GAPS BETWEEN COMPACTNESS DEGREE AND COMPACTNESS DEFICIENCY FOR TYCHONOFF SPACES

By

Takashi KIMURA

1. Introduction.

In this paper we assume that all spaces are Tychonoff. For a space X, dim X denotes the Čech-Lebesgue dimension of X (see [3]).

J. de Groot proved that a separable metrizable space X has a metrizable compactification αX with dim $(\alpha X \setminus X) \leq 0$ iff X is rim-compact (see [4]). A space X is *rim-compact* if each point of X has arbitrarily small neighborhoods with compact boundary. Modified the concept of rim-compactness, he defined the *compactness degree* of a space X, cmp X, inductively, as follows.

A space X satisfies cmp X = -1 iff X is compact. If n is a non-negative integer, then cmp $X \le n$ means that each point of X has arbitrarily small neighborhoods U with cmp Bd $U \le n-1$. We put cmp X = n if cmp $X \le n$ and cmp $X \le n-1$. If there is no integer n for which cmp $X \le n$, then we put cmp $X = \infty$.

By the compactness deficiency of a Tychonoff space (resp. a separable metrizable space) X we mean the least integer n such that X has a compactification (resp. a metrizable compactification) αX with dim $(\alpha X \setminus X) = n$. We denote this integer by def^{*} X (resp. def X). We allow n to be ∞ .

Thus, with this terminology, J. de Groot's result above asserts that $\operatorname{cmp} X \leq 0$ iff def $X \leq 0$ for every separable metrizable space X. The general problem whether $\operatorname{cmp} X \leq n$ iff def $X \leq n$ for arbitrary separable metrizable space X has been known as J. de Groot's conjecture, and was unsolved for a long time.

However, in 1982 R. Pol [7] constructed a separable metrizable space X such that $\operatorname{cmp} X=1$ and def X=2. In the class of separable metrizable spaces, another example X with the property that $\operatorname{cmp} X\neq \operatorname{def} X$ seems to be still unknown but Pol's example above.

On the other hand, in the class of Tychonoff spaces, M. G. Charalambous [1] has already constructed a space X such that $\operatorname{cmp} X=0$ and $\operatorname{def}^* X=n$ for each $n=1, 2, \dots, \infty$. J. van Mill [6] has constructed a Lindelöf space X such that $\operatorname{cmp} X=1$ and $\operatorname{def}^* X=\infty$.

In this paper we construct a countably compact space X such that $\operatorname{cmp} X = m$ and

Received September 17, 1985.

def^{*} X = n for $m, n \in \mathbb{N} \cup \{\infty\}$ with m < n.

2. Lemmas and the main result.

We begin with the following inductive conception, which is closely related to $\operatorname{cmp} X$.

DEFINITION 2.1. For a subset A of a space X we define

ind (A, X) = -1 iff A is empty, ind $(A, X) \le n$ iff each point of A has arbitrarily small neighborhoods U in X with ind $(Bd_X U \cap A, X) \le n-1$, ind (A, X) = n iff ind $(A, X) \le n$ and ind $(A, X) \le n-1$, ind $(A, X) = \infty$ iff ind $(A, X) \le n$ for all n.

The following lemma readily follows from induction.

LEMMA 2.2. For a closed subset A of a space $X \operatorname{cmp} A \leq \operatorname{cmp} X$.

LEMMA 2.3. Let $A \subset B \subset X \subset Y$. Then

(1) ind $(A, X) \leq \text{ind} (B, X)$,

(2) ind $(A, X) \leq \text{ind} (A, Y)$.

PROOF. (1) is easy by induction.

(2). We proceed by induction on ind (A, Y) = n. Obviously, (2) holds for n = -1. Let $n \ge 0$ and assume that (2) holds for every k with k < n. Suppose that ind (A, Y) = n. For each $x \in A$ and each neighborhood U of x in X there are neighborhoods U' and V' of x in Y such that $U = U' \cap X$, $V' \subset U'$ and ind $(Bd_Y V' \cap A, Y) \le n-1$. Let $V = V' \cap X$. The induction hypothesis implies that ind $(Bd_Y V' \cap A, X) \le ind (Bd_Y V' \cap A, Y) \le n-1$. Since $Bd_X V \cap A \subset Bd_Y V' \cap A$, by (1), we have ind $(Bd_X V \cap A, X) \le n-1$. Hence we have ind $(A, X) \le n$, therefore ind $(A, X) \le ind (A, Y)$.

