
TSUKUBA J. MATH.
Vol. 10 No. 2 (1986). 199-214
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A noetherian ring is called l-Gorenstein if it has the self-injective dimension at most
one on both sides. A well known example of artinian QF-3, l-Gorenstein rings is the
triangular matrix ring over a QF ring, which is QF-2, that is, every indecomposable projec-
tive module has the simple socle. Conversely Sumioka [11] characterized such a ring as an
artinian QF-3, l-Gorenstein ring with QF maximal quotient ring. But an artinian QF-3, 1-
Gorenstein ring has not necessarily the QF maximal quotient ring (see \S 4). On the other
hand, Sumioka’s result is a generalization of Harada’s characterization of artinian QF-3
hereditary rings, which states that a connected artinian ring is QF-3 hereditary if and only
if it is Morita equivalent to a triangular matrix ring over a division ring (cf. [3]). Our
results in the present paper are closely related to their results mentioned above.

First we shall deal with artinian QF-3 hereditary rings, which were investigated by
Harada [3] and Iwanaga [4]. Our result is as follows.

THEOREM I. Let\Lambda be a connected artinian ring which is not a QF ring. Then the follow-
ing conditions for \Lambda are equivalent.

(1) \Lambda is a QF-3 hereditary ring.
(2) \Lambda is Morita equivalent to a triangular matrix ring over a division ring.
(3) \Lambda is a (left and right) serial l-Gorenstein ring.
(4) \Lambda is a QF-3, l-Gorenstein ring with a simple projective left module.
(5) \Lambda is a QF-3, l-Gorenstein ring with a simple injective left module.

Next we shall deal with the following problem:
t*) To investigate the length of the socle of an indecomposable projective module

over an artinian QF-3, l-Gorenstein ring.
It is well known that every indecomposable projective module over \Lambda is distributive in

the sense of [1] if \Lambda is a representation-finite algebra over an algebraically closed field (cf.

[6]). So it seems that it is worth studying artinian QF-3, l-Gorenstein rings over which
every indecomposable projective module is distributive. Our answer to the problem (*) is
given by the following theorem.
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THEOREM II. Let $\Lambda$ be an artinian QF-3, l-Gorenstein ring, and $P$ an indecomposable
projective $\Lambda$ -moduk. If $P$ is distributive, then soc $(P)|\leqq 2$ . In pantcular if soc $(P)|=2$ ,
then $P$ has the smalkst loose waist $X$ such that top $(X)\cong soc(E(P)/P)$ .

Here a submodule $X$ of a module $P$ is called a loose waist if $X$ satisfies the following
properties:

(i) $X$ is local and essential in $P$.
(ii) If a submodule $Y$ of $P$ is local and essential in $P$, then either $Y\subset X$ or $X\subset Y$ holds.
Note that we do not assume that $X$ is non-trivial. By definition a local waist is a loose

waist, but the converse does not hold even under the assumption of Theorem II (see \S 4).
Moreover we shall constmct a QF-3, l-Gorenstein algebra with a non-distributive indecom-
posable module $P$ such that soc $(P)|=3$ (see \S 4).

The proof of Theorem I will be given in \S 2. Theorem II will be deduced from a more
general result which will be shown in \S 3. The final section \S 4 is devoted to some examples.
In particular we shall construct examples of QF-3, l-Gorenstein algebras whose maximal
quotient rings have the self-injective dimensions equal to any given $m$ for $ 2\leqq m\leqq\infty$ .

Throughout the present paper, a ring means an artinian ring with identity whose
radical is denoted by $N$, modules are always unitary, and an algebra means a finite dimen-
sional algebra over a field unless otherwise specified. For a module $M$, we shall denote the
injective hull of $M$ by $E(M)$ , the socle of $M$ by soc $(M)$ and the top of $M$ by top $(M)$ .

\S 1. Preliminaries

In the present section we shall give general remarks which will be used in the follow-
ing sections.

The following was obtained by Iwanaga [4, Theorem 1] and Sumioka [12, Theorem 5].

LEMMA 1.1. Let $\Lambda$ be an artinian ring. Then the following conditions are equivalent.
(1) $\Lambda$ is QF-3 and l-Gorenstein.
(2) $E(A\Lambda)$ is $pr\dot{qe}ctive$ and $ Et_{A}\Lambda$ ) $\oplus[E(A\Lambda)/\Lambda]$ is an injective cogenerator.

LEMMA 1.2. $ L\ell t\Lambda$ be an artinian QF-3, l-Gorenstein ring, andPan indecomposable pro-
jective non-injective $\Lambda$ -moduk. Then $E(P)/P$ is an $ind\ell composabk$ injective non-projective $\Lambda-$

moduk, and the canonical $su\dot{\eta e}ction:E(P)\rightarrow E(P)/P$ is the projective cover.

