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SPECTRAL THEORY
FOR SYMMETRIC SYSTEMS IN AN EXTERIOR DOMAIN

By

Hirokazu IWASHITA

1. Introduction

The present work is devoted to the investigation of spectral problems of a
first order symmetric system in an exterior domain $\Omega$ of $R^{n}$ of the form

(1. 1) $Hu=H(x, D)u=\sum_{J^{=1}}A_{j}n(x)D_{j}u+C(x)u,$ $ x\in\Omega$

where $D_{j}=-i\partial_{j},$ $\partial_{j}=\partial/\partial x_{j},$ $1\leq j\leq n,$ $u=u(x)={}^{t}(u_{1}(x), \cdots, ua(x))$ is a $C^{d}$-valued

function and $A_{j}(x),$ $1\leq j\leq n,$ $C(x)$ are $d\times d$ matrix valued functions.
The spectral theory for symmetric systems in the whole space $R^{n}$ has been

extensively investigated by many authors under various conditions (see Schulen-
berger-Wilcox [9], Tamura [11], Weder [12], and their references). On the
other hand there are not so many works treating exterior boundary value problems

for the system (1.1) (Lax-Phillips [3], Schmidt [8], and Stefanov-Georgiev [10]

by the time dependent method, and Kikuchi [1] and Mochizuki [5] by the
stationary method). In all of them the coefficients are assumed to take constant

values outside bounded balls and further, restrictive conditions are imposed on
the geometrical structure of the slowness surfaces of the free systems except [10].

In this paper we shall employ the commutator method due to Mourre [6] to

avoid difficulties derived from the slowness surface and the formulation of
radiation conditions, and to prove the limiting absorption principle for the long
range perturbed system (1.1). To this end we restrict ourselves to work in the
domain $\Omega$ satisfying the following: The domain $\Omega$ lies in the exterior of its
boundary $\partial\Omega$ which is a smooth and compact hypersurface enclosing the origin.
Further, there exists a positive $C^{\infty}(R^{n}\backslash \{0\})$ -function $\rho(x)$ , positively homogeneous

of degree zero such that

(1.2) $|x|=\rho(x)$ if and only if $ x\in\partial\Omega$ .
Consider the following boundary value problem with a spectral parameter

$z\in C$ :

$(H(x, D)-z)u(x)=f(x)$ in $\Omega$ ,
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(1.3) $u(y)\in\ovalbox{\tt\small REJECT}(y)$ for each $ y\in\partial\Omega$ ,

where at each point $y$ of the boundary, $X(y)$ denotes a linear subspace of $C^{d}$ of
constant dimension which varies smoothly with $y$ . Throughout the paper we
impose on the coefficients of $H(x, D)$ defined by (1.1) and the boundary space
$\sim \mathcal{B}(y)$ the following assumptions.
(A. 1) $A_{j}(x),$ $1\leq j\leq n$ are bounded $C^{\infty}(\overline{\Omega})$ -Hermitian matrices with bounded

first derivatives. Furthermore,

$(x\cdot\nabla_{x})A_{j}(x)\rightarrow 0$ as $|x|\rightarrow\infty$ ,
$(x\cdot\nabla_{x})^{2}A_{j}(x)$ are bounded in $\Omega$ ,

where $\nabla_{x}=^{\iota}(\partial_{1}, \cdots, \partial_{n})$ and ‘ denotes the scalar product. $C(x)$ is in $C^{\infty}(\overline{\Omega})-$

class and satisfies
$C(x),$ $(x\cdot\nabla x)C(x)\rightarrow 0$ as $|x|\rightarrow\infty$ ,
$(x\cdot\nabla x)^{2}C(x)$ is bounded in $\Omega$ .

(A. 2) The differential operator $H(x, D)$ is formally selfadjoint;

$\sum_{j=1}\partial_{j}A_{j}(x)=i\{C(x)-C^{*}n(x)\}$ for $ x\in\Omega$ .
(A. 3) Let

$A(x, \xi)=\sum_{j=1}^{n}A_{j}(x)\xi_{j}$

and $\nu(y)$ denote the unit outer normal to $\partial\Omega$ at $y$ . We require that $A(y, \nu(y))$

is of constant rank near the boundary.

(A. 4) The boundary space JB $(y)$ is maximally conservative, that is, the matrix
$A(y, \nu(y))$ vanishes over $\ovalbox{\tt\small REJECT}(y)$ :

$A(y, \nu(y))u(y)\cdot\overline{u(y)}=0$

for any $u(y)\in J3(y),$ $ y\in\partial\Omega$ , and $\ovalbox{\tt\small REJECT}(y)$ is the maximal subspace in $C^{d}$ satisfying
the above property (see Lax-phillips [3, Chapter VI]).

We denote by $\mathscr{H}$ the Hilbert space $L^{z}(\Omega);C^{d})$ endowed with the norm

$||u||=\{\int_{\Omega}|u(x)|^{2}dx\}^{1/2}$ .

Under the above assumptions we have by Lax-Phillips [2] the selfadjoint operator

in re which is the closure in re of $H(x, D)$ as defined for smooth functions in
$\chi$ satisfying the boundary condition (1.3). The selfadjoint operator is also
denoted by $H$ and the domain is given by

$\emptyset(H)=$ { $v\in X;Hu\in X,$ $u(y)\in X(y)$ at each point $y$ of $\partial\Omega$ }.

Let $\mathscr{N}(H)^{1}$ stand for the orthogonal complement in $\chi$ to the null space of $H$.
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Our final hypothesis is the following:

(A. 5) For any $u\in\emptyset(H)\cap\Lambda^{\prime}(H)^{\perp}we$ have

$\Sigma\Vert\partial_{j}u\Vert\leq C(\Vert Hu\Vert+\Vert u\Vert)n$ .
$j=1$

In order to state the main result we shall introduce some functional spaces.
Let $L_{\alpha}^{2}(\Omega),$ $\alpha\in R$ denote the Hilbert space of $C^{d}$-valued functions $u$ on $\Omega$ such
that $(1+|x|)^{\alpha}u$ is square integrable. Let $H^{1}(\Omega)$ stand for the Sobolev space of
$C^{d}$-valued square integrable functions on $\Omega$ with square integrable first derivatives.

