COMPACT CARDINALS AND ABELIAN GROURS

By
Katsuya Eda and Yoshihiro Abe

Some properties about abelian groups are known to be related to large cardinals. Among them a certain property of the radical R_{z}, i.e., $\mathrm{R}_{\boldsymbol{z}}(A)=\cap\{\operatorname{Ker}(h): h \in$ $\operatorname{Hom}(A, Z)$ \} for an abelian group A , has been known to be related to the existence of a compact cardinal and a measurable cardinal. To state it more precisely, let $R_{z}^{[\kappa]}(A)=\Sigma\left\{R_{z}(B): B\right.$ is a subgroup of A of cardinality less than $\left.\kappa\right\}$ for a cardinal κ. The radical R_{z} satisfies the cardinal condition, if there exists a cardinal κ such that $R_{\boldsymbol{z}}(A)=R_{\boldsymbol{z}}^{[\kappa]}(A)$ for every abelian group A. M. Dugas and R. Göbel [4] proved that if there exists no measurable cardinal, then the condition does not hold. On the other hand M. Dugas [5] showed that if there exists a strongly compact cardinal, then the condition holds. Using subgroups of $\boldsymbol{Z}^{\kappa} / \boldsymbol{Z}^{<\kappa}\left(\simeq \boldsymbol{Z}^{(B \kappa)}\right)$, which itself was also used in [5], B. Wald [15] got some result relating to a weakly compact cardinal.

In the present paper we show that their results can be unified under the notion of λ - $L_{\omega_{1} \omega}$-compactness and using it we improve their results, e.g. the radical R_{z} satisfies the cardinal condition iff a strongly $\mathrm{L}_{\omega_{1} \omega}$-compact cardinal exists, where the last property has been studied by J. Bell [2].

First we state definitions. \boldsymbol{Z} is the additive group of integers and N is the set of natural numbers. In this paper κ always stands for an infinite cardinal and in most cases is regular. The word "of cardinality $\leq \lambda$ " is an abbreviation of "of cardinality less than or equal to $\lambda " . L_{\mu \nu}$ is the infinitary language which admits α-sequences of disjunctions and conjunctions and β-sequences of quantifiers for $\alpha<\mu$ and $\beta<\nu$. See [3] for a precise definition. A cardinal κ is λ - $L_{\mu \nu}$-compact, if the following hold: For a set T of $L_{\mu \nu}$-sentences of cardinality λ, if any subset of T of cardinality less than κ has a model, then T itself has a model. κ is strongly $L_{\mu \nu}$-compact, if κ is λ - $L_{\mu \nu}$-compact for any $\lambda . \quad P_{\kappa} \lambda$ is the set of all subsets of λ whose cardinalities are less than κ. Let $U_{x}=\left\{y \in P_{\kappa} \lambda: x \subseteq y\right\}$ for $x \in P_{k} \lambda$ and $F_{\kappa} \lambda$ $=\left\{x \subseteq P_{\kappa} \lambda: U_{x} \subseteq X\right.$ for some $\left.x \in P_{\kappa} \lambda\right\}$. Then, $F_{\kappa} \lambda$ is a κ-complete filter on $P_{k} \lambda$ for a regular cardinal κ. Let $B_{\kappa \lambda}$ be the quotient algebra $P\left(P_{\kappa} \lambda\right) / F_{\kappa \lambda}$. (We use filters instead of ideals when constructing quotient algebras, differing from [13].) Then, a filter on $P_{k} \lambda$ which contains U_{x} for all $x \in P_{k} \lambda$ corresponds to a filter of $B_{k \lambda}$.

