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COMPACT CARDINALS AND ABELIAN GROURS

By

Katsuya EDA and Yoshihiro ABE

Some properties about abelian groups are known to be related to large cardinals.
Among them a certain property of the radical $R_{z}$, i.e., $R_{z}(A)=\cap\{Ker(h):h\in$

$Hom(A, Z)\}$ for an abelian group $A$ , has been known to be related to the exist-
ence of a compact cardinal and a measurable cardinal. To state it more precisely,
let $ R_{z}^{[\kappa]}(A)=\Sigma$ {$R_{z}(B):B$ is a subgroup of $A$ of cardinality less than $\kappa$ } for a cardinal
$\kappa$ . The radical $R_{z}$ satisfies the cardinal condition, if there exists a cardinal $\kappa$ such
that $R_{z}(A)=R_{z}^{[\kappa]}(A)$ for every abelian group $A$ . M. Dugas and R. G\"obel [4]

proved that if there exists no measurable cardinal, then the condition does not hold.
On the other hand M. Dugas [5] showed that if there exists a strongly compact

cardinal, then the condition holds. Using subgroups of $Z^{\kappa}/z<\kappa(\simeq Z^{(B)}\kappa)$ , which
itself was also used in [5], B. Wald [15] got some result relating to a weakly
compact cardinal.

In the present paper we show that their results can be unified under the notion
of $\lambda- L_{\omega}1^{\omega}$ -compactness and using it we improve their results, e.g. the radical $R_{Z}$

satisfies the cardinal condition iff a strongly $L_{\omega}1^{\omega}$ -compact cardinal exists, where
the last property has been studied by J. Bell [2].

First we state definitions. $Z$ is the additive group of integers and $N$ is the
set of natural numbers. In this paper $\kappa$ always stands for an infinite cardinal and
in most cases is regular. The word “of cardinality $\leq\lambda$

’ is an abbreviation of “of
cardinality less than or equal to $\lambda’$ . $L_{\mu\nu}$ is the infinitary language which admits
$\alpha$-sequences of disjunctions and conjunctions and $\beta$ -sequences of quantifiers for $\alpha<\mu$

and $\beta<\nu$ . See [3] for a precise definition. A cardinal $\kappa$ is $\lambda- L_{\mu\nu}$ -compact, if the
following hold: For a set $T$ of $L_{\mu\nu}$ -sentences of cardinality $\lambda$ , if any subset of
$T$ of cardinality less than $\kappa$ has a model, then $T$ itself has a model. $\kappa$ is strongly
$L_{\mu\nu}$ -compact, if $\kappa$ is $\lambda- L_{\mu\nu}$ -compact for any $\lambda$ . $ P_{\kappa}\lambda$ is the set of all subsets of $\lambda$

whose cardinalities are less than $\kappa$ . Let $U_{x}=\{y\in P_{\kappa}\lambda:x\subseteq y\}$ for $ x\in P_{\kappa}\lambda$ and $ F_{\kappa}\lambda$

$=$ { $x\subseteq P.\lambda:U_{x}\subseteq X$ for some $ x\in P_{\kappa}\lambda$ }. Then, $ F_{\kappa}\lambda$ is a $\kappa$ -complete filter on $ P_{\kappa}\lambda$ for
a regular cardinal $\kappa$ . Let $B_{\kappa\lambda}$ be the quotient algebra $P(P_{\kappa}\lambda)/F_{\kappa\lambda}$ . (We use filters
instead of ideals when constructing quotient algebras, differing from [13].) Then,
a filter on $ P_{\iota}\lambda$ which contains $U_{x}$ for all $ x\in P_{\kappa}\lambda$ corresponds to a filter of $B_{\lambda}$ .
Received August 11, 1986.
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Moreover, a countably complete ultrafilter on $ P_{\iota}\lambda$ which contains $Ux$ for all $ x\in$

$ P_{\iota}\lambda$ corresponds to a countably complete ultrafiter of B.2. In case that $\kappa$ is regular,
by B., we denote the $\kappa$ -complete quotient Boolean algebra $P(\kappa)/F_{l}$ , where $F.=$