Under the assumptions (A. $1$) $-(A. 5)$ we prove the following

THEOREM 1. 1 (i) The non-zero eigenvalues of $H$ are offinite multiplicity
and discrete with the only possible accumulation points $0$ and $\pm\infty$ .

(ii) Let $R(z)=(H-z)^{-1}$ for $z\in C\backslash R$ and denote by $\sigma_{p}(H)$ the set of the
point spectrum of H. Then for any compact interval $\Delta\subset R\backslash [\sigma_{p}(H)\cup\{0\}]$ and
any $\alpha>1/2$ , there exists a constant $C=C(\alpha, \Delta)>0$ such that

$||(1+|x|)^{-\alpha}R(z)(1+|x|)^{-\alpha}||\leq C$

when ${\rm Re} z\in\Delta,$ $0<|{\rm Im} z|<1$ , where $||\cdot||$ denotes the operator norm.
(iii) For every $\lambda\in R\backslash [\sigma_{p}(H)\cup\{0\}]$ and $\alpha>1/2$ , the norm limits

$R(\lambda\pm i0)=\lim_{\kappa\downarrow 0}R(\lambda\pm i\kappa)$

exist as bounded operators of $L_{\alpha}^{2}(\Omega)$ to $L_{-\alpha}^{2}(\Omega)$ and with this definition, $R(\lambda\pm iO)$

are Holder continuous as bounded operators of $L_{\alpha}^{2}(\Omega)$ to $L_{-a}^{2}(\Omega)$ with ex-
ponent $(\alpha-1/2)/(\alpha+1/2)$ if $1/2<\alpha\leq 1$ .

In [6] Mourre develops an abstract theory and as applications shows that the
limiting absorption principle holds for 2-, 3-body Schrodinger operators and some
type of pseudo-differential operators (see also Perry-Sigal-Simon [7]). As concerns
symmetric systems in $R^{n}$ , Weder [12] has applied Mourre’s method to strongly
propagative systems and obtained the same result as in Theorem 1.1. Tamura
[11] partly takes advantage of the method for symmetric systems of non-constant

deficit. Similarly as in the case of $N(\geq 2)$ -body $Schr6dinger$ operators (cf. [6]

and [7]), they take as the conjugate operator,

$\frac{1}{2}\sum_{j=1}^{n}(x_{j}D_{j}+D_{j}x_{j})$ ,

which is the generator of the dilation unitary group in $R^{n}$ .
As compared with these results in the whole space, there has been no work

to apply the Mourre method to any exterior boundary value problems. In the
present work we adopt as the conjugate operator the generator $A$ of a dilation
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unitary group in $\Omega$ (See Lemma 2.1). However, the commutator of $H$ with $A$

does not necessarily have a domain containing $\emptyset(H)$ , which is out of Mourre’s
theory. So we need some modification based on coerciveness assumption (A. 5)

(see Lemma 3.5). It should be remarked that the above result is new even if
$\Omega=R^{n}$ . We should al,$0$ mention the work of Stefanov and Georgiev [10]. They
study spectral and scattering problems for first order dissipative hyperbolic systems

in an exterior domain by using the Enss method. Their assumptions correspond
to ours except the range of perturbations, but no condition is imposed on the
shape of the domain.

We conclude this section by giving an example. We consider Maxwell’s
equation in the exterior domain with inhomogeneous media:

$H_{E}u=E(x)^{-1}\frac{1}{i}\left(\begin{array}{ll}0 & cur1\\-cur1 & 0\end{array}\right)u$ in $\Omega$ ,

where $u=^{t}(u_{1}, u_{2})$ and $u_{j},j=1,2$ are $C^{3}$-valued functions. $E(x)$ is a uniformly
positive definite, bounded $6\times 6$ Hermitian matrix valued function in $C^{\infty}(\overline{\Omega})$ -class
and satisfies for some $\epsilon>0$ ,

$|D^{\alpha}E(x)|\leq\{C(1+C(1+\left|\begin{array}{l}x\\x\end{array}\right|$
’

The boundary condition is given as follows (see Majda [4]). Let $\alpha$ and $\beta$ be
constants such that $\alpha^{2}+\beta^{2}=1$ . For each $y$ of the boundary $\partial\Omega$ ,

$\nu(y)\times(\alpha u_{1}(y)+\beta u_{2}(y))=0$ .
Then $H_{B}$ is essentially selfadjoint in $\mathscr{K}_{E}$ , the Hilbert space of $C^{6}$-valued square
integrable functions with norm

$||u||_{E}=\{\int_{\Omega}E(x)u(x)\cdot\overline{u(x)}dx\}^{1/2}$ .

Let $\mathscr{N}(H_{E})^{\perp}$ be the orthogonal complement in $\chi_{E}$ of the null space of $H_{E}$ .
Majda proves that

$\sum_{f=1}^{n}||\partial_{j}u||_{E}\leq C(||H_{E}u||_{E}+||u||_{E})$

for all $u\in\emptyset(H_{E})\cap \mathscr{N}(H_{E})^{\perp}$ . If we put

$H=E(x)^{1/2}H_{E}E(x)^{-1/2}$ ,

then the operator $H$ in $X=L^{2}(\Omega;C^{6})$ satisfies all the assumptions (A. $1$) $-(A. 5)$ .