[^0]Moreover, a countably complete ultrafilter on $P_{s} \lambda$ which contains $U x$ for all $x \in$ $P_{s} \lambda$ corresponds to a countably complete ultrafiter of $B_{\varepsilon \lambda}$. In case that κ is regular, by B_{κ}, we denote the κ-complete quotient Boolean algebra $P(\kappa) / F_{\varepsilon}$, where $F_{\varepsilon}=$ $\{X \subseteq \kappa:|\kappa-X|<\kappa\}$. $A \kappa$-complete Boolean algebra B is κ-representable, if B is isomorphic to the quotient algebra of a κ-complete field of sets modulo a κ-complete filter [13, §29]. (Note that " κ-complete", " κ-representable" and so on in [13] mean our " κ^{+}-complete", " κ^{+}-representable" and so on.) The symbols $\vee, \wedge,>$ denote least upper bound, product, complement respectively. For a countably complete Boolean algebra $B, \boldsymbol{Z}^{(B)}$ is the Boolean power of the group of integers \boldsymbol{Z}, i.e. $\boldsymbol{Z}^{(B)}=\left\{f: f: \boldsymbol{Z} \rightarrow B \& \vee_{m \in \boldsymbol{z}} f(m)=1 \& f(m) \wedge f(n)=0\right.$ for $\left.m \neq n\right\}$ and $(f+g)(m)$ $=\wedge_{m=n+k} f(n) \wedge g(k)$. An abelian group A is torsionless, if A is a subgroup of \boldsymbol{Z}^{I} for some I. It is equivalent to the property that for any nonzero $a \in A$ there exists a homomorphism $h: \mathrm{A} \rightarrow \boldsymbol{Z}$ such that $h(a) \neq 0$.

Now we state the main theorem.

ThEOREM 1. Let κ be an uncountable regular cardinal and $\lambda<\kappa=\lambda$. Then, the following propositions are equivalent:
(1) κ is λ - $L_{\omega_{1} \omega_{1}}$-compact;
(2) κ is λ - $L_{\omega_{10}}$-compact ;
(3) Any κ-complete κ-representable Boolean algebra of cardinality λ has a countably complete ultrafilter;
(4) If A is an abelian group of cardinality $\leq \lambda$, then $R_{\boldsymbol{z}}(A)=R_{\boldsymbol{z}}^{[\kappa]}(A)$ holds;
(5) If A is an abelian group of cardinality $\leq \lambda$ and any subgroup of A of cardinality less than κ is torsionless, then A itself is torsionless;
(6) Any subgroup of $\boldsymbol{Z}^{\left(B_{\times 1}\right)}$ of cardinality $\leq \lambda$ is torsionless;
(7) For any subgroup S of $\boldsymbol{Z}^{\left(B_{6}\right)}$ of cardinality $\leq \lambda, \operatorname{Hom}(S, \boldsymbol{Z}) \neq 0$;
(8) For any κ-complete κ-representable Boolean algebra B of cardinality $\leq \lambda$, Hom $\left(\boldsymbol{Z}^{(B)}, \boldsymbol{Z}\right) \neq 0$.
To prove the theorem, we state some lemmas.
Lemma 2. ([7, Theorem 1]) Let B be a countably complete Boolean algebra. Then, $\operatorname{Hom}\left(\boldsymbol{Z}^{(B)}, \boldsymbol{Z}\right)=\oplus_{\boldsymbol{F} \in \boldsymbol{F}} \boldsymbol{Z}$, where \mathscr{F} is the set of all countably complete ultrafilters of B. Consequently, $\operatorname{Hom}\left(\boldsymbol{Z}^{(B)}, \boldsymbol{Z}\right) \neq 0$ iff a countably complete ultrafilter of B exists.

Lemma 3. ($[13,29.3]$) Let B be a κ-complete κ-representable Boolean algebra. If $b \neq 0$ and $\vee_{m \in N} b_{\alpha m}=1$ for $\alpha<\mu$ where $\mu<\kappa$, then exists an $f_{\in}{ }^{\mu} N$ such that $\left\{b, b_{\alpha f(\alpha)}: \alpha<\mu\right\}$ satisfies the finite intersection property.