$\{X\subseteq\kappa:|\kappa-X|<\kappa\}$ . $A$ $\kappa$-complete Boolean algebra $B$ is $\kappa$ -representable, if $B$ is
isomorphic to the quotient algebra of a $\kappa$ -complete field of sets modulo a $\kappa$-complete
filter [13, \S 29]. (Note that $\kappa$ -complete“, $\kappa$ -representable” and so on in [13] mean
our $\kappa^{+}$ -complete“, $\kappa^{+}$ -representable” and so on.) The symbols $\vee,$ $\wedge,$ $7$ denote
least upper bound, product, complement respectively. For a countably complete
Boolean algebra $B,$ $Z^{(B)}$ is the Boolean power of the group of integers $Z$, i.e.
$Z^{(B)}=$ { $f:f:Z\rightarrow B$ & $\vee m\in z$ f(m)=l&f(m)\wedge f(n) $=0$ for $m\neq n$ } and $(f+g)(m)$

$=\bigwedge_{mn+k}=f(n)\wedge g(k)$ . An abelian group $A$ is torsionless, if $A$ is a subgroup of
$Z^{I}$ for some $I$. It is equivalent to the property that for any nonzero $a\in A$ there
exists a homomorphism $h:A\rightarrow Z$ such that $h(a)\neq 0$ .

Now we state the main theorem.

THEOREM 1. Let $\kappa$ be an uncountable regular cardinal and $\lambda<\kappa=\lambda$ . Then,
the following propositions are equivalent:
(1) $\kappa$ is $\lambda\cdot L_{\omega}1^{\omega}1$ -compact ;
(2) $\kappa$ is $\lambda- L_{\omega}1^{\omega}$ compact;
(3) Any $\kappa$ -complete $\kappa$-representable Boolean algebra of cardinality $\lambda$ has a count-

ably complete ultrafilter;
(4) If $A$ is an abelian group of cardinality $\leq\lambda$ , then $R_{z}(A)=R_{z}^{[\kappa]}(A)$ holds;
(5) If $A$ is an abelian group of cardinality $\leq\lambda$ and any subgroup of $A$ of car-

dinality less than $\kappa$ is torsionless, then $A$ itself is torsionless;
(6) Any subgroup of $Z^{(B_{\kappa\lambda})}$ of cardinality $\leq\lambda$ is torsionless;
(7) For any subgroup $S$ of $Z^{tB_{i})}2$ of cardinality $\leq\lambda,$ $Hom(S, Z)\neq 0$ ;
(8) For any $\kappa$ -complete $\kappa$ -representable Boolean algebra $B$ of cardinality $\leq\lambda,$ $Hom$

$(Z^{(B)}, Z)\neq 0$.
To prove the theorem, we state some lemmas.

LEMMA 2. ([7, Theorem 1]) Let $B$ be a countably complete Boolean algebra.
Then, $Hom(Z^{(B)}, Z)=\oplus_{F\in F}Z$, where i) is the set of all countably complete

ultrafilters of B. Consequently, $Hom(Z^{(B)}, Z)\neq 0$ iff a countably complete ultra-

filter of $B$ exists.

LEMMA 3. ([13, 29.3]) Let $B$ be a $\kappa$ -complete $\kappa$ -representable Boolean algebra.

If $b\neq 0$ and $\vee m\in Nb_{\alpha m}=1$ for $\alpha<\mu$ where $\mu<\kappa$ , then exists an $f_{\in}^{\mu}N$ such that
$\{b, b_{\alpha f(\alpha)} : \alpha<\mu\}$ satisfies the finite intersection property.
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PROOF OF THEOREM 1. Our proofs go on according to the following diagram:
(1) $\rightarrow(2)\rightarrow(3)\leftrightarrow(8)$

$(4)\rightarrow(5)\rightarrow(6)\downarrow\rightarrow(7)\rightarrow(1)\downarrow$

(1) $\rightarrow(2)$ : trivial.
(2) $\rightarrow(3)$ : Let $3^{i}$ be a $\kappa$ -complete field and $F$ a $\kappa$ -complete fiter of $y$ and $B=$

$\mathscr{S}/F$. By the assumption of cardinality of $\lambda$ , we can take a $\kappa$ -complete subfield
$y$ ; of $y$ cardinality $\lambda$ such that $B=y’/y’\cap F$. Let $y^{\prime}=\{P_{\xi} ; \xi<\lambda\}$ and $T$ be the
set of the following $L_{\omega}1^{\omega}$ -sentences:
(a) $\underline{P}_{\xi}(c)$ if $P_{\xi}\in F$ :
(b) $\forall x(\wedge {}_{n\in N}P_{\underline{\epsilon}n}(x)\leftrightarrow\underline{P}_{\xi}(x))$ if $\cap {}_{n\in N}P_{\xi n}=P_{\xi}$ ;
(c) $\forall x\underline{(P}_{\xi}(x)\leftrightarrow 7\underline{P_{\eta}}(x))$ if $P_{\xi}=P_{\eta}^{c}$.