For every space X we set $R(X) = \{x \in X | x \text{ has no neighborhood with compact closure} \}$.

LEMMA 2.4. For every space X we have cmp $X \leq ind(R(X), X) + 1$.

PROOF. We shall apply induction with respect to ind (R(X), X) = n. Obviously, the lemma holds for n = -1. Let $n \ge 0$ and assume that the lemma holds for every k with k < n. Suppose that ind (R(X), X) = n. We shall prove that cmp $X \le n+1$. To prove this, we only consider points of R(X), because $X \setminus R(X)$ is locally compact and open in X. Let $x \in R(X)$ and U a neighborhood of x in X. Then we take a neighborhood V of x in X such that $V \subset U$ and ind $(Bd_X V \cap R(X), X) \le n-1$. Since $R(Bd_X V) \subset Bd_X V \cap R(X)$, by lemma 2.3, we have ind $(R(Bd_X V), Bd_X V) \le ind (Bd_X V \cap R(X), X) \le n-1$. By induction hypothesis, we have cmp $Bd_X V \le n$. Hence we have cmp $X \le n+1$.

264

Gaps Between Compactness Degree and Compactness Deficiency for Tychonoff Spaces 265

As usual, an ordinal α is the space of all ordinals less than α with order topology. For each ordinal α we denote by $[0, \alpha]$ the long segment for α . That is, $[0, \alpha] = (\alpha \times [0, 1))$ $\cup \{\alpha\}$ as the set, where [0, 1) is the half-open unit interval, with order topology with respect to an order < as follows; for (β, t) , $(\gamma, s) \in \alpha \times [0, 1)$ $(\beta, t) < (\gamma, s)$ iff $(\beta < \gamma)$ or $(\beta = \gamma \text{ and } t < s)$ and for all $(\beta, t) \in \alpha \times [0, 1)$ $(\beta, t) < \alpha$.

Then the space $[0, \alpha]$ is compact and connected. For ordinals α_i , $1 \le i \le n$, we have dim $\prod_{i=1}^{n} [0, \alpha_i] = \text{ind } \prod_{i=1}^{n} [0, \alpha_i] = n$. For any points β , $\gamma \in [0, \alpha]$ with $\beta < \gamma$ we define $[\beta, \gamma]$ = { $\delta \in [0, \alpha] | \beta \le \delta \le \gamma$ }. Similarly, we define $[\beta, \gamma), (\beta, \gamma]$ and (β, γ) .

LEMMA. 2.5. Let $m \ge 1$ and $Y_m = (\omega_1 \times [0, \omega_1]^{m+1}) \cup (\{(\omega_1, \omega_1, \omega_1)\} \times [0, \omega_1]^{m-1})$ be the subspace of $(\omega_1 + 1) \times [0, \omega_1]^{m+1}$. Then cmp $Y_m = m$.

PROOF. Since $R(Y_m) = \{(\omega_1, \omega_1, \omega_1)\} \times [0, \omega_1]^{m-1}$, we have ind $(R(Y_m), Y_m) = m-1$. By Lemma 2.4, cmp $Y_m \le m$. Thus we only show that cmp $Y_m \ge m$. We proceed by induction on m.

Step 1. Suppose that m=1.