Proof of Theorem 1. Our proofs go on according to the following diagram :
$(1) \rightarrow(2) \rightarrow(3) \leftrightarrow(8)$
$(4) \rightarrow(5) \rightarrow(6) \rightarrow(7) \rightarrow(1)$
$(1) \rightarrow(2):$ trivial.
(2) $\rightarrow(3)$: Let \mathscr{F} be a κ-complete field and F a κ-complete fiter of \mathscr{F} and $B=$ \mathscr{F} / F. By the assumption of cardinality of λ, we can take a κ-complete subfield \mathscr{F}^{\prime} of \mathscr{F}^{\prime} cardinality λ such that $B=\mathscr{F}^{\prime} \mid \mathscr{F}^{\prime} \cap F$. Let $\mathscr{F}^{\prime}=\left\{P_{\xi}: \xi<\lambda\right\}$ and T be the set of the following $L_{\omega_{1} \omega}$-sentences:
(a) $\underline{P}_{\xi}($ c $)$ if $P_{\xi} \in F$:
(b) $\forall x\left(\wedge_{n \in N} \underline{P_{\xi n}}(x) \leftrightarrow \underline{P}_{\xi}(x)\right)$ if $\cap_{n \in N} P_{\xi n}=P_{\xi}$;
(c) $\forall x\left(\underline{P_{\xi}}(x) \leftrightarrow 7 \underline{P}_{\eta}(x)\right)$ if $P_{\xi}=P_{\eta}^{c}$.

Since F is κ-complete, any subset of T of cardinality less than κ has a model. Hence T has model \mathscr{A}. Let $P_{\xi} \in \bar{F}$ iff $\mathscr{A} \equiv \underline{P_{\xi}}(c)$. Then, \bar{F} extends $\mathscr{F}^{\prime} \cap F$ and is a countably complete ultrafilter of \mathscr{F}^{\prime}. Consequently, B has a countably complete ultrafilter.
(3) $\leftrightarrow(8)$: Clear by Lemma 2.
(2) \rightarrow (4): To prove it by absurd, suppose the negation of (4). Then, there exists an $a^{*} \in R_{z}(A)$ such that $a^{*} \notin R_{z}^{[\kappa]}(A)$. Let T be the following set of $L_{\omega_{1} \omega^{-}}$ sentences:
(a) $\underline{a} \neq \underline{a}^{\prime}$ for $a \neq a^{\prime}, a, a^{\prime} \in A, \underline{a}+\underline{b}=\underline{c}$ for $a+b=c, a, b, c \in A$;
(b) The axiom of abelian groups;
(c) $\forall x \vee_{m \in z}\left(H_{m}(x) \& \wedge_{n \neq m, n \in z}>H_{n}(x)\right)$;
$\forall x, y \vee_{m, n, k \in z},{ }_{m+n=k}\left(H_{m}(x) \& H_{n}(x) \& H_{k}(x+y)\right)$;
$\vee_{m \neq 0} H_{m}\left(a^{*}\right)$.
Let T^{\prime} be a subset of T of cardinality less tank κ. Then, there exists a subgroup B of cardinality less than κ such that B contains a^{*} and if \underline{a} appears in T^{\prime} then a belongs to B. Since $a^{*} \notin R_{\boldsymbol{z}}^{[\kappa]}(A)$, there exists an $h \in \operatorname{Hom}(B, \boldsymbol{Z})$ such that $h\left(a^{*}\right) \neq 0$. Now, the group B with the homomorphism h is a model of T^{\prime}. By (2) there exists a model \mathscr{A} of T^{\prime}. Then, A is a subgroup of the domain of \mathscr{A} and $H_{m}(m \in \boldsymbol{Z})$ defines a homomorphism to \boldsymbol{Z} which maps a^{*} to a nonzero element, which is a contradication.
(4) $\rightarrow(5)$: It is clear, since A is torsionless iff $R_{z}(A)=0$.
$(5) \rightarrow(6)$: It is enough to show that S is torsionless for any subgroup of $\boldsymbol{Z}^{\left(B_{s i}\right)}$ of cardinality less than κ. Let s^{*} be a nonzero element of S, then $s^{*}(m) \neq 0$ for some $m \neq 0$. By Lemma 3, there exists a map $h: S \rightarrow \boldsymbol{Z}$ such that $\{s(h(s)): s \in S\}$ satisfies the finite intersection property and $h\left(s^{*}\right)=m \neq 0$. If $s+t=u$ for $s, t, u \in S$, then $u(h(s)+h(t)) \geq s(h(s)) \wedge t(h(t)) \neq 0$. Hence $u(h(s)+h(t)) \wedge u(h(u)) \neq 0$ and
so $h(s)+h(t)=h(u)$. Now, We've gotten a desired homomorphism.
(6) \rightarrow (7): Trivial.
$(3) \rightarrow(1)$ and $(7) \rightarrow(1):$ The property (1) is reduced to the existence of a countably complete ultrafilter of κ-complete subfield \mathscr{F} of $P\left(P_{s} \lambda\right)$ which extends $F_{\star 夫}[1, \mathrm{pp} .76-77$; or 14, pp. 64-65]. By Lemma 2, both of (7) and (3) imply the existence of such an ultrafilter.

