \bar{M}=m$. Let M be a connected complete 2-transnormal hypersurface of \bar{M} and d be the width of M as a subset of \bar{M}. Suppose that, for a point $x \in M$, the index of L_{x} at the antipodal point \tilde{x} is $n(\geqq 1)$. For each point $x \in M$, the almost contact structure vector $E(x)$ is assumed to be a principal vector with principal curvature $\lambda(x)$. Let $\nu_{1}(x)$ $\geqq \nu_{2}(x) \geqq \cdots \geqq \nu_{2 m-2}(x)$ be other principal curvatures at $x \in M$. Then we have followings.
(1) For each point of M, if $\lambda(>2 \operatorname{coth}(2 d))$, $\nu_{i}($ for $1 \leqq i \leqq n-1)$ and $\nu_{j}(f$ for $n \leqq j \leqq 2 m-2$) are bounded from either above or below by $2 \operatorname{coth}(d)$, coth $(d / 2)$ and $\tanh (d / 2)$ respectively, then M is a tube of radius $d / 2$ over ($2 m-n-1$)/2-dimensional complex totally geodesic submanifold.
(2) For each point of M, if $\lambda(<2 \operatorname{coth}(2 d)), \nu_{i}($ for $1 \leqq i \leqq n)$ and $\nu_{j}($ for $n+1 \leqq j \leqq 2 m-2$) are bounded from either above or below by $2 \tanh (d)$, coth (d/2) and $\tanh (d / 2)$ respectively, then M is a tube of radius $d / 2$ over ($2 m-n-1$)-dimensional anti-holomorphic totally geodesic submanifold. In particular, if $n=2 m-1$ then this implies that M is a geodesic hypersphere with radius $d / 2$.

Proof. First we consider only the following case of (1);

$$
\begin{aligned}
& \lambda \geqq 2 \operatorname{coth}(d), \nu_{i} \geqq \operatorname{coth}(d / 2) \quad(1 \leqq i \leqq n-1) \text { and } \\
& \nu_{j} \geqq \tanh (d / 2) \quad(n \leqq j \leqq 2 m-2) .
\end{aligned}
$$

From Proposition 2.1 and the above assumption,

$$
\begin{aligned}
\lambda(\tilde{x}) & =\frac{-2 \sinh (2 d)+\lambda(x) \cosh (2 d)}{(\lambda(x) / 2) \sinh (2 d)-\cosh (2 d)} . \\
& \geqq 2 \operatorname{coth}(d) \\
& =2(1+\cosh (2 d)) / \sinh (2 d) .
\end{aligned}
$$

Note here that $\lambda>2 \operatorname{coth}(2 d)$, i.e. $(\lambda / 2) \sinh (2 d)-\cosh (2 d)>0$. Then this inequality implies

$$
\lambda(x) \leqq 2(1+\cosh (2 d)) / \sinh (2 d)=2 \operatorname{coth}(d)
$$

Thus we obtain $\lambda \equiv 2 \operatorname{coth}(d)$.
Next we shall discuss ν_{a}. To begin with, we should note that $\nu(x, X)>$ $\operatorname{coth}(d)$ implies $\nu(\tilde{x}, \tilde{X})>\operatorname{coth}(d)$. In fact, we have the following inequality;

$$
\nu(\tilde{x}, \tilde{X}) \sinh (d)-\cosh (d)=1 /\{(\nu(x, X)-\operatorname{coth}(d)) \sinh (d)\} .
$$

Furthermore note that $\nu_{i}>\operatorname{coth}(d)$ and $\nu_{j}<\operatorname{coth}(d)$. Then, by the same way as above together with Proposition 2.1, we get $\nu_{i} \equiv \operatorname{coth}(d / 2)$ and $\nu_{j} \equiv \tanh (d / 2)$.

In seven other cases of (1) and all cases of (2), we can prove similarly that λ and $\nu_{a}(1 \leqq a \leqq 2 m-2)$ are all constant.

Now, for $r \in \boldsymbol{R}$, we consider a map $F_{r}: M \longrightarrow \bar{M}$ by

$$
F_{r}(x)=\exp (r N(x)) \quad x \in M
$$

where $N(x)$ denotes the inward unit normal vector at x and exp is the exponential map on the normal bundle of M. By the way, if $\lambda=2 \operatorname{coth}(d)$ or $\nu=\operatorname{coth}(d / 2)$, then (M, x)-Jacobi fields $Y(t)$ and $Z(t)$ along γ_{x} in the proof of Proposition 2.2 vanish in $t=d / 2$. Hence the exponential map on the normal bundle of M is degenerate at $(d / 2) N(x)$ for any point $x \in M$ in above situation, whose nullity is n. Therefore $F_{d / 2}$ has constant rank $2 m-n-1$. By the inverse function theorem, for $x_{0} \in M$, there exists an open neighborhood W of x_{0} such that $F_{d / 2}(W)=V$ is a ($2 m-n-1$)-dimensional real submanifold embedded in \bar{M}. Now, from Theorem 4.2 in [1] we can get the following fact; if $\lambda=2 \operatorname{coth}(d)$, then $J T_{p}^{\perp} V \subset T_{p}^{\perp} V$, that is, V is complex, or if $\lambda \neq 2 \operatorname{coth}(d)$, then $J T_{p}^{\perp} V \subset T_{p} V$, that is, V is anti-holomorphic, where $T_{p}^{\perp} V$ is the complement of the tangent space $T_{p} V$ of V at $p \in V$. From the completeness of M a global version can be obtained. Namely, in the case of (1) (resp. (2)) M is a tube of radius $d / 2$ over ($2 m-n-1$)/2-dimensional complex submanifold (resp. over ($2 m-n-1$)-dimensional anti-holomorphic sub-
manifold). Furthermore also we have the following facts in general. (See section 5 in [1]) ; principal curvatures of $F_{r}(M)$ are $2(\lambda \operatorname{coth}(2 r)-2) /(2 \operatorname{coth}(2 r)-\lambda)$ and $\left(\nu_{a} \operatorname{coth}(r)-1\right) /\left(\operatorname{coth}(r)-\nu_{a}\right)$ for $\lambda \neq 2 \operatorname{coth}(2 r)$ and $\nu_{a} \neq \operatorname{coth}(r)$. Hence, substituting $r=d / 2, \lambda=2 \tanh (d)$ and $\nu_{a}=\tanh (d / 2)$, we have that $(2 m-n-1)$-principal curvatures of $F_{d / 2}(M)$ are all zero in any cases. So $F_{d / 2}(M)$ is totally geodesic and we can get the theorem.

References

[1] Montiel, S., Real hypersurfaces of a complex hyperbolic space, J. Math. Soc. Japan, 37 (1985), 515-535.
[2] Matsuda, H. and Kitahara, H., Complete two-transnormal hypersurfaces in a space form of non-positive curvature, Ann. Sci Kanazawa uni., 11 (1974), 41-48.
[3] Nishikawa, S., Transnormalhypersurfaces-Generalized constant width for Riemannian manifolds-, Tôhoku Math. J., 25 (1973), 451-459.
[4] Nishikawa, S., Compact two-transnormal hypersurfaces in a space of constant curvature, J. Math Soc. Japan, 26 (1974), 625-635.
[5] Ohtsuka, F., Compact 2 -transnormal hypersurface in a Kaehler manifold of constant holomorphic sectional curvature, Tsukuba J. Math., 10 (1986), 47-55.

Department of Mathematics
Faculty of Science
Ibaraki University
Mito Ibaraki, 310 Japan

[^0]: Received August 22, 1986. Revised November 20, 1986.