Let $\{y\} = R(Y_1) = \{(\omega_1, \omega_1, \omega_1)\}$ and $U = ((\omega_1 + 1) \times (1, \omega_1]^2) \cap Y_1$. Then U is a neighborhood of y in Y_1 . Assume that there is a neighborhood V of y in Y_1 such that $V \subset U$ and Bd V is compact. Let $p:(\omega_1+1) \times [0, \omega_1]^2 \rightarrow \omega_1+1$ be the projection. Then we have $p(BdV) \subset \omega_1$. Since p(BdV) is compact, we can take an ordinal $\alpha < \omega_1$ such that $p(BdV) \subset \alpha$. On the other hand, there is an ordinal $\beta < \omega_1$ such that $(\gamma, \omega_1, \omega_1) \in V$ for every γ with $\beta < \gamma < \omega_1$. Pick up an ordinal γ with max $\{\alpha, \beta\} < \gamma < \omega_1$. Then $\gamma \notin p(BdV)$, $(\gamma, 0, 0) \notin V$ and $(\gamma, \omega_1, \omega_1) \in V$. This contradicts the connectedness of $\{\gamma\} \times [0, \omega_1]^2$. Thus BdV is not compact for every neighborhood V of y in Y_1 with $V \subset U$. Hence cmp $Y_1 = 1$.

Step 2. Assume that cmp $Y_k = k$ for every k with k < m.

Let $Z = ((\omega_1 + 1) \times [0, \omega_1]^m \times [0, 1]) \cap Y_m$, $U = ((\omega_1 + 1) \times [0, \omega_1]^m \times [0, 1/2)) \cap Y_m$ and $x = (\omega_1, \omega_1, \dots, \omega_1, 0)$. Then Z is closed in Y_m and U is a neighborhood of x in Z. For each neighborhood V of x in Z with $V \subset U$ we set

$$t = \sup \{s \in [0, 1] \mid (\omega_1, \omega_1, \cdots, \omega_1, s) \in V\}.$$

Let $p: (\omega_1+1) \times [0, \omega_1]^{m+1} = (\omega_1+1) \times \prod_{i=1}^{m+1} [0, \omega_1]_i \rightarrow [0, \omega_1]_{m+1}$ be the projection and $A = p((\{(\omega_1, \omega_1, \cdots, \omega_1)\} \times [0, 1]) \cap V)$. For each $x \in (\{(\omega_1, \omega_1, \cdots, \omega_1)\} \times [0, 1]) \cap V$ we take $\alpha_{ix} < \omega_1, i = 0, 1, \cdots, m$, and an open subset U_x of [0, 1] such that $x \in V_x = ((\omega_1+1) \setminus \alpha_{0x}) \times \prod_{i=1}^{m} [\alpha_{ix}, \omega_1] \times U_x) \cap Z \subset V$. Since $(\{(\omega_1, \omega_1, \cdots, \omega_1)\} \times [0, 1]) \cap V$ is Lindelöf, we can take a countable subset $\{x(n) \mid n \in N\}$ such that $\{V_{x(n)} \mid n \in N\}$ covers $(\{(\omega_1, \omega_1, \cdots, \omega_1)\} \times [0, 1]) \cap V$. Let $\alpha_i = \sup \{\alpha_{ix(n)} \mid n \in N\}$ for each $i = 0, 1, \cdots, m$. Then $\alpha_i < \omega_1$ and $(((\omega_1+1) \setminus \alpha_0) \times \prod_{i=1}^{m} [\alpha_i, \omega_1] \times A) \cap Z \subset V$. Let $W = Z \setminus \operatorname{Cl}_Z V$. Then, similarly, we can take an ordinal $\beta_i < \omega_1$ for each $i = 0, 1, \cdots, m$ such that $(((\omega_1+1) \setminus \beta_0) \times \prod_{i=1}^{m} [\beta_i, \omega_1] \times B) \cap Z \subset W$, where $B = p(\{(\omega_1, \omega_1, \cdots, \omega_1)\} \times [0, 1]) \cap W$. Let us set $\gamma_i = \max \{\alpha_i, \beta_i\}$ for each $i = 0, 1, \cdots, m$. Then $(((\omega_1+1) \setminus \gamma_0) \times \prod_{i=1}^{m} [\gamma_i, \omega_1] \times \{t\}) \cap Z$ is homeomorphic to

 Y_{m-1} and contained in $\operatorname{Bd}_Z V$ as a closed subset. By Lemma 2.2, we have cmp $\operatorname{Bd}_Z V \ge m-1$, therefore cmp $Y_m \ge \operatorname{cmp} Z \ge m$. Hence we have cmp $Y_m = m$. This completes the proof of Lemma 2.5.

