H-SEPARABILITY OF GROUP RINGS (In memory of Professor Akira Hattori)

By

Kazuhiko Hirata

Let $k[G]$ be the group ring of a finite group G with a coefficient field k. Assume that the characteristic of k does not divide the order of G. Let H be a subgroup of G, Δ the centralizer of $k[H]$ in $k[G]$ and D the double centralizer of $k[H]$ in $k[G]$. The purpose of this paper is to prove that $k[G]$ is an H-separable extension of D. For this, a unit in the center C of $k[G]$ plays a fundamental role (Lemma 1). Besides, we can prove the well known facts that $k[G]$ is (finitely generated) projective over C and $k[G]$ is a central separable algebra over C, explicitely, by use of this unit.

Denote by g_{x} and c_{x} the number and the sum of elements in the conjugate class of G containing the element x of G, respectively.

Lemma 1. $u=\Sigma_{c_{x}}\left(1 / g_{x}\right) c_{x} c_{x^{-1}}$ is a unit in C.
Proof. We first prove that $\left\{\left(1 / g_{x}\right) c_{x}\right\}$ and $\left\{c_{x^{-1}}\right\}$ form a dual base of C over k. Let $c_{y} c_{x}=\Sigma_{c_{2}} c_{z} a_{z x}$ where $a_{z x}$ are integers. This means that each $z_{k}\left(1 \leqq k \leqq g_{z}\right)$ conjugated to z, appears in $c_{y} c_{x} a_{z x}$ times, that is, for fixed k, the number of pairs (i, j) such that $y_{i} x_{j}=z_{k}\left(1 \leqq i \leqq g_{y}, 1 \leqq j \leqq g_{x}\right)$ is equal to $a_{z x}$. So, the number of terms $x_{j}^{-1}=z_{k}^{-1} y_{i}\left(1 \leqq j \leqq g_{x}\right)$ is $a_{z x} g_{z}$ in $c_{z^{-1}} c_{y}$ and $c_{z-1} c_{y}=\cdots+\left(a_{z x} g_{z} / g_{x}\right) c_{x^{-1}}+\cdots$. This proves that $\left(\left(1 / g_{z}\right) c_{z^{-1}}\right) c_{y}=\sum c_{x-1} a_{z x}$ $\left(\left(1 / g_{x}\right) c_{x-1}\right)$ or equivalently $\left\{\left(1 / g_{x}\right) c_{x}\right\}$ and $\left\{c_{x^{-1}}\right\}$ form a dual base of C over k. Now C is a separable k-algebra in the sense of that, for any field extension L of k, C_{L} is a semisimple L-algebra. Then $u=\Sigma_{c_{x}}\left(1 / g_{x}\right) c_{x} c_{x^{-1}}$ is a unit in C by Theorem 71. 6 in [2] p. 482.

Let v be the inverse of u in $C, u v=1$.
Corollary 2. $\Sigma_{c_{x}}\left(1 / g_{x}\right) c_{x} \otimes c_{x-1} v$ is a separability idempotent in $C \otimes_{k} C$.
Proof. It is clear that $c\left(\Sigma\left(1 / g_{x}\right) c_{x} \otimes c_{x^{-1}} v\right)=\left(\Sigma\left(1 / g_{x}\right) c_{x} \otimes c_{x^{-1}} v\right) c$ for any $c \in C$ and $\Sigma\left(1 / g_{x}\right) c_{x} c_{x-1} v=1$.

Let p be the map of $k[G]$ to C defined by $p(a)=(1 / n) \Sigma_{x \in G} x a x^{-1}$ for $a \in k[G]$, where n is the order of G. The map p is the projection of $k[G]$ to C. Then p is an element of $\operatorname{Hom}_{C}(k[G], C)$ which has a left $k[G]$-module structure in the usual way.

