ON CLOSED IMAGES OF PERFECT PREIMAGES OF ORTHOCOMPACT DEVELOPABLE SPACES

By

Takemi MIZOKAMI

1. Introduction.

We consider the following property of the closed images of topological spaces: For spaces X, Y and a closed mapping $f: X \rightarrow Y$, the following (*) holds: (*) $Y = Y_0 \cup \{Y_n : n \in \omega\}$, where $f^{-1}(y)$ is compact for each $y \in Y_0$ and Y_n is closed and discrete in Y for each $n \in \omega$.

Originally, Lašnev showed in [7] that (*) holds for a metric space X, and the other cases are listed in [2, pp. 13 and 14]. A few years ago, Chaber proved that (*) holds for a regular σ -space X [3, Theorem 1.1], and he proposed there the problem whether (*) holds or not for the cases when X is a perfect preimage of a regular σ -space or of a Moore space [3, Problems 1.1 and 3.1]. In this paper, we give a characterization of orthocompact developable spaces and give a partial answer to the latter case. We denote the set of all natural numbers by ω . All spaces are assumed to be T_1 . All mappings are assumed to be continuous and onto.

2. The main results.

In the sequel, we denote by [X, Y, Z, f, g] the situation that X, Y, Z are spaces, $f: X \rightarrow Y$ is a closed mapping and $g: X \rightarrow Z$ is a perfect mapping. Moreover, we denote by [X, Y, f] the situation that X, Y are spaces and $f: X \rightarrow Y$ is a closed mapping.

Before stating a positive result for some subclass of perfect preimages of Moore spaces, we give the definition of \mathcal{F} -preserving families in both sides, which is used to characterize the class of stratifiable μ -spaces by Junnila and the author [6].

DEFINITION 2.1. Let \mathcal{U} , \mathcal{F} be families of a space X. We call that \mathcal{U} is \mathcal{F} -preserving in both sides in X if for each point p of X and for each subfamily \mathcal{U}_0 of \mathcal{U} , the following two conditions are satisfied:

(1) If $p \in \cap \mathcal{U}_o$, then $p \in F \subset \cap \mathcal{U}_o$ for some $F \in \mathcal{F}$.

(2) If $p \in X - \cup \mathcal{U}_0$, then $p \in F \subset X - \cup \mathcal{U}_0$ for some $F \in \mathcal{F}$.

Received July 28, 1986. Revised October 3, 1986.

 \mathcal{U} is called σ - \mathcal{F} -preserving if $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in \omega\}$, where each \mathcal{U}_n is \mathcal{F} -preserving in both sides in X.

According to Brandenburg [1], a developable space can be characterized as a space which has a σ -dissectable base, where a family $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ of subsets of a space X is called *dissectable* if for each $\alpha \in A$ there exists a sequence $\{D_{\alpha n} : n \in \omega\}$ of closed subsets of X satisfying the following:

(1) $U_{\alpha} = \bigcup \{ D_{\alpha n} : n \in \omega \}$ for each $\alpha \in A$.

(2) For each n, $\{D_{\alpha n} : \alpha \in A\}$ is closure-preserving in X.

(3) For each *n* and each point $p \in \bigcup \{D_{\alpha n} : \alpha \in A\}, \cap \{U_{\alpha} : \alpha \in A \text{ and } p \in D_{\alpha n}\}$ is a neighborhood of *p* in *X*.

We give here a similar characterization of orthocompact developable spaces. To do so, we introduce the notion of O-dissectable families as modified one.

DEFINITION 2.2. Let X be a space and \mathcal{U} a family of subsets of X. We call \mathcal{U} *O*-dissectable if there exists a σ -discrete family \mathcal{F} of closed subsets of X satisfying the following :

(1) \mathcal{U} is \mathcal{F} -preserving in both sides in X.

(2) For each $F \in \mathcal{F}$, $\cap \{U \in \mathcal{U} : F \subset U\}$ is a neighborhood of F in X, if it is not empty.