Since $F$ is $\kappa$-complete, any subset of $T$ of cardinality less than $\kappa$ has a model.
Hence $T$ has model $A$ . Let $P_{\xi}\in\overline{F}$ iff $AF\underline{P}_{\xi}(c)$ . Then, $\overline{F}$ extends $y;\cap F$ and is
a countably complete ultrafilter of 7’. Consequently, $B$ has a countably complete
ultrafilter.
(3) $\leftrightarrow(8)$ : Clear by Lemma 2.
(2) $\rightarrow(4)$ : To prove it by absurd, suppose the negation of (4). Then, there
exists an $a^{*}\in R_{z}(A)$ such that $a^{*}\not\in R_{z}^{[\kappa]}(A)$ . Let $T$ be the following set of L. $1^{\omega^{-}}$

sentences:

(a) $\underline{a}\neq\underline{a^{\prime}}$ for $a\neq a^{\prime},$ $a,a^{\prime}\in A,$ $\underline{a}+\underline{b}=\underline{c}$ for $a+b=c,$ $a,b,c\in A$ ;

(b) The axiom of abelian groups;
(c) $\forall x_{m\in z}(H_{m}(x) \& \wedge n\neq m\prime n\in z7H_{n}(x))$ ;

$\forall x,$ $y\vee m,n,k\in z\prime m+n=k(H_{m}(x)\& H_{n}(x)\& H_{k}(x+y))$ ;

$_{m\neq 0}H_{m}\underline{(a^{*}})$ .
Let $T^{\prime}$ be a subset of $T$ of cardinality less tank $\kappa$ . Then, there exists a

subgroup $B$ of cardinality less than $\kappa$ such that $B$ contains $a^{*}$ and if $\underline{a}$ appears
in $T^{\prime}$ then $a$ belongs to $B$ . Since $a^{*}\not\in R_{z}^{[\kappa]}(A)$ , there exists an $h\in Hom(B, Z)$

such that $h(a^{*})\neq 0$ . Now, the group $B$ with the homomorphism $h$ is a model of
$T^{\prime}$ . By (2) there exists a model $A$ of $T^{\prime}$ . Then, $A$ is a subgroup of the domain
of $A$ and $H_{m}(m\in Z)$ defines a homomorphism to $Z$ which maps $a^{*}$ to a nonzero
element, which is a contradication.
(4) $\rightarrow(5)$ : It is clear, since $A$ is torsionless iff $R_{z}(A)=0$ .
(5) $\rightarrow(6)$ : It is enough to show that $S$ is torsionless for any subgroup of $Z^{(B_{\kappa\lambda})}$

of cardinality less than $\kappa$ . Let $S^{*}$ be a nonzero element of $S$, then $S^{*}(m)\neq 0$ for
some $m\neq 0$ . By Lemma 3, there exists a map $h:S\rightarrow Z$ such that $\{s(h(s)):s\in S\}$

satisfies the finite intersection property and $h(s^{*})=m\neq 0$ . If $s+t=u$ for $s,t,u\in S$,

then $u(h(s)+h(t))\geq s(h(s))\wedge t(h(t))\neq 0$ . Hence $u(h(s)+h(t))\wedge u(h(u))\neq 0$ and
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so $h(s)+h(t)=h(u)$ . Now, $We\prime ve$ gotten a desired homomorphism.
(6) $\rightarrow(7)$ : Trivial.
(3) $\rightarrow(1)$ and (7) $\rightarrow(1)$ : The property (1) is reduced to the existence of a
countably complete ultrafilter of $\kappa$ -complete subfield $y$ of $P(P.\lambda)$ which extends
$F_{\iota i}$ [ $1$ , pp. 76-77; or 14, pp. 64-65]. By Lemma 2, both of (7) and (3) imply the
existence of such an ultrafilter.

COROLLARY 4. The radical $R_{z}$ satisfies the cardinal condition iffthere exists
a strongly $L_{\omega}1^{\omega}$ -compact cardinal.

The proof is clear by the equivalence of (2) and (4) of the theorem.
Another characterization of the strongly L.1.-compact cardinal has been given in
[2, Theorem 2]. As noted in [2, Theorem 4], the existence of a strongly $L_{\omega}1^{\omega^{-}}$

compact cardinal is strictly stronger than that of a measurable cardinal. However,
we do not know whether it is strictly weaker than the existence of a strongly
compact cardinal. (See the last remark.)