COROLLARY 4. The radical R_{z} satisfies the cardinal condition iff there exists a strongly $L_{a_{1} \omega}$-compact cardinal.

The proof is clear by the equivalence of (2) and (4) of the theorem. Another characterization of the strongly $L_{\omega_{10}}$-compact cardinal has been given in [2, Theorem 2]. As noted in [2, Theorem 4], the existence of a strongly $L_{\omega_{1} \omega^{-}}$ compact cardinal is strictly stronger than that of a measurable cardinal. However, we do not know whether it is strictly weaker than the existence of a strongly compact cardinal. (See the last remark.)

Under the assumption that κ is inaccessible, many conditions are known to be equivalent to the $\kappa-L_{\kappa \omega}$-compactness of κ. An observation of the proof of [14, Theorem 1] gives us

Proposition 5. Let κ be an infinite cardinal, then the following propositions are equivalent:
(1) $\kappa \rightarrow(\kappa)_{2}^{2}$ (See [14] or [12] for the definition.);
(2) κ is $2<\kappa$ - $L_{\boldsymbol{\omega} \omega}$-compact;
(3) κ is regular and any κ-complete κ-representable Boolean algebra of cardinality $\leq 2<\kappa$ has a κ-complete ultrafilter;
(4) κ is regular and any κ-complete subalgebra of B_{ε} of cardinality $\leq 2<\kappa$ has a κ-complete ultrafilter.

Proof. Since $\kappa \rightarrow(\kappa)_{2}^{2}$ implies that κ is inaccessible, $2<\kappa=\kappa$ and hence (1) $\rightarrow(2)$ is clear by [14, Theorem 1.13]. It is known that the κ - $L_{\kappa \alpha}$-compactness of κ implies that κ is regular [3]. Hence, (2) implies that $2<\kappa=\kappa<\kappa$. The proof of implication $(2) \rightarrow(3)$ is similar to that of $(2) \rightarrow(3)$ of Theorem 1. The difference is to take (b) instead of (b), where (b)' is: $\forall x\left(\wedge_{\alpha<\mu} \underline{P}_{\xi \alpha}(x) \leftrightarrow \underline{P}_{\xi}(x)\right)$ if $\cap_{\alpha<\mu} P_{\xi \alpha}=P_{\xi}$ for $\mu<\kappa$. After this change the cardinality of the set of sentences does not exceed $2<\kappa$. Therefore, we can prove similarly as before.

The implication (3) $\rightarrow(4)$ is clear. Though Silver's proof [14, p. 64] is essentially a proof of $(4) \rightarrow(1)$, we present the proof for reader's convenience. Suppose the negation of (1), then there exists $f:[\kappa]^{2} \rightarrow 2$ such that there exists
no homogeneous set of cardinality κ. Let \mathscr{F} be the minimal κ-complete subfield of $P(\kappa)$ generated by all singletons and $U_{\alpha}^{i}(=\{\beta: f(\{\alpha \beta\})=i\})$ for $\alpha<\kappa, i<2$. Then, the cardinality of \mathscr{F} is $2<\kappa$. Let $\pi: P(\kappa) \rightarrow B_{\kappa}\left(=P(\kappa) / F_{\kappa}\right)$ be the canonical map. Then, $\pi(\mathscr{F})$ is a κ-complete subalgebra of B_{κ} of cardinality $2^{<\kappa}$. Let F be a κ-complete ultrafilter of $\pi(\mathscr{F})$, then $\pi\left(U_{\alpha}^{0}\right) \in F$ or $\pi\left(U_{\alpha}^{1}\right) \in F$. Construct a sequence $\alpha_{\xi}(\xi<\kappa)$ and $\phi: \kappa \rightarrow 2$ such that $\alpha_{\xi} \in \cap_{\eta<\xi} U_{\alpha_{\eta}}^{\phi(\eta)}$ and $\pi\left(U_{\alpha_{\xi}}^{\phi(\xi)}\right) \in F$, then we can get homogeneous sets $\left\{\alpha_{\xi}: \phi(\xi)=0\right\}$ and $\left\{\alpha_{\xi}: \phi(\xi)=1\right\}$. One of them must be of cardinality κ, which is a contradiction.