LEMMA 2.3. If U is an O-dissectable family of subsets of a space X, then U is dissectable.

PROOF. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ and $\mathcal{F} = \bigcup \{\mathcal{F}_n : n \in \omega\}$ with each \mathcal{F}_n discrete be the same families of the above definition. For each $\alpha \in A$, set

$$D_{\alpha n} = \bigcup \{F \in \mathcal{F}_n : F \subset U_\alpha\}, \ n \in \omega.$$

Then $\{D_{\alpha n}: n \in \omega\}$, $\alpha \in A$, satisfy the required conditions.

LEMMA 2.4. For a family \mathcal{U} of subsets of a space X, \mathcal{U} is O-dissectable if and only if \mathcal{U} is interior-preserving and \mathcal{F} -preserving in both sides in X for some σ -discrete family \mathcal{F} of closed subsets of X.

PROOF. Only if part : Assume that \mathcal{U} and \mathcal{F} satisfy the conditions (1) and (2) of Definition 2.2. To see that \mathcal{U} is interior-preserving in X, let $p \in \cap \mathcal{U}_0$ for $\mathcal{U}_0 \subset \mathcal{U}$. There exists $F \in \mathcal{F}$ such that $p \in F \subset \cap \mathcal{U}_0$. By (2), $\cap \mathcal{U}_0$ is a neighborhood of p in X, implying that $\cap \mathcal{U}_0$ is open in X. If part is trivial.

LEMMA 2.5. Let X be an orthocompact developable space. Then each open cover of X has an O-dissectable open refinement.

PROOF. It suffices to show that each interior-preserving open cover of a semi-

stratifiable space is \mathscr{F} -preserving in both sides in X for some σ -discrete family \mathscr{F} of closed subsets of X. Then it is \mathcal{O} -dissectable by the above lemma. Let $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ be an interior-preserving open cover of X. For each point $p \in X$, let $\delta(p) = \{\alpha \in A : p \in U_{\alpha}\}$ and let $\mathcal{A} = \{\delta(p) : p \in X\}$. For each $\delta \in \mathcal{A}$ and $k \in \omega$, set

$$F(k, \ \delta) = (\cap \{U_{\alpha} : \alpha \in \delta\})_k - \cup \{U_{\alpha} : \alpha \in A - \delta\},\$$

where $\{(\cap \{U_{\alpha} : \alpha \in \delta\})_k : k \in \omega\}$ is the semi-stratifiability of an open subset $\cap \{U_{\alpha} : \alpha \in \delta\}$. Set

$$\mathcal{F}(k) = \{F(k, \delta) : \delta \in \mathcal{A}\}, \ k \in \omega.$$

Then $\mathcal{F} = \bigcup \{\mathcal{F}(k) : k \in \omega\}$ is a σ -discrete family of closed subsets of X and it is easy to see that \mathcal{U} is \mathcal{F} -preserving in both sides in X. This completes the proof.

THEOREM 2.6. For a space X, the following are equivalent:

(1) X is an orthocompact developable space.

(2) X has a σ -discrete family \mathcal{F} of closed subsets and has a base $\cup \{\mathcal{V}_n : n \in \omega\}$, where each \mathcal{V}_n is interpreserving and \mathcal{F} -preserving in both sides in X.

(3) X has a σ -O-dissectable base.

PROOF. $(1) \rightarrow (2)$: Let $\{\mathcal{U}_n : n \in \omega\}$ be a development for X. By the above lemma, for each *n* there exists a σ -discrete family \mathcal{F}_n of closed subsets of X such that \mathcal{U}_n has an open refinement \mathcal{V}_n such that \mathcal{V}_n is \mathcal{F}_n -preserving in both sides and interior-preserving in X. Letting $\mathcal{F} = \bigcup \{\mathcal{F}_n : n \in \omega\}$ we have the required base $\bigcup \{\mathcal{V}_n : n \in \omega\}$.

 $(2) \rightarrow (3)$ follows directly from Lemma 2.4.