Let $n \ge 2$ and $Z_n = \prod_{i=2}^{n+1} [0, \omega_i] \setminus \{(\omega_2, \omega_3, \dots, \omega_{n+1})\}$ be the subspace of $\prod_{i=2}^{n+1} [0, \omega_i]$. Since $\prod_{i=2}^{n+1} [0, \omega_i)$ is pseudocompact, by Glicksberg's theorem, we have $\beta \prod_{i=2}^{n+1} [0, \omega_i]$ $= \prod_{i=2}^{n+1} [0, \omega_i]$, where βY is the Stone-Čech compactification of a space Y. Thus $\beta Z_n = \prod_{i=2}^{n+1} [0, \omega_i]$. Namely, Z_n has the only compactification $\prod_{i=2}^{n+1} [0, \omega_i]$.

LEMMA. 2.6. Let X contain Z_n as a closed subset. Then for every perfect image Y of X we have dim $Y \ge n$.

PROOF. Let $f: X \to Y$ be a perfect surjection and $\beta f: \beta X \to \beta Y$ the Stone extension of f. Then $\operatorname{Cl}_{\beta X} Z_n$ is a compactification of Z_n . As described above, $\operatorname{Cl}_{\beta X} Z_n$ is homeomorphic to $\prod_{i=2}^{n+1} [0, \omega_i]$. Let $z = (\omega_2, \omega_3, \dots, \omega_{n+1})$. Then $\operatorname{Cl}_{\beta X} Z_n = Z_n \cup \{z\}$ and $z \in \beta X \setminus X$.

Claim 1. For each $i=2, 3, \dots, n+1$, there is an ordinal $\alpha_i < \omega_i$ such that $\beta f(A_i) \cap \beta f(B_i) = \phi$, where

$$A_i = \prod_{j=2}^{i-1} [\alpha_j, \omega_j] \times \{\alpha_i\} \times \prod_{j=i+1}^{n+1} [\alpha_j, \omega_j]$$

and

$$B_i = \prod_{j=2}^{i-1} [\alpha_j, \omega_j] \times \{\omega_i\} \times \prod_{j=i+1}^{n+1} [\alpha_j, \omega_j].$$

Proof of Claim 1. Since f is perfect, $\beta f(z) \notin \beta f(Z_n)$ (see [3, 3.7.15]). Thus for each $\alpha < \omega_j$ we take an ordinal $\alpha_i^j(\alpha) < \omega_i$ such that

$$\beta f\left(\prod_{i=2}^{j-1} \left[\alpha_i^j(\alpha), \omega_i\right] \times \{\alpha\} \times \prod_{i=j+1}^{n+1} \left[\alpha_i^j(\alpha), \omega_i\right]\right) \cap \beta f\left(\prod_{i=2}^{j-1} \left[\alpha_i^j(\alpha), \omega_i\right] \times \{\omega_j\} \times \prod_{i=j+1}^{n+1} \left[\alpha_i^j(\alpha), \omega_i\right]\right) = \phi.$$

Let $\alpha_i^j = \sup \{\alpha_i^j(\alpha) \mid \alpha < \omega_j\}$. If j < i, then $\alpha_i^j < \omega_i$. We define, by downward induction on *i*, an ordinal

 $\alpha_i = \max \{\alpha_i^2, \cdots, \alpha_i^{i-1}, \alpha_i^{i+1}(\alpha_{i+1}), \cdots, \alpha_i^{n+1}(\alpha_{n+1})\}.$

Then $\alpha_i < \omega_i$ for each $i=2, 3, \dots, n+1$. Since $\alpha_i \ge \alpha_i^j(\alpha_i)$, we have $\beta f(A_i) \cap \beta f(B_i) = \phi$.

Claim 2. dim $Y \ge n$.