Under the assumption that $\kappa$ is inaccessible, many conditions are known to be
equivalent to the $\kappa- L_{\kappa\omega}$ -compactness of $\kappa$ . An observation of the proof of [14,

Theorem 1] gives us

PROPOSITION 5. Let $\kappa$ be an infinite cardinaf, then the following proposi-
tions are equivalent:
(1) $\kappa\rightarrow(\kappa)_{2}^{2}$ (See [14] or [12] for the definition.) ;

(2) $\kappa$ is $2<\kappa_{-L_{\iota\omega}}$ -compact;
(3) $\kappa$ is regular and any $\kappa$ -complete $\kappa$ -representable Boolean algebra of cardi-

nality $\leq 2<\kappa$ has a $\kappa$ -complete ultrafilter;
(4) $\kappa$ is regular and any $\kappa$ -complete subalgebra of B. of cardinality $\leq 2<\kappa$ has

a $\kappa$ -complete ultrafilter.

PROOF. Since $\kappa\rightarrow(\kappa)_{2}^{2}$ implies that $\kappa$ is inaccessible, $ 2<\kappa=\kappa$ and hence (1)
$\rightarrow(2)$ is clear by [14, Theorem 1.13]. It is known that the $\kappa- L_{\iota\omega}$ -compactness of
$\kappa$ implies that $\kappa$ is regular [3]. Hence, (2) implies that $ 2<\kappa=\kappa<\kappa$ The proof of
implication (2) $\rightarrow(3)$ is similar to that of (2) $\rightarrow(3)$ of Theorem 1. The differ-
ence is to take $(b)$

‘ instead of $(b)$ , where $(b)$
‘ is: $\forall x(\wedge {}_{a<\underline{\mu}}P_{\xi\alpha}(x)\leftrightarrow\underline{P_{\xi}}(x))$ if

$\cap {}_{\alpha<\mu}P_{\xi\alpha}=P_{\xi}$ for $\mu<\kappa$ . After this change the cardinality of the set of sentences

does not exceed $ 2<\kappa$ . Therefore, we can prove similarly as before.
The implication (3) $\rightarrow(4)$ is clear. Though Silver’s proof [14, p. 64] is

essentially a proof of (4) $\rightarrow(1)$ , we present the proof for reader’s convenience.
Suppose the negation of (1), then there exists $f:[\kappa]^{2}\rightarrow 2$ such that there exists
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no homogeneous set of cardinality $\kappa$ . $Let:7$ be the minimal $\kappa$ -complete subfield of
$P(\kappa)$ generated by all singletons and $U_{\alpha}^{i}(=\{\beta:f(\{\alpha\beta\})=i\})$ for $\alpha<\kappa,$ $i<2$ . Then,

the cardinality of $3^{i}$ is $ 2<\kappa$ Let $\pi:P(\kappa)\rightarrow B_{\kappa}(=P(\kappa)/F_{\kappa})$ be the canonical map.

Then, $\pi(y)$ is a $\kappa$ -complete subalgebra of B. of cardinality $ 2<\kappa$ . Let $F$ be a
$\kappa$ -complete ultrafilter of $\pi(\mathscr{S})$ , then $\pi(U_{\alpha}^{0})\in F$ or $\pi(U_{\alpha}^{1})\in F$. Construct a sequence
$\alpha_{\xi}(\xi<\kappa)$ and $\phi:\kappa\rightarrow 2$ such that $\alpha_{\xi}\in\bigcap_{\eta<\xi}U_{\alpha}^{\phi(\eta)}and\eta\pi(U_{\alpha}^{\phi(\xi)})\epsilon\in F$, then we can get

homogeneous sets $\{\alpha_{\xi} : \phi(\xi)=0\}$ and $\{\alpha_{\xi} : \phi(\xi)=1\}$ . One of them must be of
cardinality $\kappa$ , which is a contradiction.