 $(3) \rightarrow (1)$: By Lemma 2.3, X has a σ -dissectable base. Therefore X is developable by [1]. By Lemma 2.4, every open cover of X has a σ -interior-preserving open refinement. The countable metacompactness of X implies that every open cover of X has an interior-preserving open refinement, i.e., X is orthocompact. This completes the proof.

COROLLARY 2.7. Every orthocompact developable space has a σ - \mathcal{F} -preserving base for some σ -discrete family \mathcal{F} of closed subsets of it.

LEMMA 2.8. [11, Lemma 5.4]. Let \mathcal{F} be a hereditarily closure-preserving family of closed subsets of a space Y. For each $n \in \omega$, let

 $Y_n = \bigcup \{F_1 \cap \cdots \cap F_n : F_1, \cdots, F_n \in \mathcal{F} \text{ and } F_1 \cap \cdots \cap F_n \text{ is a non-empty} finite subset of Y\}.$

Then each Y_n is closed and discrete in Y.

We state the main result.

THEOREM 2.9. If in [X, Y, Z, f, g] Z is an orthocompact Moore space, then (*) holds.

PROOF. By virtue of Corollary 2.7, it suffices to show that if in [X, Y, Z, f, g]Z is a regular space which has a σ - \mathcal{F} -preserving base for some σ -discrete (more generally, σ -locally finite) family \mathcal{F} of closed subsets of Z, then (*) holds.

Let $\mathcal{U} = \bigcup \{\mathcal{U}_n : n \in \omega\}$ be a base for Z, where each \mathcal{U}_n is \mathcal{F} -preserving in both sides in Z. Let $\mathcal{F} = \bigcup \{\mathcal{F}_n' : n \in \omega\}$, where each \mathcal{F}_n' is a locally finite closed cover of Z. For each n, let \mathcal{F}_n be the totality of finite intersections of members of $\bigcup \{\mathcal{F}_i' : i \leq n\}$. Then $\{\mathcal{F}_n : n \in \omega\}$ is a sequence of locally finite and finitely multiplicative closed covers of Z such that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each n. Obviously, each \mathcal{U}_n is $\bigcup_n \mathcal{F}_n$ -preserving in both sides in Z and $\bigcup_n \mathcal{F}_n$ is a network for Z. Thus, we can assume $\mathcal{U}_n \subset \mathcal{U}_{n+1}$ for each n. For each n, write

$$\mathcal{E}_n = g^{-1}(\mathcal{F}_n) = \{E_{\lambda} : \lambda \in \Lambda_n\}.$$

For each n, $k \in \omega$, let $\mathcal{A}_n(k)$ be the totality of subsets δ of \mathcal{A}_n such $|\delta| = k$ and

$$Y(\delta) = \cap \{ f(E_{\lambda}) : \lambda \in \delta \}$$

is a non-empty finite subset of Y. By Lemma 2.8,

$$Y_n(k) = \bigcup \{Y(\delta) : \delta \in \mathcal{A}_n(k)\}$$

is closed and discrete in Y. Set

$$Y_o = Y - \cup \{Y_n(k) : n, k \in \omega\}.$$

We shall show that for each $y \in Y_o$, $f^{-1}(y)$ is compact in X. To do it, we establish the following claims:

Claim 1: For each $n \in \omega$,

$$\mathcal{E}_n(y) = \{E \in \mathcal{E}_n : E \cap f^{-1}(y) \neq \phi\}$$

is finite.

To see it, assume the contrary, i.e., that for some m, $\mathcal{E}_m(y)$ is infinite. Choose an infinite sequence $\{E_m, E_{m+1}, \dots\} \subset \mathcal{E}_m(y)$ and $x_0 \in f^{-1}(y)$. Observe that for each k

$$E_k' = \cap \{E \in \mathcal{E}_k : x_o \in E\} \in \mathcal{E}_k.$$

Since $y \in Y_o$, $f(E_k) \cap f(E_k)$ is infinite for each $k \ge m$, we can choose a sequence $\{y_k : k \ge m\}$ of distinct points of Y such that

$$y_k \in f(E_k') \cap f(E_k), \ k \ge m.$$

Choose two points p_k , $p_k' \in X$ for each $k \ge m$ such that

$$p_k \in f^{-1}(y_k) \cap E_k$$
 and $p_k' \in f^{-1}(y_k) \cap E_k'$

for each k. Recall that $\cup \{\mathcal{E}_n : n \in \omega\}$ is a Σ -network for Y in the sense of Nagami [8]. Therefore, $\{p_k'\}$ has a cluster point in Y. So, $\{y_k : k \ge m\}$ consequently has