As noted in [1, Corollary], if κ is less than the least measurable cardinal and $2^{<\kappa}$ - $L_{\omega_{1} \omega}$-compact, then κ is $2^{<\kappa}$ - $L_{\kappa \omega}$-compact. Any κ-complete subalgebra of a κ comlete κ-representable Boolean algebra B is also κ-representable and any restriction $[0, b](=\{x \in B: 0 \leq x \leq b\})$ for nonzero $b \in B$ is also a κ-complete κ-representable Boolean algebra. Hence, Theorem 1, Lemma 2 and Proposition 5 imply

Corollary 6. (B. Wald [15]) Let κ be an uncountable regular cardinal which is less than the least measurable cardinal. Then, the following are equivalent :
(1) $\kappa \rightarrow(\kappa)_{2}^{2}$ holds;
(2) If A is an abelian group of cardinality $2^{<\kappa}$, then $R_{z}(A)=R_{z}^{[\kappa]}(A)$;
(3) If a subgroup S of $\boldsymbol{Z}^{(B \pi)}$ is of cardinality $\leq 2^{<\kappa}$, then $\operatorname{Hom}(S, \boldsymbol{Z}) \neq 0$.

Remark: It is known that some results are restricted under the lest measurable cardinal and they do not hold beyond it [11, p. 161 ; and 5, Theorem 2.7]. However, we did not know whether the class of Fuchs-44-groups were closed under arbitrary direct products [8]. Here, we show that it is not. To treat such things it is convenient to use elementary embeddings of the universe [5, Remark 2 ; and 10]. Therefore, we use notions about elementary embeddings [12]. Let κ be the least measurable cardinal, F a normal ultrafilter on κ and M_{F} the related transitive universe. For an $f \in{ }^{\kappa} V,[f]_{F}$ is the element of M_{F} corresponding to f. Let $A_{\alpha}(\alpha<\kappa)$ be the abelian groups such that $A_{\alpha}=\left(\oplus_{\omega} \boldsymbol{Z}\right)^{(B \alpha)}$ if α is a regular uncountable cardinal and $A_{\alpha}=0$ otherwise. Since B_{α} has no countably complete ultrafilter, A_{α} is a Fuchs-44-group for each α [8, Corollary 3; and 9]. Since F is normal, $\left[\left\langle A_{\alpha}: \alpha<\kappa\right\rangle\right]_{F}=\left(\oplus_{\omega} Z\right)^{(B \kappa)}$ holds in M_{F}. Since $B_{\kappa}=\left(B_{k}\right)^{M_{F}}, \Pi_{\alpha<k} A_{\alpha} / F \simeq$ $\left(\oplus_{\omega} \boldsymbol{Z}\right)^{(B r)}$. On the other hand, B_{ε} has a countably complete ultrafilter and hence there exists a surjective homomorphism from $\Pi_{\alpha<{ }_{k}} A_{\alpha} / F$ to $\oplus_{\omega} Z$. This implies that $\Pi_{\alpha<\kappa} A_{\alpha}$ contains a direct summand isomorphic to $\oplus_{\omega} Z$. Hence, $\Pi_{\alpha<{ }_{\alpha}} A_{\alpha}$ is not a Fuchs-44-group.

As we have referred it before, Dugas and Göbel proved that the radical R_{z}
does not commute with a measurable direct product [5, Theorem 2.7]. Here we show,

PRoposition 7. Let κ be a cardinal less than the least measurable cardinal. If the cardinality of A_{i} is less than κ for every $i \in I$, then $R_{z}\left(\Pi_{i \in I} A_{i}\right)=\Pi_{i \in I}$ $R_{\boldsymbol{z}}\left(A_{i}\right)$ holds.