As noted in [1, Corollary], if $\kappa$ is less than the least measurable cardinal and
$2<\kappa_{-L_{\omega}}1^{\omega}$ -compact, then $\kappa$ is $2<\kappa_{-L_{\kappa\omega}}$ -compact. Any $\kappa$ -complete subalgebra of a $\kappa-$

comlete $\kappa$ -representable Boolean algebra $B$ is also $\kappa$ -representable and any restric-
tion $[0, b](=\{x\in B:0\leq x\leq b\})$ for nonzero $b\in B$ is also a $\kappa$ -complete $\kappa$ -represen-
table Boolean algebra. Hence, Theorem 1, Lemma 2 and Proposition 5 imply

COROLLARY 6. (B. Wald [15]) Let $\kappa$ be an uncountable regular cardinal
which is less than the least measurable cardinal. Then, the following are equiv-

alent:
(1) $\kappa\rightarrow(\kappa)_{2}^{2}$ holds;
(2) If $A$ is an abelian group of cardinality $ 2<\kappa$ then $R_{Z}(A)=R_{z}^{[\kappa]}(A)$ ;

(3) If a subgroup $S$ of $Z^{(B\kappa}$ ) is of cardinality $\leq 2<\kappa$ then $Hom(S, Z)\neq 0$ .

REMARK: It is known that some results are restricted under the lest meas-
urable cardinal and they do not hold beyond it [11, p. 161; and 5, Theorem 2.7].

However, we did not know whether the class of Fuchs-44-groups were closed under
arbitrary direct products [8]. Here, we show that it is not. To treat such things

it is convenient to use elementary embeddings of the universe [5, Remark 2; and
10]. Therefore, we use notions about elementary embeddings [12]. Let $\kappa$ be the
least measurable cardinal, $F$ a normal ultrafilter on $\kappa$ and MF the related transi-
tive universe. For an $f\in\kappa V,$ $[f]_{F}$ is the element of MF corresponding to $f$.
Let $A_{\alpha}(\alpha<\kappa)$ be the abelian groups such that $A_{\alpha}=(\oplus_{\omega}Z)^{(B\alpha})$ if $\alpha$ is a regular
uncountable cardinal and $A.=0$ otherwise. Since $B_{\alpha}$ has no countably complete
ultrafilter, $A_{\alpha}$ is a Fuchs-44-group for each $\alpha$ [ $8$ , Corollary 3; and 9]. Since $F$ is
normal, $[\langle A_{\alpha} : \alpha<\kappa\rangle]_{F}=(\oplus_{\omega}Z)^{(B\kappa})$ holds in $M_{F}$ . Since $B_{\kappa}=(B_{t})^{M_{F}},$ $\Pi_{\alpha<\kappa}A_{\alpha}/F\simeq$

$(\oplus_{\omega}Z)^{(B\kappa})$ On the other hand, B. has a countably complete ultrafilter and hence
there exists a surjective homomorphism from $\Pi_{\alpha<\kappa}A_{a}/F$ to $\oplus_{\omega}Z$. This implies
that $\Pi_{\alpha<\kappa}A_{\alpha}$ contains a direct summand isomorphic to $\oplus_{\omega}Z$. Hence, $\Pi_{\alpha<\kappa}A_{\alpha}$ is
not a Fuchs-44-group.

As we have referred it before, Dugas and $G6bel$ proved that the radical $R_{z}$
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does not commute with a measurable direct product [5, Theorem 2.7]. Here we
show,

PROPOSITION 7. Let $\kappa$ be a cardinal less than the least measurable cardinal.

If the cardinality of $A_{i}$ is less than $\kappa$ for every $i\in I$, then $R_{z}(\Pi_{i\in I}A_{i})=\Pi_{i\in I}$

$R_{z}(A_{i})$ holds.

$PR\infty F$ . Since $R_{z}(\Pi_{i\in I}A_{i})\subseteq\Pi_{i\in I}R_{z}(A_{i})$ clearly, we show the other inclusion.
$Hom(\Pi_{i\in I}A_{i}, Z)=\oplus_{F\in y}Hom(\Pi_{i\in I}A_{i}/F, Z)$ where 7 is the set of all countably

complete ultrafilters on $I$ [ $6$ , Corollary 2] and hence what we must show is that
$h\cdot\pi_{F}(f)=0$ holds for $f\in\Pi_{i\in I}R_{z}(A_{i}),$ $h\in Hom(\Pi_{i\in I}A_{i}/F, Z)andF\in y$ , where $\pi_{F}$ :
$\Pi_{i\in I}A_{i}\rightarrow\Pi_{i\in I}A_{i}/F$ is the canonical homomorphism. By the fundamental theorem
of ultraproducts [12], $V^{I}/FF=\forall h\in Hom$ $(\Pi_{i\in I}A_{i}/F, \Pi_{I}Z/F)(h(\pi_{F}(f))=0)$ .
Since the cardinaity of $\Pi_{i\in I}A_{i}/F$ is less the least measurable cardinal and
$\Pi_{I}Z/F\simeq Z,$ $h\cdot\pi_{F}(f)=0$ for each $h\in Hom(\Pi_{i\in I}A_{i}/F, Z)$ .