On closed images of perfect preimages of orthocompact developable spaces 223

a cluster point in Y. But this is a contradiction because $\{p_k : k \ge m\}$ is discrete in X and f is a closed mapping. Hence $\mathcal{E}_n(y)$ is finite for each n. (The proof of this part have been done referring to [12, Theorem 1.3].)

Claim 2: $g(f^{-1}(y))$ is Lindelöf.

In fact, by Claim 1, for each n

$$\mathcal{F}_n(y) = \{F \in \mathcal{F}_n : g^{-1}(F) \in \mathcal{E}_n(y)\}$$

is finite. It is obvious that

$$\cup \{\mathcal{F}_n(y): n \in \omega\} / g(f^{-1}(y))$$

is a countable network for the subspace $g(f^{-1}(y))$. This implies that $g(f^{-1}(y))$ is Lindelöf.

Claim 3: There exists a sequence $\{y_n : n \in \omega\}$ of points of Y satisfying the following:

(1) $E \cap f^{-1}(y_n) \neq \phi$ for each $E \in \mathcal{E}_k(y)$ and $n \ge k$.

(2) If $N \subset \omega$ is infinite, then $\{y_n : n \in N\}$ has a cluster point in Y.

In fact, by Claim 1, each $\mathcal{E}_n(y)$ is finite. Since $y \in Y_0$ and

 $y \in \cap \{f(E) : E \in \mathcal{E}_n(y)\},\$

 $\cap \{f(E) : E \in \mathcal{E}_n(y)\}\$ is infinite. Thus, we can choose a sequence $\{y_n : n \in \omega\}$ of points of Y such that for each n

$$y_{n+1} \in \cap \{f(E) : E \in \mathcal{E}_{n+1}(y)\} - \{y_1, \dots, y_n\}.$$

It is obvious to see that $\{y_n : n \in \omega\}$ satisfies (1). Let N be an infinite subset of ω . Since for a point $x_0 \in f^{-1}(y)$,

 $E_n' = \cap \{E \in \mathcal{E}_n : x_o \in E\} \in \mathcal{E}_n(y), \ n \in N,$

there exists by Claim 3(1),

$$p_n \in f^{-1}(y_n) \cap E_n', \ n \in N.$$

By the same reason as in the proof of Claim 1, $\{y_n : n \in N\}$ has a cluster point in Y.

Finally we show that $f^{-1}(y)$ is compact in X. Assume that $f^{-1}(y)$ is not compact in X. Then $g(f^{-1}(y))$ is not so in Z because g is a perfect mapping. Recall that by Claim 2 $g(f^{-1}(y))$ is Lindelöf. By the argument of [3, Theorem 1] there exists an increasing open cover $\{U_i: i \in \omega\}$ of $g(f^{-1}(y))$ such that for each i

$$g(f^{-1}(y)) \cap (U_{i+1} - \overline{U}_i) \neq \phi.$$

Take points $p_1 \in U_1$ and

$$p_{i+1} \in g(f^{-1}(y)) \cap (U_{i+1} - \bar{U}_i)$$

for each *i*. Set

$$A_i = Z - \cup \{U \in \mathcal{U}_i : U \cap g(f^{-1}(y)) = \phi\}$$

for each *i*. Then $\{A_i : i \in \omega\}$ is a decreasing sequence of closed subsets of Z such that