Proof. Since $R_{z}\left(\Pi_{i \in I} A_{i}\right) \subseteq \Pi_{i \in I} R_{z}\left(A_{i}\right)$ clearly, we show the other inclusion. $\operatorname{Hom}\left(\Pi_{i \in I} A_{i}, \boldsymbol{Z}\right)=\oplus_{\boldsymbol{F} \in \boldsymbol{F}} \operatorname{Hom}\left(\Pi_{i \in I} A_{i} / F, \boldsymbol{Z}\right)$ where \mathscr{F} is the set of all countably complete ultrafilters on I [6, Corollary 2] and hence what we must show is that $h \cdot \pi_{F}(f)=0$ holds for $f \in \Pi_{i \in I} R_{z}\left(A_{i}\right), h \in \operatorname{Hom}\left(\Pi_{i \in I} A_{i} / F, \boldsymbol{Z}\right)$ and $F \in \mathscr{F}$, where π_{F} : $\Pi_{i \in I} A_{i} \rightarrow \Pi_{i \in I} A_{i} / F$ is the canonical homomorphism. By the fundamental theorem of ultraproducts [12], $\quad V^{I} / F \models \forall h \in \operatorname{Hom}\left(\Pi_{i \in I} A_{i} / F, \quad \Pi_{I} \boldsymbol{Z} / F\right)\left(h\left(\pi_{F}(f)\right)=0\right)$. Since the cardinaity of $\Pi_{i \in I} A_{i} / F$ is less the least measurable cardinal and $\Pi_{I} \boldsymbol{Z} / F \simeq \boldsymbol{Z}, h \cdot \pi_{F}(f)=0$ for each $h \in \operatorname{Hom}\left(\Pi_{i \in I} A_{i} / F, \boldsymbol{Z}\right)$.

Added in proof

1. There is another radical R_{z}^{∞}, i.e. $\mathrm{R}_{z}^{\infty} A=\Sigma\{X \leq A: \operatorname{Hom}(X, Z)=0\}$. The purpose of this addendum is to answer a question in [17]. Therefore, we use their notion.

We show,

Proposition 8.

(1) The radical R_{z}^{∞} satisfies the cardiual condition (iff R_{z}^{∞} is a singly generated socle) iff there exists a strongly $L_{\omega_{1} \omega}$-compact cardinal.
(2) R_{z}^{∞} is not a singly generated radical.

Proof. First observe the following fact: For a cardinal κ of uncountable cofinality, $A=\Sigma\{X \leq A: \operatorname{Hom}(X, \boldsymbol{Z})=0 \&|X|<\kappa\}$ iff $A=\Sigma\left\{R_{z} X: X \leq A \&|X|<\kappa\right\}$. This can be shown by a closure argument. If there exists a strongly $L_{\omega_{1} \omega}$-compact cardinal, let κ be a regular strongly $L_{\omega_{1 \omega}}$-compact cardinal. Suppose that $R_{z}^{\infty} A \neq$ $\Sigma\left\{R_{z}^{\infty} X: X \leq A \&|X|<\kappa\right\}$. Since $R_{z}^{\infty} \boldsymbol{Y}$ is the largest subgroup X of \boldsymbol{Y} such that $\operatorname{Hom}(X, Z)=0, R_{z}^{\infty} A \neq \Sigma\left\{R_{z} X: X \leq R_{z}^{\infty} A \&|X|<\kappa\right\}$ by the above fact. Hence, there exists an $a^{*} \in R_{z}^{\infty} A$ such that $a^{*} \notin R_{z} X$ for any subgroup X of $R_{z}^{\infty} A$ of cardinality less than κ. As the proof of (2) \rightarrow (4) of Theorem 1, we get a nonzero homomorphism $R_{z}^{\infty} A$ to \boldsymbol{Z}, which is a contradiction.