ADDED IN $PR\infty F$

1. There is another radical $R_{z}^{\infty}$ , i.e. $R_{z}^{\infty}A=\Sigma\{X\leq A:Hom(X, Z)=0\}$ . The
purpose of this addendum is to answer a question in [17]. Therefore, we use
their notion.

We show,

PROPOSITION 8.
(1) The radical $R_{z}^{\infty}$ satisfies the cardiual condition (iff $R_{z}^{\infty}$ is a singly generated

socle) iff there exists a strongly $L_{\omega}1^{\omega}$ -compact cardinal.
(2) $R_{z}^{\infty}$ is not a singly generated radical.

PROOF. First observe the following fact: For a cardinal $\kappa$ of uncountable
cofinality, $ A=\Sigma$ { $X\leq A:Hom$ ($X$, Z)=O& $|X|<\kappa$ } iff $ A=\Sigma$ { $R_{z}X$ : X\leq A& $|X|<\kappa$ }.

This can be shown by a closure argument. If there exists a strongly $L_{\omega}1^{\omega}$ -compact

cardinal, let $\kappa$ be a regular strongly $L_{\omega}1^{\omega}$ -compact cardinal. Suppose that $ R_{z}^{\infty}A\neq$

$\Sigma\{R_{z}^{\infty}X:X\leq A \& |X|<\kappa\}$ . Since $R_{z}^{\infty}Y$ is the largest subgroup $X$ of $Y$ such
that $Hom(X, Z)=0$ , $ R_{z}^{\infty}A\neq\Sigma$ {$R_{z}X:X\leq R_{z}^{\infty}A$ &|X|<\kappa } by the above fact.
Hence, there exists an $a^{*}\in R_{z}^{\infty}A$ such that $a^{*}\not\in R_{z}X$ for any subgroup $X$ of $R_{z}^{\infty}A$

of cardinality less than $\kappa$ . As the proof of (2) $\rightarrow(4)$ of Theorem 1, we get a
nonzero homomorphism $R_{z}^{\infty}A$ to $Z$, which is a contradiction.

Suppose that a regular cardinal $\kappa$ is not strongly $L_{w}1^{\omega}$ -compact. Then, there
exists a $\lambda$ such that $\lambda=\lambda<\iota$ and $\kappa$ is not $\lambda- L_{\omega}1^{\omega}$ -compact. By Theorem 1 (7) and
a fact in the proof of (5) $\rightarrow(6)$ of Theorem 1, there exists a group $S$ such that
$R_{z}^{\infty}S=S$ and $\Sigma\{X\leq S:Hom(X, A)=0 \&|X|<\kappa\}=0$ . Hence, the cardinal condi-
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tion does not hold. Another equivalence is easy to show.
(2) (The same reasoning as [17, Proposition 2.8]) Suppose that $R_{z}^{\infty}$ is a singly
generated radical, i.e. $R_{Z}^{\infty}A=R_{Y}A=\cap\{Ker(h) : h\in Hom(A, Y)\}$ . Then, $R_{z}^{\infty}=$

$R_{Y}Y=0$ . Let $\alpha$ be an ordinal such that $R_{z}^{\alpha}Y=0$ . By [16, Corollary 3.10] (due
to Mines), there exists a group $A$ such that $R_{z}^{\infty}A=0$ and $R_{z}^{\alpha}A\neq 0$ . Since $A$ is
isomorphic to a subgroup of the direct product $Y^{I}$ for some $I,$ $R_{z}^{\alpha}A\leq R_{z}^{a}Y^{I}\leq(R_{Z}^{\alpha}Y)^{I}$

$=0$ , which is a contradiction.

2. Recently, G. Bergman and R. M. Solovay [18] announced a similar result to
Theorem 1, i.e. The class of all torsionless groups is characterized by a set of
generalized Horn sentences, iff there exists a strongly $L_{1^{\omega}}$ -compact cardinal. They
also commented that M. Magidor had shown that the existence of a strongly $L_{\omega}1^{\omega^{-}}$

compact cardinal is strictly weaker than that of a strongly compact cardinal, which
answers our question after Corollary 4.
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