[^0]Corollary 3. $\{x \cdot p\}$ and $\left\{x^{-1} v\right\}(x \in G)$ form a projective base of $k[G]$ over C.
Proof. For the identity 1 of G, we have

$$
\Sigma_{x \in G}(x \cdot p)(1) x^{-1} v=\Sigma_{x \in G} p(x) x^{-1} v=\Sigma_{x \in G}\left(1 / g_{x}\right) c_{x} x^{-1} v=\Sigma_{c_{x}}\left(1 / g_{x}\right) c_{x} c_{x-1} v=1 .
$$

Now, for any $y \in G$, we have

$$
\Sigma_{x \in G}(x \cdot p)(y) x^{-1} v=\Sigma_{x \in G} p(y x) x^{-1} v=\Sigma_{x \in G} p(y x)(y x)^{-1} v y=y .
$$

Now consider the two-sided $k[G]$-module $k[G] \otimes_{C} k[G]$. Then, for each $x \in G$, the element $(1 / n) \sum_{y \in G} y \otimes x y^{-1}$ is in

$$
\left(k[G] \otimes_{c} k[G]\right)^{\mu[G]}=\left\{\xi \in k[G] \otimes_{C} k[G] \mid a \xi=\xi a, \text { for all } a \in k[G]\right\} .
$$

Therefore the map f_{x} for $x \in G$, which assigns to each $a \in \mathrm{k}[G]$ the element $\left((1 / n) \Sigma_{y \in G} y\right.$ $\left.\otimes x y^{-1}\right) a$ defines a two-sided $k[G]$-homomorphism of $k[G]$ to $k[G] \otimes_{C} k[G]$. The map l_{x} for $x \in G$, which assigns to $\Sigma_{i} a_{i} \otimes b_{i}$ in $k[G] \otimes_{C} k[G] \Sigma_{i} a_{i} x^{-1} v b_{i}$ in $k[G]$, is a two-sided $k[G]$-homomorphism of $k[G] \otimes_{C} k[G]$ to $k[G]$. Then it is easily verified that $\Sigma_{x \in \mathrm{G}} f_{x} \circ_{x}$ is the identity map of $k[G] \otimes_{C} k[G]$. Thus we have proved the following corollary.

Corollary 4. $k[G] \otimes_{c} k[G]$ is a two-sided $k[G]$-direct summand of the direct sum of n-copies of $k[G]$.

If this is the case, then it holds that $k[G] \otimes_{C} k[G] \cong \operatorname{Hom}_{C}(k[G], k[G])$ and $k[G]$ is $C-$ finitely generated projective, see [3] p. 112. Therefore $k[G]$ is a central separable C algebra by Theorem 2.1 [1].

Let H be a subgroup of G and $G=\sum_{i=1}^{r} y_{i} H$ a coset decomposition of G by H. Denote by h_{x} and d_{x} the number and the sum of elements in the H-conjugate class of G containing the element x of G, respectively. Let Δ be the centralizer of $k[H]$ in $k[G]$. Then $\left\{d_{x}\right\}$ is a $k-$ base of Δ. By the same way as in Lemma 1, it can be verified that $\left\{\left(1 / h_{x}\right) d_{x}\right\}$ and $\left\{d_{x^{-1}}\right\}$ form a dual base of Δ over k. Let q be the map of Δ to C defined by $q(a)=(1 / r) \Sigma_{i} y_{i} a y_{i}^{-1}$, $a \in \Delta$. It can be shown that q does not depend on the choice of y_{i}, and q is the projection of Δ to C.

PROPOSITION 5. $\quad\left\{\left(1 / h_{x}\right) d_{x} \cdot q\right\}$ and $\left\{d_{x^{-1}} v\right\}$ form a projective base of Δ over C.
Proof. If we notice that $q\left(d_{x}\right)=\left(h_{x} / g_{x}\right) c_{x}$, the calculation is similar to the proof in Corollary 3 and we shall omit it.

Let D be the centralizer of Δ in $k[G]$. Then $D \supset k[H]$ and the centralizer of D in $k[G]$ is equal to Δ.