2. Discreteness of eigenvalues

In this section we shall prove the conclusion (i) of Theorem 1.1. We begin
by introducing a dilation unitary group in $\Omega$ . For $\phi\in \mathscr{K}$ , set



Spectral theory for symmetric systems in an exterior domain 245

(2. 1) $U(t)\phi(x)=e^{t/2}\{e^{l}+(1-e^{l})\frac{\rho(x)}{|x|}\}^{(n-1)/2}\phi(e^{t}x+(1-e^{t})\rho(x)\tilde{x})$ ,

where $\tilde{x}=x/|x|$ and the function $\rho(x)$ is given in (1.2). Note that for $ x\in\Omega$ ,
$\rho(x)\tilde{x}$ is the intersection of the boundary and the ray of the origin to $x$ .

LEMMA 2.1. $U(t)$ defined by (2.1) is $a$ one-parameter unitary group and
the generator $A$ is given by

$A=\frac{1}{i}\{\sum_{j=1}^{n}(x_{j}-\rho(x)\tilde{x}_{j})\frac{\partial}{\partial x_{j}}+\frac{n}{2}-\frac{n-1\rho(x)}{2|x|}\}$

$=\frac{1}{2}\sum_{j=1}^{n}\{(x_{j}-\rho(x)\tilde{x}_{j})D_{j}+D_{j}(x_{j}-\rho(x)\tilde{x}_{j})\}$ ,

where $\tilde{x}_{j}=x_{j}/|x|$ .

PROOF. Set

$\Gamma_{t}x=e^{t}x+(1-e^{t})\rho(x)\tilde{x}$ .
Then we have

$\frac{\Gamma\iota x}{|\Gamma_{t}x|}=\tilde{x}$ ,

$|\Gamma_{i}x|=e^{t}(|x|-\rho(x))+\rho(x)=\{e^{t}+(1-e^{t})\frac{\rho(x)}{|x|}\}|x|$ .
Since $\rho(x)$ is homogenous of degree zero, we obtain

$\frac{d}{d|x|}|\Gamma_{t}x|=e^{t}$ .

These show that $U(t)$ defines a unitary transformation in $X$ with a parameter $t$ .
Further, $\Gamma_{s}\Gamma_{i}x=\Gamma_{s+t}x$, from which it immediately follows that $U(t)$ is a group.
Differentiating $U(t)$ in $t$ and setting $t=0$ , we know that the generator is given

as above. Q.E.D.

We note that since the domain $X(A)$ of $A$ is given by

$\mathfrak{X})(A)=\{u\in \mathscr{H};Au\in \mathscr{H}\}$ ,

the space of $C^{d}$-valued rapidly decreasing smooth functions is dense in $\emptyset(A)$ .
This implies that $\emptyset(A)\cap\emptyset(H)$ is a core for $H$.

LEMMA 2. 2. Let $i[H, A]$ denote the symmetric form on $\emptyset(A)\cap X(H)$

defined by

$(\phi, i[H, A]\psi)=-i\{(H\phi, A\psi)-(A\phi, H\psi)\}$

for any $\phi,$ $\psi\in \mathfrak{X}$) $(A)\bigcap_{t}\mathcal{D}(H)$ , where $(\cdot, \cdot)$ stands for the scalar product in $\mathscr{H}$ .
The form $i[H, A]$ , if it is restricted to $\emptyset(A)\cap \mathfrak{O}(H)\cap H^{1}(\Omega)$ , coincides with a

symmetric operator $i[H, A]^{0}=H+K$ whose domain includes $X(H)\cap H^{1}(\Omega)$ , that is.
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$(\phi, i[H, A]\psi)=(\phi, (H+K)\psi)$

for any $\phi,$ $\psi\in\emptyset(A)\cap\emptyset(H)\cap H^{1}(\Omega)$ , where

(2. 2) $K=-\sum_{j=1}^{n}[\frac{\rho(x)}{|x|}A_{j}(x)+\sum_{k=1}^{n}A_{k}(x)(\partial_{k\rho(}x)-\frac{x_{k}}{|x|^{2}}\rho(x))\tilde{x}_{j}$

$+(|x|-\rho(x))\partial_{r}A_{j}(x)]D_{f}$

$+i\frac{n-1}{2|x|}\sum_{=,f1}^{n}A_{j}(x)(\partial_{j}\rho(x)-\frac{x_{j}}{|x|^{2}}\rho(x))-\{(|x|-\rho(x))\partial {}_{r}C(x)+C(x)\}$ ,

$\partial_{r}=\tilde{x}\cdot\nabla x$ .

$PR\infty F$ . Let $\phi,$ $\psi\in\emptyset(A)\cap\emptyset(H)\cap H^{1}(\Omega)$ . Then we can $ch\infty se$ sequences
$\{\phi_{m}\}$ and $\{\psi_{m}\}$ which are smooth up to the boundary, rapidly decreasing and
satisfy the boundary condition (1.3) such that as $ m\rightarrow\infty$ ,

$\phi_{m}\rightarrow\phi,$ $\psi_{m}\rightarrow\psi$ in $H^{1}(\Omega)$ ;
(2. 3)

$A\phi_{m}\rightarrow A\phi,$ $ A\psi_{m}\rightarrow A\psi$ in $\mathscr{K}$ .
In fact, by introducing a partition of unity, we may only consider the case that
$\phi$ has sufficiently small support near the boundary since in [12, Lemma 2.1],

Weder has constructed a sequence satisfying (2.3) for any $\phi$ on which no
boundary condition is imposed. Therefore, it suffices to construct a smooth
sequence satisfying the boundary condition and converging to $\phi$ in $H^{1}(\Omega)$ . Let
$\phi^{f}$ be the j-th component of $\phi$ . Since the boundary space $\mathcal{B}(y)$ is assumed to

vary smoothly, we can introduce new dependent variables in terms of which the
boundary condition becomes

$\phi^{1}(y)=\cdots=\phi^{p}(y)=0$

for $ y\in\partial\Omega$ (Lax-Phillips [2]), where $p$ is the codimension of $\ovalbox{\tt\small REJECT}(y)$ . This implies
the following: The condition $\phi\in\emptyset(H)\cap H^{1}(\Omega)$ means that

$\phi^{j}\in H^{1}(\Omega),$ $j=1,$ $\cdots,$
$d$

and

$\phi^{f}(y)=0,$ $j=1,$ $\cdots,p$ for $ y\in\partial\Omega$ ,

from which we can easily obtain the desired sequence.
It follows from (2.3) that

$(\phi, i[H, A]\psi)=-i\{(H\phi, A\psi)-(A\phi, H\psi)\}$

$=\lim_{m\rightarrow\infty}-i\{(H\phi_{m}, A\psi_{m})-(A\phi_{m}, H\psi_{m})\}$ .