Proof of Claim 2. Assume that dim $Y = \dim \beta Y < n$. Since $\beta f(A_i)$ and $\beta f(B_i)$ are disjoint closed subsets of βY for each $i=2, 3, \dots, n+1$, we take a partition L_i in βY between $\beta f(A_i)$ and $\beta f(B_i)$ such that $\bigcap_{i=2}^{n+1} L_i = \phi$ (cf. [2, 3.3.6]). Let $X' = \prod_{i=2}^{n+1} [\alpha_i, \omega_i]$ and $M_i = \beta f^{-1}(L_i) \cap X'$. Then M_i is a partition in X' between A_i and B_i such that $\bigcap_{i=2}^{n+1} M_i = \phi$. Since X' is compact, for each $i=2, 3, \dots, n+1$, we take a finite collection $\{\beta_i^j | 0 \le j \le m_i\}$ of ordinals such that

- (1) $\alpha_i = \beta_i^0 < \cdots < \beta_i^j < \cdots < \beta_i^{m_i} = \omega_i$
- (2) $\bigcap_{i=2}^{n+1} \operatorname{St}(M_i, \alpha) = \phi$, $\operatorname{St}(M_i, \alpha) \cap \operatorname{St}(A_i, \alpha) = \phi$ and $\operatorname{St}(M_i, \alpha) \cap \operatorname{St}(B_i, \alpha) = \phi$,

266

Gaps Between Compactness Degree and Compactness Deficiency for Tychonoff Spaces 267

where $\mathcal{A} = \{\prod_{i=2}^{n+1} [\beta_i^{j(i)-1}, \beta_i^{j(i)}] | (j(2), \dots, j(n+1)) \in \prod_{i=2}^{n+1} \{1, \dots, m_i\} \}.$

Then for each $i=2, 3, \dots, n+1$, there is a continuous mapping $f_i: [\alpha_i, \omega_i] \rightarrow [0, 1] = I_i$ such that $f_i(\beta_i^j) = j/m_i$ and $f_i([\beta_i^{j-1}, \beta_i^j]) = [(j-1)/m_i, j/m_i]$. Let $g = \prod_{i=2}^{n+1} f_i: \prod_{i=2}^{n+1} [\alpha_i, \omega_i] \rightarrow \prod_{i=2}^{n+1} I_i$ be the product mapping defined by $g((t_i)_{i=2}^{n+1}) = (f_i(t_i))_{i=2}^{n+1}$. Since St (M_i, α) is a partition in X' between A_i and B_i , there are disjint open subsets U_i and V_i of X' such that $A_i \subset U_i$, $B_i \subset V_i$ and $X' \setminus St(M_i, \alpha) = U_i \cup V_i$. Let $K_i^j = I_2 \times \cdots \times I_{i-1} \times \{j\} \times I_{i+1} \times \cdots \times I_{n+1}$ for each $i=2, 3, \dots, n+1$ and each j=0, 1. Let $N_i = g(X' \setminus U_i) \cap g(X' \setminus V_i)$ for each $i=2, 3, \dots, n+1$. Then N_i is a partition in $\prod_{i=2}^{n+1} I_i$ between K_i^0 and K_i^1 , and $\bigcap_{i=2}^{n+1} N_i = \phi$. This is a contradiction (cf. [2, 1.8.1]).

Now we construct a space, which is mentioned in the introduction.

EXAMPLE. 2.7. For $m, n \in \mathbb{N} \cup \{\infty\}$ with m < n there exists a countably compact space X such that cmp X=m and def^{*}X=n.

Case 1. $n \in N$.

Let $X = (\omega_1 \times \prod_{i=2}^{n+1} [0, \omega_i]) \cup (\{(\omega_1, \omega_1, \omega_1)\} \times [0, \omega_1]^{m-1} \times \{(\omega_1, \omega_1, \cdots, \omega_1)\}) \cup \{(\omega_1, \omega_2, \cdots, \omega_{n+1})\}$ be the subspace of $(\omega_1 + 1) \times \prod_{i=2}^{n+1} [0, \omega_i]$.

It is easy to see that X is countably compact.