Suppose that a regular cardinal κ is not strongly $L_{\omega_{1} \omega}$-compact. Then, there exists a λ such that $\lambda=\lambda<\varepsilon$ and κ is not $\lambda-L_{\omega_{1} \omega}$-compact. By Theorem 1 (7) and a fact in the proof of (5) \rightarrow (6) of Theorem 1, there exists a group S such that $R_{z}^{\infty} S=S$ and $\Sigma\{X \leq S: \operatorname{Hom}(X, \mathrm{~A})=0 \&|X|<\kappa\}=0$. Hence, the cardinal condi-
tion does not hold. Another equivalence is easy to show.
(2) (The same reasoning as [17, Proposition 2.8]) Suppose that R_{z}^{∞} is a singly generated radical, i.e. $\quad R_{z}^{\infty} A=R_{Y} A=\cap\{\operatorname{Ker}(h): h \in \operatorname{Hom}(A, Y)\}$. Then, $R_{z}^{\infty}=$ $R_{Y} Y=0$. Let α be an ordinal such that $R_{z}^{\alpha} Y=0$. By [16, Corollary 3.10] (due to Mines), there exists a group A such that $R_{z}^{\infty} A=0$ and $R_{z}^{\alpha} A \neq 0$. Since A is isomorphic to a subgroup of the direct product Y^{I} for some $I, R_{z}^{\alpha} A \leq R_{z}^{\alpha} Y^{I} \leq\left(R_{z}^{\alpha} Y\right)^{I}$ $=0$, which is a contradiction.
2. Recently, G. Bergman and R. M. Solovay [18] announced a similar result to Theorem 1, i.e. The class of all torsionless groups is characterized by a set of generalized Horn sentences, iff there exists a strongly $L_{\omega_{1} \omega}$-compact cardinal. They also commented that M. Magidor had shown that the existence of a strongly $L_{\omega_{1} \omega^{-}}$ compact cardinal is strictly weaker than that of a strongly compact cardinal, which answers our question after Corollary 4.

References

[1] Bell, J. L., On the relationship between weak compactness in $L_{\omega_{1} \omega}, L_{\omega_{1} \omega_{1}}$, and restricted second-order languages, Arch. Math. Logik 15 (1972), 74-78.
[2] Bell, J. L., On compact cardinals, Zeitschr. f. Math. Logik und Grundlagen d. Math. 20 (1974), 389-393.
[3] Dickmann, M. A., Large infinitary languages, North-Holland Publishing Company, Amsterdam-Oxford, (1975).
[4] Dugas, M., On reduced products of abelian groups, Rend. Sem. Mat. Univ. Padova, 73 (1985), 41-47.
[5] Dugas, M. and Göbel, R., On radicals and products, Pacific J. Math., 118 (1985), 79-104.
[6] Eda, K., A Boolean power and a direct product of abelian groups, Tsukuba J. Math., 6 (1982), 187-194.
[7] Eda, K., On a Boolean power of a torsionfree abelian group, J. Algebra, 82 (1983), 84-93.
[8] Eda, K., Almost-slender groups and Fuchs-44-groups, Comment. Math. Univ. St. Pauli, 32 (1983), 131-135.
[9] Eda, K., A generalized direct product of abelian groups, J. Algebra, 92 (1985), 3343.
[10] Eda, K., Z-kernel groups of measurable cardinalities, Tsukuba J. Mach. 8 (1984), 95-100.
[11] Fuchs, L., Infinite abelian groups II, Academic Press, New York, (1973).
[12] Jech, T., Set theory, Academic Press, New York, (1978).
[13] Sikorski, R., Boolean algebras, Springer-Verlag, Berlin-Heiderberg-New york, (1969).
[14] Silver, J., Some applications of model theory to set theory, Ann. Math. Logic, 3 (1971), 45-110.
[15] Wald, B., On the groups $Q \kappa$, in Abelian group theory, pp. 229-240, edited by R. Göbel and E. A. Walker, Gordon and Breach, New York-London, (1987).
[16] Fay, T. H., Oxford, E. P. and Walls, G. L., Preradicals in abelian groups, Houston J. Math. 8 (1982), 39-52.
[17] Fay, T. H., Oxford, E. P. and Walls, G. L., Preradicals induced by homomorphisms, in Abelian group theory, pp. 660-670, Springer LMN 1006, 1983.
[18] Bergman, G. and Solovay, R. M., Generalized Horn sentences and compact cardinals, Abstracts, AMS (1987) 832-04-13.

Institute of Mathematics
University of Tsukuba
Tsukuba
Ibaraki, 305 Japan
Fukushima Technical College
30 Nagao, Kamiarakawa, Taira
Iwaki, 970 Japan

[^0]: Received August 11, 1986.