PROOF. See [13, Lemma 8.1] and recall the definition of l-Gorenstein rings.

Let $\Lambda$ be an artinian QF-3, l-Gorenstein ring, and $\{P_{1}, \cdots, P_{n}\}$ a complete set of non-
isomorphic indecomposable projective left $\Lambda$ -modules. Let $S_{i}=top(P_{j})$ , and $I=\{1, \cdots, n\}$ .
We can define a map $\sigma=\sigma_{\Lambda}$ of $I$ into $I$ as follows:

If $P_{i}$ is injective, then $\sigma(i)=j$ where $S_{j}\cong soc(P_{j})$ .
If $P_{j}$ is non-injective, then $\sigma(i)=j$ where $S_{j}\cong soc(E(P_{i})/P_{i})$ .
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The following lemma will play an important role in \S 2.

LEMMA 1.3. The map $\sigma_{\Lambda}$ is a permutation for any artinian QF-3, l-Gorenstein ring $\Lambda$ .

PROOF. Let $I^{\prime}=\{i\in I|P_{i}=E(P_{i})\}$ and $I^{\prime\prime}=I-I^{\prime}$ . By Lemma 1.2 we have $E(S_{\sigma(i)})$

$\cong E(P_{i})/P_{i}$ for $i\in I^{\prime\prime}$ . If $\sigma(i)\in\sigma(I^{\prime})\cap\sigma(I^{\prime\prime})$ , then $E(S_{\sigma\langle i)})$ is projective and we have a
decomposition $E(P_{i})\cong E(S_{\sigma(i)})\oplus P_{i}$ , which is impossible. Therefore we see $\sigma(I^{\prime})\cap\sigma(I^{\prime\prime})$

$=\phi$ . In order to show our statement, it is sufficient to verify that the restriction maps $\sigma|I^{\prime}$

and $\sigma|I^{\prime\prime}$ are injections. The verification for $\sigma|\Gamma$ is trivial. By Lemma 1.2 it is clear that
$\sigma|I^{\prime\prime}$ is an injection.

In the following sections we shall encounter the following type of exact sequences:

$t*)$
$0\rightarrow P\underline{\lambda}G_{1}\oplus\cdots\oplus G_{n}\rightarrow^{\pi}L\rightarrow 0$

So we shall let the following notation for the above sequence and we shall keep it
throughout the present paper. Let $\lambda_{i}:P\rightarrow G_{i}$ be the composite map of $\lambda$ and the canonical
projection: $G_{1}\oplus\cdots\oplus G_{n}\rightarrow G_{i}$ , and let $\pi_{i}:G_{j}\rightarrow L$ be the composite map of $\pi$ and the
canonical inclusion: $G_{i}\rightarrow G_{1}\oplus\cdots\oplus G_{n}$ . Furthermore let $\psi_{l}=\lambda_{i}\pi_{i}:P\rightarrow L$ , and $W(P)=$

$\bigcap_{i=1}^{n}Ker(\psi_{i})$ .

DEFINITION 1.4. We call $W(P)$ the negligible submodule of $P$ with respect to the ex-
act sequence $t*$ ).

The following is a key lemma for the proofs of Theorem I and Theorem II.

PROPOSITION 1.5. Let $\Lambda$ be an artinian ring. Consider the following exact sequence of
nonzero finitely genemted $\Lambda$ -modules.

$t*)$
$0\rightarrow P\rightarrow^{\lambda}G_{1}\oplus\cdots\oplus G_{n}\rightarrow^{\pi}L\rightarrow 0$

where $n\geqq 2$ and $\lambda$ is an essential monomorphism. Assume that $P$ is local and $L$ is colocal.
Let $S=soc(L)$ , and $V=\bigcap_{i=1}^{n}(S\psi_{i^{-1}})$ . Then the following statements hold.

(i) soc $(P/W)=V/W\cong S^{(\mu)}$ for some $\mu\geqq 1$ .
(ii) The sequence $(*)$ induces the following exact sequence.

$0\rightarrow V/W\rightarrow(V\lambda_{1}/W\lambda_{1})\oplus\cdots\oplus(V\lambda_{n}/W\lambda_{n})\rightarrow S\rightarrow 0$

Here we let $W=W(P)$ .

PROOF. Let $W_{i}=W\lambda_{j},$ $V_{i}=V\lambda_{i},\tilde{W}=\Sigma_{i=1}^{n}\oplus W_{i}$ and $\tilde{V}=\Sigma_{i=1}^{n}\oplus V_{i}$ . Since $P$ is local and
$\lambda$ is an essential monomorphism, we have immediately,

(1) $\psi_{i}\neq 0$ for each $i$ .
By the definition of $W$ and $V$, we have easily,
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(2) $ W\lambda=\tilde{W}=\tilde{W}\cap V\lambda=\tilde{W}\cap P\lambda$ ,

(3) $ V\lambda=\tilde{V}\cap P\lambda$ .
We have the epimorphism $\overline{\pi}=(\overline{\pi}_{j})$ which makes the following diagram commutative.