Integration by parts and a simple calculation give
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$-i\{(H\phi_{m}, A\psi_{m})-(A\phi_{m}, H\psi_{m})\}=(\phi_{m}, i(HA-AH)\psi_{m})$

$=(\phi_{m}, (H+K)\psi_{m})$ .
So, it remains to prove that $L=H+K$ is a symmetric operator in $\mathscr{H}$ with the
domain containing $X(H)\cap H^{1}(\Omega)$ . Since $L$ is a differential operator of first
order, it suffices to show that $L$ is a symmetric operator subject to the boundary
condition (1.3). A simple calculation shows that $L$ is formally symmetric. Since
the boundary is given by (1.2), we may assume that the direction of the outer

normal $\nu(y)$ coincides with that of $\nabla x\rho(y)-\tilde{y}$ when $ y\in\partial\Omega$ . Set

$K_{1}(x, \xi)=-\sum_{=,f1}^{n}[\frac{\rho(x)}{|x|}A_{j}(x)+\sum_{k=1}^{n}A_{k}(x)(\partial_{k}\rho(x)\frac{Xk}{|x|^{2}}\rho(x))\tilde{x}_{j}$

$+(|x|-\rho(x))\partial_{r}A_{j}(x)]\xi_{j}$ .

Taking account of homogeneity of degree zero of $\rho(x)$ , we obtain

$K_{1}(y, \nabla x\rho(y)-\tilde{y})=0$ for any $y\in\partial\Omega$ .
Thus if $L_{1}(x, \xi)=A(x, \xi)+K_{1}(x, \xi)$ , then

$L_{1}(y, \nu(y))=A(y, \nu(y))$ for any $ y\in\partial\Omega$ .
Hence, we conclude that $L$ is a symmetric operator subject to the boundary
condition (1.3). This completes the proof.

Let $P_{H}(\Delta)$ denote the spectral prejection for an interval $\Delta$ associated to $H$

and $P_{H}^{0}$ the projection onto $\mathscr{N}(H)^{\perp}$ .

PROPOSITION 2. 3. Let $\Delta$ be a bounded interval such that a $\subset R_{+}=(0, \infty)$ .
Then there exists a positive constant $\alpha$ such that

PH $(\Delta)i[H, A]^{0}P_{H}(\Delta)\geq\alpha P_{H}(\Delta)+P_{H}(\Delta)K(\Delta)P_{H}(\Delta)$ ,

where $K(\Delta)=P_{H}(\Delta)KP_{H}(\Delta)$ is a compact operator.

$PR\infty F$ . If we set $\alpha=\inf\Delta$ , we have the above inequality from Lemma 2.2.
It follows from the assumption (A. 5) that

(2. 4) $P_{H}^{0}X(H)\subset H^{1}(\Omega)$ .
If we write (2.2) as

$K=\sum_{j=0}^{n}K_{1j}(x)D_{j}+K_{0}(x)$ ,

then $K(\Delta)$ is described as

$K(\Delta)=\sum_{j=1}^{n}\{K_{1^{l}j}(x)P_{H}(\Delta)\}^{r}D{}_{jH}P(\Delta)+P_{H}(\Delta)K_{0}(x)P_{H}(\Delta)$ .
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By (A.1) and (2.2), $K_{1j}(x)$ and $K_{0}(x)$ tend to zero as $|x|\rightarrow\infty$ . Combining this
with (2.4) implies that $K_{1j}^{*}(x)P_{H}(\Delta)$ and $K_{0}(x)P_{H}(\Delta)$ are compact. It also holds
from (2.4) that $D_{j}P_{H}(\Delta),j=1$ , –, $n$ are bounded. These show that $K(\Delta)$ is a
compact operator. Q.E.D.

PROPOSITION 2.4. Let $\phi$ be an eigenvector of $H$ with an eigenvalue $E>0$ .
Then

$(\phi, i[H, A]^{0}\phi)=0$ .
For the proof we prepare two lemmas which will be also used later.

LEMMA 2.5. If $|\lambda|>1$ , then $(A+i\lambda)^{-1}$ maps $H^{1}(\Omega)$ into $H^{1}(\Omega)$ . If $\phi\in$

$H^{1}(\Omega)$ and $\phi$ satisfies the boundary condition (1.3), then $(A+i\lambda)^{-1}\phi$ also satisfies
the boundary condition. Furthermore as an operator on $H^{1}(\Omega)$ ,

$s-\lim_{\lambda\rightarrow\pm\infty}i\lambda(A+i\lambda)^{-1}=1$ .

PROOF. It suffices to prove the lemma for $\lambda>1$ since the other case is
similarly verified. Let $\phi$ be a smooth function in $H^{1}(\Omega)$ . Such functions are
dense in $H^{1}(\Omega)$ . Then a straightforward calculation from (2.1) yields

(2. 5) $\frac{\partial}{\partial x_{j}}U(t)\phi(x)=e^{l}U(t)\frac{\partial\phi}{\partial x_{j}}+\frac{\rho(x)}{|x|}(1-e^{t})U(t)\frac{\partial\phi}{\partial x_{j}}$

$+(\partial_{j}\rho(x)-\frac{x_{j}}{|x|^{2}}\rho(x))(1-e^{t})U(t)\frac{\partial\phi}{\partial r}$

$+\frac{n-1}{2}(\partial_{j}\rho(x)-\frac{x_{j}}{|x|^{2}}\rho(x))(1-e^{t})U(t)\frac{\phi}{|x|}$ .