Proposition 6. $k[G]$ is an H-separable extension of D.
Proof. For a representative x of an H-conjugate class of G, define

$$
s_{x}: k[G] \longrightarrow k[G] \otimes_{D} k[G] \text { by } s_{x}(a)=\left((1 / r) \Sigma_{i} y_{i} \otimes\left(1 / h_{x}\right) d_{x} y_{i}^{-1}\right) a
$$

and

$$
t_{x}: k[G] \otimes_{D} k[G] \longrightarrow k[G] \text { by } t_{x}\left(\Sigma_{i} a_{i} \otimes b_{i}\right)=\sum_{i} a_{i} d_{x^{-1}} v b_{i},
$$

respectively. As $(1 / r) \Sigma_{i} y_{i} \otimes\left(1 / h_{x}\right) d_{x} y_{i}^{-1}$ is in $\left(k[G] \otimes_{D} k[G]\right)^{k[G]}$ and $d_{x^{-1}} v$ is in Δ, s_{x} and t_{x} are two-sided $k[G]$-homomorphisms, respectively. If we notice that $\Sigma_{d_{x}}\left(1 / h_{x}\right) d_{x} y_{i}^{-1} d_{x^{-1}} v$ is contained in D, it is easily verified that $\sum s_{x} t_{x}$ is the identity map of $k[G] \otimes_{D} k[G]$, where the sum is taken over all the H-conjugate classes of G. Therefore $k[G] \otimes_{D} k[G]$ is a twosided $k[G]$-direct summand of a direct sum of finite copies of $k[G]$ and $k[G]$ is an $H-$ separable extension of D.

Even if the characteristic of k divides the order of G, if the index of H in G is a unit in $k, k[G]$ is always a separable extesion of $k[H]$ by Proposition 3.1 [4]. In this case, it happens that $k[G]$ may or not be an H-separable extension of D. Let k be a field of characteristic two. Take $G=\mathrm{S}_{3}$ the symmetric group of degree three and $H=\langle(12)\rangle$. Then $G=\mathrm{H}+(13) H+(23) H$ is a coset decomposition of G by H. Put $x_{1}=(12), x_{2}=(13)+(23)$ and $y=(123)+(132)$. Then we have $\Delta=k 1+k x_{1}+k x_{2}+k y$ and $D=k[G]^{4}=\mathrm{D}$. The projection q of Δ to C is given by $q(a)=(1 / 3)(1 \cdot a \cdot 1+(13) a(13)+(23) a(23))$ for $a \in \Delta$. Then $\left\{q, x_{2} \cdot q\right.$, $y \cdot q\}$ and $\left\{1+y, x_{2}, 1\right\}$ form a projective base of Δ over C. Define maps $s_{i}: k[G] \rightarrow k[G]$ $\otimes_{D} k[G](i=1,2,3) \quad$ by $\quad s_{1}(a)=(1 / 3)(1 \otimes 1+(13) \otimes(13)+(23) \otimes(23)) a, s_{2}(a)=(1 / 3)$ $\left(1 \otimes x_{2}+(13) \otimes x_{2}(13)+(23) \otimes x_{2}(23)\right) a$ and $s_{3}(a)=(1 / 3)(1 \otimes y+(13) \otimes y(13)+(23) \otimes y(23)) a$, respectively. Also define maps $t_{i}: k[G] \otimes_{D} k[G] \rightarrow k[G](i=1,2,3)$ by $t_{1}\left(\Sigma a_{i} \otimes b_{i}\right)=\Sigma$ $a_{i}(1+y) b_{i}, t_{2}\left(\Sigma a_{i} \otimes b_{i}\right)=\Sigma a_{i} x_{2} b_{i}$ and $t_{3}\left(\sum a_{i} \otimes b_{i}\right)=\Sigma a_{i} b_{i}$, respectively. Then $\Sigma_{i=1}^{3} s_{i} t_{i} t_{i}$ the identity map of $k[G] \otimes_{D} k[G]$ and $k[G]$ is an H-separable extension of D. Next, take $G=\mathrm{S}_{4}$ and $H=\langle(13),(1234)\rangle$. Then the center C of $k[G]$ is a local ring of dimension five over k. On the other hand we can see easily that Δ is eight dimensional over k. Therefore Δ is not C-projective and $k[G]$ is not an H-separable extension of D.

References

[1] Auslander, M. and Goldman, O., The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960) 367-409.
[2] Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, Wiley (Interscience), New York, 1962.
[3] Hirata, K., Some types of separable extensions of rings, Nagoya Math. J. 33 (1968) 107-115.
[4] Hirata, K. and Sugano, K., On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan 18 (1966) 360-373.

Department of Mathematics
Faculty of Science
Chiba University
Yayoi-cho, Chiba-city
260 Japan

[^0]: Received February 8, 1986.