$G_{1}\oplus\cdots\oplus G_{n}$ $L$
$\underline{\pi}$

can. $\backslash \searrow$ $\nearrow$ $\overline{\pi}$

$(G_{1}/W_{1})\oplus\cdots\oplus(G_{n}/W_{n})$

Here can. means the canonical surjection. By (2) we have the exact sequence below.

$0\rightarrow P/W\rightarrow^{\lambda\overline}(G_{1}/W_{1})\oplus\cdots\oplus(G_{n}/W_{n})\rightarrow^{\pi^{\overline}}L\rightarrow 0$

Let $\overline{\pi}^{\prime}:\tilde{V}/\tilde{W}\rightarrow L$ be the restriction map of $\overline{\pi}$ . By the definition of $V$ and by the assumption
for $L$ , we have $NV_{t}\subset W_{i}$ for each $i$ where $N$ denotes the radical of $\Lambda$ . It follows from (1)

that $(V_{l}/W_{i})\overline{\pi}_{i}=S$ for some $i$ . Therefore $\overline{\pi}^{r}:\tilde{V}/\tilde{W}\rightarrow S$ is an epimorphism. By (2) and (3) we
see $Ker(\overline{\pi}^{\prime})=(P\lambda\cap\tilde{V})/\tilde{W}=V\lambda/W\lambda$ . This shows our statement (ii).

It remains to show (i). Since $L$ is colocal and $S=soc(L)$ , we have $0\neq V/W=$

soc $(P/W)$ by (1). Let $\overline{\lambda}=(\overline{\lambda}_{i})$ . Then we have the following commutative diagram for each
$i$ .

$\lambda_{i}$
$\pi_{i}$

$ P_{p}\downarrow\rightarrow$ $ G_{\beta;}\downarrow^{i}\rightarrow L\Vert$

$P/W\rightarrow G_{i}/W_{i}\overline{\lambda}_{i}\rightarrow L\overline{\pi}_{i}$

Here $\rho$ and $\beta$; are the canonical surjections. Suppose that $V/W$ contains a simple sub-
module $S^{\prime}$ with $S^{\prime}\not\cong S$ . Let $X=S^{\prime}\rho^{-I}$ . Then $0=S^{\prime}\overline{\lambda}_{i}\overline{\pi}_{i}=X\lambda_{j}\pi_{i}=X\psi_{i}$ for each $i$ . This shows
$X\subset W$ and hence $S^{\prime}=0$ , which is impossible. Thus we have just proved our statement (i).

\S 2. Proof of Theorem I

In the present section we shall give the proof of Theorem I stated in the introduction.
Now Harada [3] established the equivalence of the conditions (1) and (2) in Theorem I.

Iwanaga [4] proved the condition (3) implies the condition (1). Thus the conditions (1), (2)

and (3) are equivalent. It is trivial that the condition (1) implies the conditions (4) and (5).

Therefore we have only to show the implications (5) $\Rightarrow(4)$ and (4) $\Rightarrow(1)$ . In the remainder of
the present section we assume that $\Lambda$ is a connected basic artinian ring which is QF-3 and
l-Gorenstein, and we denote the radical of $\Lambda$ by $N$.

From Lemma 2.1 up to Lemma 2.4 we assume moreover that $\Lambda$ has a simple injective
left module $I_{1}=S_{1}$ .

LEMMA 2.1. Let $P_{1}\rightarrow I_{1}\rightarrow 0$ be the projective cover. Then we have $Hom_{\Lambda}(P_{1}, Q)=0$ for
any $ind\ell composabk$ projective left module $Q$ which is not isomorphic to $P_{1}$ .
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PROOF. Obvious.

LEMMA 2.2. Let I be an indecomposable direct summand of $ E(\Lambda\Lambda)/\Lambda$ , and $0\rightarrow P^{\prime}\rightarrow P(I)$

$\rightarrow I\rightarrow 0$ the projective cover. Then $P^{\prime}$ is indecomposable projective and $E(P^{\prime})=P(I)$ .

PROOF. By [5, Proposition 1], $P^{\prime}$ is projective. Since $I$ is a summand of $E(\Lambda)/\Lambda,$ $P(I)$

is a summand of $E(\Lambda)$ . Hence $P(I)$ is injective. Therefore we have $E(P^{\prime})=P(I)$ and $P^{\prime}$ is in-
decomposable by Lemma 1.2.

LEMMA 2.3. Consider the exact sequence below

$0\rightarrow S\rightarrow V\rightarrow I\rightarrow 0$

where $S$ is simple, $V$ is colocal and I is injective indecomposable. If $S$ is embedded into $L$, then $S$

is projective.