By the Laplace transform we have

$(A+i\lambda)^{-1}\phi=-i\int_{0}^{\infty}e^{-\lambda l}U(t)\phi dt$

and hence by (2.5),

(2. 6) $\frac{\partial}{\partial x_{j}}(A+i\lambda)^{-1}\phi=(A+i(\lambda-1))^{-1}\frac{\partial\phi}{\partial x_{j}}$

$+\frac{\rho(x)}{|x|}\{(A+i\lambda)^{-1}-(A+i(\lambda-1))^{-1}\}\frac{\partial\phi}{\partial x_{j}}$

$+(\partial_{j}\rho(x)-\frac{x_{j}}{|x|^{2}}\rho(x))\{(A+i\lambda)^{-1}-(A+i(\lambda-1))^{-1}\}\frac{\partial\phi}{\partial r}$

$+\frac{n-1}{2}(\partial_{j}\rho(x)-\frac{x_{j}}{|x|^{2}}\rho(x))\{(A+i\lambda)^{-1}-(A+i(\lambda-1))^{-1}\}\frac{\phi}{|x|}$ .

Consequently we obtain with a positive constant $C$,

$||\frac{\partial}{\partial x_{j}}(A+i\lambda)^{-1}\phi||\leq C||\phi||H^{1}(\Omega)$
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and

$(A+i\lambda)^{-1}H^{1}(\Omega)\subset H^{1}(\Omega)$ .
Next, the trace operator

$H^{1}(\Omega)\ni\phi\rightarrow\phi|_{\partial\Omega}\in L^{2}(\partial\Omega)$

is bounded and by definition,

$U(t)\phi|_{\partial\Omega}=e^{t/2}\phi|_{\partial\Omega}$ .
These imply that if $\phi\in H^{1}(\Omega)$ and $ y\in\partial\Omega$ , then

$(A+i\lambda)^{-1}\phi(y)=-i\int_{0}^{\infty}e^{-(\lambda-1/2)l}dt\phi(y)=-i(\lambda-\frac{1}{2})^{-1}\phi(y)$ ,

which shows that if $\phi\in H^{1}(\Omega)$ and satisfies the boundary condition (1.3), then so
does $(A+i\lambda)^{-1}\phi$ . Finally, by the identity (2.6) and the fact that for each $k\geq 0$,

$s-\lim_{i\rightarrow+\infty}i\lambda(A+i(\lambda-k))^{-1}=1$ in $\mathscr{H}$,

we conclude that

$\lim_{\lambda\rightarrow+\infty}\frac{\partial}{\partial x_{j}}i\lambda(A+i\lambda)^{-1}\phi=\frac{\partial\phi}{\partial x_{j}}$ in $\chi$ .
Q.E.D.

Set for $\lambda>1$ ,

$A(\lambda)=Ai\lambda(A+i\lambda)^{-1}$ .
Since $A(\lambda)$ is calculated as

(2. 7) $A(\lambda)=i\lambda+\lambda^{2}(A+i\lambda)^{-1}$ ,

it follows from Lemma 2.5 that the commutator

$[H, A(\lambda)]=HA(\lambda)-A(\lambda)H$

is well defined on $\emptyset(H)\cap H^{1}(\Omega)$ .

LEMMA 2.6.

$ s-\lim_{\lambda\rightarrow\infty}i[H, A(\lambda)]\phi=i[H, A]^{0}\phi$ for any $\phi\in\emptyset(H)\cap H^{1}(\Omega)$ .

PROOF. For $\phi,$ $\psi\in\emptyset(H)\cap H^{1}(\Omega)$ , we calculate by using (2.7)

$(\phi, i[H, A(\lambda)]\psi)=-i\lambda^{2}((A-i\lambda)(A-i\lambda)^{-1}\phi, H(A+i\lambda)^{-1}\psi)$

$+i\lambda^{2}(H(A-i\lambda)^{-1}\phi, (A+i\lambda)(A+i\lambda)^{-1}\psi)$

$=i(-i\lambda A(A-i\lambda)^{-1}\phi, Hi\lambda(A+i\lambda)^{-1}\psi)$

$-i(-i\lambda H(A-i\lambda)^{-1}\phi, Ai\lambda(A+i\lambda)^{-1}\psi)$ .
By this and Lemma 2.2 we have

$i[H, A(\lambda)]=i\lambda(A+i\lambda)^{-1}i[H, A]^{0}i\lambda(A+i\lambda)^{-1}$ on $\emptyset(H)\cap H^{1}(\Omega)$ .
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The assertion follows immediately from the above identity and Lemma 2.5.
Q.E.D.

$PR\infty F$ OF PROPOSITION 2.4. Since $\phi\in P_{H}^{0}\emptyset(H)$ , we have by Lemma 2.6,

$(\phi, i[H, A]^{0}\phi)=\varliminf_{\lambda}(\phi, i[H, A(\lambda)]\phi)$

$=\varliminf_{\lambda}-i\{(H\phi, A(\lambda)\phi)-(\phi, A(\lambda)H\phi)\}$

$=\lim_{\lambda\rightarrow\infty}-iE\{(\phi, A(\lambda)\phi)-(\phi, A(\lambda)\phi)\}=0$ .
Q.E.D.