Since $R(X) = (\{(\omega_1, \omega_1, \omega_1)\} \times [0, \omega_1]^{m-1} \times \{(\omega_1, \omega_1, \cdots, \omega_1)\}) \cup \{(\omega_1, \omega_2, \cdots, \omega_{n+1})\},\$ we have ind (R(X), X) = m-1. By Lemma 2.4, we have cmp $X \le m$. Since X contains Y_m as a closed subspace, by Lemmas 2.2 and 2.5 we have cmp $X \ge m$. Hence cmp X = m.

Next, since $\beta X = (\omega_1 + 1) \times \prod_{i=2}^{n+1} [0, \omega_i]$, we have dim $(\beta X \setminus X) = n$. Thus def $*X \le n$. For each compactification αX of X there is a parfect surjection $f:\beta X \setminus X \to \alpha X \setminus X$, and $\beta X \setminus X$ contains a closed subset homeomorphic to Z_n . Thus, by Lemma 2.6, we have dim $(\alpha X \setminus X) \ge n$. Hence def *X = n.

Case 2. $n = \infty$.

Let $X = (\omega_1 \times \prod_{i=2}^{\infty} [0, \omega_i]) \cup (\{(\omega_1, \omega_1, \omega_1)\} \times [0, \omega_i]^{m-1} \times \{(\omega_1, \omega_1, \cdots)\}) \cup \{(\omega_1, \omega_2, \cdots)\}$ be the subspace of $(\omega_1 + 1) \times \prod_{i=2}^{\infty} [0, \omega_i]$. Then, similarly, X is countably compact, cmp X = m and def X = n.

3. Statements.

We define Cmp X of a space X by the following; Cmp X=0 if cmp $X\leq 0$, and for $n\geq 1$, Cmp $X\leq n$ if each closed subset of X has arbitrarily small neighborhoods U with Cmp Bd U $\leq n-1$. Cmp X was defined by J. de Groot for the case X is separable and metrizable.

It can be prove that cmp $X \le \text{Cmp } X$ for every space X and cmp $X \le \text{Cmp } X \le \text{def } X$ for every separable metrizable space X (see [4]). For Pol's example X in [7] shows that cmp X =1 and Cmp X=def X=2. Thus it is unknown whether there is a separable metrizable space X with Cmp X<def X. It would be interesting to have a separable metrizable space X such that cmp X=k, Cmp X=m and def X=n for k, m, $n \in N \cup \{\infty\}$ with $k \le m \le n$.

Obviously, def $X \le def X$ for every separable metrizable space X. We do not know whether there is a separable metrizable space X with def $X \le def X$ as well as the value of def X for Pol's example X in [7].

In Example 2.7 we have constructed a space X with cmp X=m and def *X=n for m, $n \in N \cup \{\infty\}$ with m < n. However, in general, cmp X need not be less than or equal to def *X [5, VII.25]. It would be interesting to have a space X such that cmp X=k, Cmp X=m and def *X=n for k, m, $n \in N \cup \{\infty\}$ with $k \le m$.

Added in proof. The author constructed a separable metrizable space X such that def $X - \operatorname{com} X = n$ for each $n \in N$. Thus in the class of separable metrizable spaces the gap between cmp X and def X can be arbitrarily large.

References

- [1] Charalambous, M. G., Spaces with increment of dimension n, Fund Math. 93 (1976) 97-107.
- [2] Engelking, R., Dimension Theory, PWN, Warszawa, 1978.
- [3] Engelking, R., General Topology, PWN, Warszawa, 1977.
- [4] de Groot, J. and Nishiura, T., Inductive compactness as a generalization of semicompactness, Fund. Math. 58 (1966) 201-218.
- [5] Isbell, J. R., Uniform Spaces, Mathematical Surveys, No. 12 AMS, Providence, 1964.
- [6] van Mill, J., Inductive Cech completeness and dimension, Comp. Math. 45 (1982) 145-153.
- [7] Pol, R., A counterexample to J. de Groot's conjecture cmp=def, Bull. Acad. Polon. Sci. 30 (1982) 461-464.

Institute of Mathematics University of Tsukuba Ibaraki, 305, Japan