$$g(f^{-1}(y)) = \cap \{A_i : i \in \omega\}.$$

Since \mathcal{U}_i is $\bigcup_k \mathcal{F}_k$ -preserving in both sides in Z, there exists $F_i \in \bigcup_k \mathcal{F}_k$ such that $p_1 \in F_1 \subset U_1$ and

$$p_{i+1} \in F_{i+1} \subset (U_{i+1} - \bar{U}_i) \cap A_i.$$

By Claim 3 (1), we can choose $\{y_{n(i)}: i \in \omega\}$ such that

$$F_i \cap g(f^{-1}(y_{n(i)})) \neq \phi \text{ and } n(i) < n(i+1)$$

for each i. If we take for each i

$$x_i \in g^{-1}(F_i) \cap f^{-1}(y_{n(i)}),$$

then by Claim 3 (2), $\{g(x_i): i \in \omega\}$ has a cluster point z in Z. Since $g(x_i) \in F_i$, $i \in \omega$, and $\{F_i: i \in \omega\}$ is discrete in the subspace $g(f^{-1}(y))$, z must belong to $Z - g(f^{-1}(y))$. Since $g(f^{-1}(y)) = \cap \{A_i: i \in \omega\}$, there exists $m \in \omega$ such that $z \notin A_n$ for every $n \ge m$. But this is a contradiction because $g(x_n) \in A_m$ for every $n \ge m$ and A_m is closed in Z. Hence we have shown that $f^{-1}(y)$ is compact in X. This completes the proof.

From here, we assume that all *p*-spaces are regular. In [4], Filippov showed that (*) holds if X is a paracompact *p*-space in [X, Y, f]. We generalize it as follows:

COROLLARY 2.10. If in [X, Y, f] X is an orthocompoct, d-paracompact p-space, then (*) holds.

PROOF. By [9, Theorem 4.4] there exists a perfect mapping of X onto a Moore space Z. By [5, Theorems 3.2 and 3.3] Z is orthocompact. Thus, by the theorem (*) holds.

REMARK. We know that Veličko showed that (*) holds if X is a metacompact, completely regular *p*-space [13], as a generalization of Filippov's result. But, Corollary 2.10 is not the corollary of Veličko's, because there exists an orthocompact Moore space X which is not metacompact [13, Theorem 2].

224

On closed images of perfect preimages of orthocompact developable spaces 225

References

- Brandenburg, H., Some characterizations of developable spaces. Proc. Amer. Math. Soc. 80 (1980), 157-161.
- [2] Burke, D. K., Closed mappings. Surveys in general topology, Academic press, 1980.
- [3] Chaber, J., Generalizations of Lašnev theorems. Fund. Math. 119 (1983), 85-91.
- [4] Filippov, V. V., On feathered paracompacta. Soviet Math. Dokl. 9 (1968), 161-164.
- [5] Gruenhage, G., On closed images of orthocompact spaces. Proc. Amer. Math. Soc. 77 (1979), 389-394.
- [6] Junnila, H. J. K. and Mizokami, T., Characterizations of stratifiable μ-spaces. Topology Appl. **21** (1985), 51-58.
- [7] Lašnev, N., Continuous decompositions and closed mappings of metric spaces. Soviet Math. Dokl. 6 (1965), 1504-1506.
- [8] Nagami, K., Σ-spaces. Fund. Math. 55 (1969), 169-192.
- [9] Pareek, C. M., Moore spaces, semi-metric spaces and continuous mappings connected with them. Canad. J. Math. 24 (1972), 1033-1042.
- [10] Reed, G. M., On the existence of point countable bases in Moore spaces. Proc. Amer. Math. Soc. 45 (1974), 432-440.
- [11] Suzuki, J., On pre-σ-spaces. Bull. Tokyo Gakugei University Ser. 28 (1976), 22-23.
- [12] Tanaka, Y. and Yajima, Y., Decompositions for closed maps, preprint.
- [13] Veličko, N. V., On p-spaces and their continuous maps. Math. USSR Sbornik 19 (1973), 35-46.

Joetsu University of Education Joetsu, Niigata 943 Japan