We are now in a position to give

$PR\infty F$ OF THEOREM 1.1, (i). We shall prove the theorem for positive
eigenvalues. Suppose the contrary. Then there exists a sequence of orthonormal
eigenvectors $\{\phi_{m}\}$ such that

$H\phi_{m}=E_{m}\phi_{m},$ $ E_{m}\in\Delta$ ,

where $\Delta$ is a bounded interval $\subset\subset R_{+}$ . By Propositions 2.3 and 2.4 we have
with a positive constant $\alpha$,

$0=(\phi_{m}, i[H, A]^{0}\phi_{m})=$ ( $\phi_{m}$ , PH $(\Delta)i[H,$ $A]^{0}P_{H}(\Delta)\phi_{m}$)
$\geq\alpha||\phi_{m}||^{2}+(\phi_{m}, K(\Delta)\phi_{m})$ .

Since $\phi_{m}$ weakly tends to zero and $K(\Delta)$ is a compact operator, we have by
letting $ m\rightarrow\infty$ in the above

$0\geq\alpha>0$ ,

which gives a contradiction. If we take $-A$ as a conjugate operator, we can
prove the conclusion for negative eigenvalues in exactly the same way. Q.E.D.

3. Limiting absorption principle

In this section we shall prove the assertions (ii) and (iii) of Theorem 1.1.
Similarly as in section 2, it suffices to verify the conclusions for ${\rm Re} z>0$ and
$\lambda>0$ .

LEMMA 3. 1. Let $f\in C_{0^{\infty}}(R\backslash \{0\})$ . Then $f(H)\emptyset(A)\subset\emptyset(A)$ and the operator
$[f(H), A]=f(H)A-Af(H)$ defined on $\emptyset(A)$ is actually a bounded operator on $\mathscr{K}$ .

$PR\infty F$ . If one only takes account of the domain of $i[H, A]^{0}$, one can follow
the same line as that in the proof of Lemma 7.4 of [7] or Lemma 2.5 of [12] to
verify the lemma.
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LEMMA 3.2. Let $f\in C_{0}^{\infty}(R\backslash \{0\})$ . Then the form $[A,f(H)i[H, A]^{0}f(H)]$

initially defined on $X(A)$ coincides with a bounded operator on $X$ :

(3. 1) $[A,f(H)i[H, A]^{0}f(H)]=[A,f(H)]i[H, A]^{0}f(H)+f(H)Qf(H)$

$+(i[H, A]^{0}f(H))^{*}[A,f(H)]$ ,

where

$Q=-[H, A]^{0}-2(1-\frac{\rho(x)}{|x|})[\frac{\rho(x)}{|x|}\sum_{f=1}^{n}A_{j}(x)\partial_{j}+$

$+\sum_{j=1}^{n}(A_{j}(x)-|x|\partial_{r}A_{j}(x))(\partial_{j}\rho(x)-\frac{x_{j}}{|x|^{2}}\rho(x))\partial_{r}$

$-\rho(x)\sum_{j=1}^{n}\partial_{r}A_{j}(x)\partial_{j}-\frac{1}{2}(|x|-\rho(x))\sum_{j=1}^{n}|x|\partial_{r}^{2}A_{j}(x)\partial_{j}]$

$+\frac{n-1}{|x|^{2}}(|x|-\rho(x))\sum_{j=1}^{n}A_{j}(x)(\partial_{j}\rho(x)-\frac{x_{j}}{|x|^{2}}\rho(x))$

$-i(|x|-\rho(x))\{(|x|-\rho(x))\partial_{r}^{2}C(x)+2\partial_{r}C(x)\}$ .

PROOF. Let $\phi,$ $\psi\in\emptyset(A)$ . Then by Lemma 3.1 and (2.4),

$f(H)\phi,f(H)\psi\in \mathfrak{X})(A)\cap X(H)\cap H^{1}(\Omega)$ .
We calculate

$(A\phi,f(H)i[H, A]^{0}f(H)\psi)-(f(H)i[H, A]^{0}f(H)\phi, A\psi)$

$=((f(H)A-Af(H))\phi, i[H, A]^{0}f(H)\psi)$

$+\{(Af(H)\phi, i[H, A]^{0}f(H)\psi)-(i[H, A]^{0}f(H)\phi, Af(H)\psi)\}$

$+(i[H, A]^{0}f(H)\phi, (Af(H)-f(H)A)\psi)$ .
By density arguments and computing the commutator of $A$ with $i[H, A]^{0}$, we
have

the second term $=(f(H)\phi, Qf(H)\psi)$ .
Thus we obtain identity (3.1). By Lemmas 2.2, 3.1, (A.1), and (2.4) we know
that the right hand side of (3.1) is bounded operator. Q.E.D.

One of the main results in this section is

PROPOSITION 3.3. Let $\Delta$ be any compact interval in $R_{+}\backslash \sigma_{p}(H)$ and $\alpha>1/2$ .
Then there exists a constant $C=C(\alpha, \Delta)>0$ such that

$||(1+|A|)^{-\alpha}R(z)(1+|A|)^{-a}||\leq C$

if ${\rm Re} z\in\Delta$ and $0<|{\rm Im} z|<1$ .
The next lemma follows immediately from Proposition 2.3.

LEMMA 3.4. Let $\lambda>0ana\lambda\not\in\sigma_{p}(H)$ . Then there exist a function $ f\in$
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$C_{0}^{\infty}(R_{+})$ , identically equal to 1 near $\lambda$ and a positive constant $C$ such that

(3. 2) $f(H)i[H, A]^{0}f(H)\geq Cf(H)^{2}$ .
Suppose $\Delta\subset R_{+}\backslash \sigma_{p}(H)$ and fix $\lambda\in\Delta$ . Choose $f\in C_{0}^{\infty}(R_{+})$ to satisfy (3.2).

Set

$M=f(H)i[H, A]^{0}f(H)$ .
Then $H-i\epsilon M-z$ is invertible for $\pm\epsilon\geq 0$ and $\pm{\rm Im} z>0$ , and its inverse $G(\epsilon, z)=$

$(H-i\epsilon M-z)^{-1}$ is bounded and in class $C^{1}(R_{\pm})\cap C(\overline{R_{\pm}})$ in $\epsilon$ (see [6, Proposition
II. 5]). For $1/2<\alpha\leq 1$ , set

$D(\epsilon)=(1+|A|)^{-\alpha}(1+|\epsilon||A|)^{\alpha-1}$ .
As is seen in section 2, the domain of $i[H, A]^{0}$ does not necessarily include
$\emptyset(H)$ , and so we cannot directly estimate $||D(\epsilon)G(\epsilon, z)D(\epsilon)||$ . However, since
$i[H, A]^{0}$ is bounded on $P_{H}^{0}\emptyset(H)$ , we can prove

LEMMA 3.5. Let $g\in C_{0}^{\infty}(R_{+})$ so that $g(s)=1$ on $suppf$ Then we can find
a positive constant $C$ such that

$||D(\epsilon)g(H)G(\epsilon, z)g(H)D(\epsilon)||\leq C$

$lf0\leq\pm\epsilon\leq 1,$ $\pm{\rm Im} z>0,$ ${\rm Re} z\in I=[\lambda-\delta, \lambda+\delta]$ with small $\delta>0$ .
As will be seen in (3.5), we can choose $g$ so that $(1-g(H))G(\epsilon, z)$ and

$G(\epsilon, z)(1-g(H))$ are bounded for ${\rm Re} z\in I$. Since we may assume without loss
of generality that $1/2<\alpha\leq 1$ , we obtain Proposition 3.3 from Lemma 3.5 with
$\epsilon=0$ .

PROOF OF LEMMA 3. 5. We consider the case $\epsilon\geq 0$ and ${\rm Im} z>0$ . The other
case can be similarly treated. The following estimates are valid for ${\rm Re} z\in I$,
$0<\epsilon\ll 1$ (see [6] and [7, Lemma 7.3]).

(3. 3) $||f(H)G(\epsilon, z)\phi||\leq C\epsilon^{-1/2}|(\phi, G(\epsilon, z)\phi)|^{1/2}$ for $\phi\in X$,

(3. 4) $||G(\epsilon, z)||\leq C\epsilon^{-1}$ ,

(3. 5) $||(1-f(H))G(\epsilon, z)||\leq C$

Set

$F(\epsilon, z)=D(\epsilon)g(H)G(\epsilon, z)g(H)D(\epsilon)$ .
Then it follows from (3.3) and (3.5) that

(3. 6) $||G(\epsilon, z)g(H)D(\epsilon)||\leq C(1+\epsilon^{-1/2}||F(\epsilon, z)||^{1/2})$ .
Choose $h\in C_{0}^{\infty}(R_{+})$ so that $h=1$ on $suppg$ . Then we have
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$h(H)M=M=Mh(H)$

and hence,

$G(\epsilon, z)h(H)=h(H)G(\epsilon, z)$ .
With these in mind we calculate

$-iD(\epsilon)g(H)(\frac{\partial}{\partial\epsilon}G(\epsilon, z))g(H)D(\epsilon)$

$=D(\epsilon)g(H)G(\epsilon, z)MG(\epsilon, z)g(H)D(\epsilon)$

$=D(\epsilon)g(H)G(\epsilon, z)h(H)Mh(H)G(\epsilon, z)g(H)D(\epsilon)$

$=Q_{1}+Q_{2}+Q_{3}$ ,

where we have put

$Q_{1}=-D(\epsilon)g(H)G(\epsilon, z)(1-f(H))h(H)i[H, A]^{0}h(H)(1-f(H))$

$\times G(\epsilon, z)g(H)D(\epsilon)$ ,
$Q_{2}=-D(\epsilon)g(H)G(\epsilon, z)(1-f(H))h(H)i[H, A]^{0}f(H)G(\epsilon, z)g(H)D(\epsilon)$

$-D(\epsilon)g(H)G(\epsilon, z)f(H)i[H, A]^{0}h(H)(1-f(H))G(\epsilon, z)g(H)D(\epsilon)$ ,
$Q_{3}=D(\epsilon)g(H)G(\epsilon, z)i[H, A]^{0}G(\epsilon, z)g(H)D(\epsilon)$ .

By $(3.3)-(3.6)$ and boundedness of $i[H, A]^{0}h(H)$ , we can estimate

(3. 7) $||Q_{1}||\leq C$,

(3. 8) $||Q_{2}||\leq C(1+\epsilon^{-1/2}||F(\epsilon, z)||$ ”).

Similarly as in [6, Proposition II. 6] and [12, p. 115], we know from Lemmas
2.6 and 3.2 that

$G(\epsilon, z)$ maps $\emptyset(A)$ into $\emptyset(A)\cap X(H)$ .
We also know by Lemma 3.1 that $g(H)\emptyset(A)\subset\emptyset(A)$ . Thus as a form on $X$ ,

we can calculate

$Q_{3}=D(\epsilon)g(H)G(\epsilon, z)\{i[H, A]^{0}-i\epsilon[M, A]+i\epsilon[M, A]\}G(\epsilon, z)g(H)D(\epsilon)$

$=D(\epsilon)g(H)G(\epsilon, z)i[H-i\epsilon M-z, A]G(\epsilon, z)$

$+D(\epsilon)g(H)G(\epsilon, z)i\epsilon[M, A]G(\epsilon, z)g(H)D(\epsilon)$ .
Expanding the commutator we obtain

$D(\epsilon)g(H)G(\epsilon, z)i[H-i\epsilon M-z, A]G(\epsilon, z)g(H)D(\epsilon)$

$=D(\epsilon)g(H)AG(\epsilon, z)g(H)D(\epsilon)-D(\epsilon)g(H)G(\epsilon, z)Ag(H)D(\epsilon)$ .
Noting that

$D(\epsilon)g(H)AG(\epsilon, z)g(H)D(\epsilon)$

$=D(\epsilon)Ag(H)G($ \’e, $z)g(H)D(\epsilon)+D(\epsilon)[g(H), A]G(\epsilon, z)g(H)D(\epsilon)$ ,

we get by Lemma 3.1 and (3.6),
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(3. 9) $||D(\epsilon)g(H)G(\epsilon, z)i[H-i\epsilon M-z, A]G(\epsilon, z)g(H)D(\epsilon)||$

$\leq C\epsilon^{-(1-a)}(1+\epsilon^{-1/2}||F(\epsilon, z)||^{1/2})$ .
Lemma 3.2 and (3.6) imply that

$||D(\epsilon)g(H)G(\epsilon, z)i\epsilon[M, A]G(\epsilon, z)g(H)D(\epsilon)||\leq C(1+||F(\epsilon, z)||)$ .
Combining this with (3.9) gives

(3. 10) I $Q_{3}||\leq C\epsilon^{-(1-\alpha)}(1+\epsilon^{-1/2}||F(\epsilon,z)||^{1/2})+C||F(\epsilon,z)||$ .
Finally we use $(3.6)-(3.10)$ to estimate

(3. 11) I $I\frac{\partial}{\partial\epsilon}F(\epsilon,z)$ I $|=|I(\frac{d}{d\epsilon}D(\epsilon))g(H)G$ ( $\epsilon,$ z)g(H)D(\’e)

$+D(\epsilon)g(H)(\frac{\partial}{\partial\epsilon}G(\epsilon, z))g(H)D(\epsilon)$

$+D(\epsilon)g(H)G(\epsilon, z)g(H)\frac{d}{d\epsilon}D(\epsilon)||$

$\leq C\epsilon^{-(1-\alpha)}(1+\epsilon^{-1/2}||F(\epsilon, z)||^{1/2}+||F(\epsilon, z)||)$ .

Substitute (3.4) into the above and integrate it. Then we have an improvement.
After iterating this manipulation finite times, we get

11 $F(\epsilon,z)$ I $|\leq C$,

which completes the proof of Lemma 3.5.

PROPOSITION 3.6. Let $\Delta$ be a compact interval in $R_{+}\backslash \sigma_{p}(H)$ and $1/2<\alpha\leq 1$ .
Then there exists a positive constant $C=C(\alpha, \Delta)$ such that

$||(1+|A|)^{-\alpha}\{R(z)-R(z^{\prime})\}(1+|A|)^{-\alpha}||\leq C|z-z^{\prime}|^{\theta(\alpha)}$

for any 2, $z^{\prime}$ with ${\rm Re} z,$ ${\rm Re} z^{\prime}\in\Delta$ and $0<\pm{\rm Im} z,$ $\pm{\rm Im} z^{\prime}<1$ , where $\theta(\alpha)=(\alpha-$

$1/2)/(\alpha+1/2)$ .
$PR\infty F$ . We only consider the case ${\rm Im} z>0$ . It is sufficient to show that

(3. 12) $||D(0)g(H)\{G(0, z)-G(0, z^{\prime})\}g(H)D(O)||\leq C|z-z^{\prime}|^{\theta(a)}$ ,

where we use the notation in the proof of Lemma 3.5. Since $F(\epsilon, z)$ is bounded,
it follows from (3.11) that

(3. 13) $||F(\epsilon, z)-F(0, z)||\leq C\epsilon^{a-1/2}$ .
By (3.6) we have

$||\frac{\partial}{\partial z}F(\epsilon, z)||=||D(\epsilon)g(H)G(\epsilon, z)^{2}g(H)D(\epsilon)||$

$\leq C(1+\epsilon^{-1}||F(\epsilon, z)||)\leq C^{\prime}\epsilon^{-1}$

and hence,
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$||F(\epsilon, z)-F(\epsilon, z^{\prime})||\leq C\epsilon^{-1}|z-z^{\prime}|$ .

Combining this with (3.13), we obtain
$||F(0, z)-F(0, z^{\prime})||\leq C\{\epsilon^{a-1/2}+\epsilon^{-1}|z-z^{\prime}|\}$ .

If we take $\epsilon=|z-z^{\prime}|^{1/(a+1/2)}$ , we get (3.12). Q.E.D.

PROOF OF THEOREM 1.1, (ii) and (iii). Let $f\in C_{0}^{\infty}(R_{+})$ . We claim that

(3.14) $||(1+|A|)^{\alpha}f(H)(1+|x|)^{-\alpha}||\leq C$ when $0\leq\alpha\leq 1$ .
In fact, since $A$ is rewritten as

$A=\sum_{f=1}^{n}D_{j}(x_{j}-\tilde{x}_{j}\rho(x))+i(\frac{n}{2}-\frac{n-1\rho(x)}{2|x|})$ ,

we calculate

$Af(H)(1+|x|)^{-1}=[A,f(H)](1+|x|)^{-1}+if(H)(\frac{n}{2}-\frac{n-1\rho(x)}{2|x|}$ ) $(1+|x|)^{-1}$

$+\sum_{j=1}^{n}\{(1-\frac{\rho(x)}{|x|})\tilde{x}_{f}D_{j}f(H)\}^{*}|x|(1+|x|)^{-1}$ ,

which together with Lemma 3.1 and (2.4) implies that $Af(H)(1+|x|)^{-1}$ is
bounded on $\chi$ . Since $f(H)$ is a bounded operator on $X$ , the Hadamard three
line lemma implies (3.14).

The conclusion (ii) is easily deduced from Proposition 3.3 and (3.14). Next,

it follows from Proposition 3.6 and (3.14) that

$||(1+|x|)^{-\alpha}\{R(z)-R(z^{\prime})\}(1+|x|)^{-\alpha}||\leq C|z-z^{\prime}|^{\theta(\alpha)}$ .
This proves (iii). Q.E.D.
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