PROOF. We have the following commutative diagram with exact rows:

$ 0\rightarrow S\rightarrow$ $ V\rightarrow$ $I$ $\rightarrow 0$

$\Vert$

$|f$ $\downarrow g$

$0\rightarrow S\rightarrow E(S)\rightarrow E(S)/S\rightarrow 0$

Since $S$ is essential in $V,f$ is a monomorphism and so is $g$ . Since $\Lambda$ is QF-3, $E(S)$ is projec-
tive. It follows from [13, Lemma 8.1] that $E(S)/S$ is indecomposable. Since $I$ is injective in-
decomposable, $g$ is an isomorphism and so is $f$. Thus $V$ is projective. By [5, Proposition 1]

we conclude that $S$ is projective.

Now we define indecomposable projective modules P. and indecomposable injective
modules $I_{i}$ inductively so long as $S_{i-1}=top(P_{i-1})$ can not be embedded into $\Lambda$ , as follows.

Let $I_{1}=S_{1}=E(S_{1})$ .
For $i>1$ , we take the projective cover:

$0\rightarrow P_{i}\rightarrow P(I_{i-1})\rightarrow I_{i-1}\rightarrow 0$ .
Let $I_{i}=E(S_{i})$ where $S_{i}\cong top(P_{i})$ .

In fact, $P_{i}$ is indecomposable projective by Lemma 2.2, and hence $S_{i}$ is simple and $I_{i}$ is in-
decomposable injective. We assume that $Hom_{\Lambda}(S_{k}, \Lambda)\neq 0$ and $Hom_{\Lambda}(S_{i}, \Lambda)=0$ for each
$i<k$ . Then it follows from Lemma 1.3 that $P_{1}=P(I_{1}),$ $P_{2},$ $\cdots,$

$P_{k}$ are not isomorphic each
other, and we have $E(P_{i})=P(I_{i-1})$ by Lemma 2.2 for $2\leqq i\leqq k$ .

Next we define left modules $V_{2},$ $V_{3},$
$\cdots,$

$V_{k}$ as the pushout in the following $diagrams_{\wedge}$
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$0\rightarrow P_{i}\rightarrow P(I_{i-1})\rightarrow I_{i-1}\rightarrow 0$

can. $|$ p.o. $\downarrow$

$\Vert$

$ 0\rightarrow S_{j}\rightarrow$ $V_{i}$ $\rightarrow I_{i-1}\rightarrow 0$

Here can.: $P_{i}\rightarrow S_{i}$ is the canonical surjection.

LEMMA 2.4. In the notation above, we have $P(I_{i})=P_{1}$ for $1\leqq i<k$ , $V_{i}\cong I_{i}$ and
$I_{i}/soc(I_{i})\cong I_{i-1}$ for $2\leqq i<k$ . Moreover $V_{i}$ is uniseria $l$ for $i\leqq k$ .

PROOF. We assume that our statement holds for $1\leqq i<k-1$ . Then we have $P_{i+1}=NP_{j}$

for $j\leqq i$ by the following commutative diagram with exact rows:

$0\rightarrow P_{j+1}\rightarrow P(I_{j})\rightarrow I_{j}\rightarrow 0$

$\downarrow$

$\Vert$

$\downarrow$

$0\rightarrow P_{j}\rightarrow P(I_{j-1})\rightarrow I_{j-1}\rightarrow 0$

Therefore $V_{i+1}\cong P_{1}/NP_{i+1}$ is uniserial, and hence we have $I_{i+1}=E(V_{i+1})$ . Thus the epimor-
phism: $V_{i+1}\rightarrow I_{i}$ induces an epimorphism: $I_{i+1}\rightarrow I_{i}$ , and hence $P_{1}$ is isomorphic to a direct
summand of $P(I_{i+1})$ .

Suppose that $I_{i+I}$ is not local. Since $P(I_{i+1})$ is injective projective by Lemma 2.2, we
have a decomposition

$P(I_{i+1})=Q_{1}\oplus\cdots\oplus Q_{s}$ $(s\geqq 2)$

where $Q_{i}$ is indecomposable projective and $Q_{1}\cong P_{1}$ . Applying Proposition 1.5 to the exact
sequence below:

$0\rightarrow P_{i+2}\rightarrow Q_{1}\oplus\cdots\oplus Q_{s}\rightarrow I_{i+1}\rightarrow 0$ ,

we see that $S_{i+1}(=soc(I_{i+1}))$ can be embedded into $P_{i+2}/W(P_{i+2})$ where $W(P_{i+2})$ is the
negligible submodule with respect to the above exact sequence. So we have a nonzero map
$g:P_{i+I}\rightarrow P_{i+2}$ . Let $H$be the pushout of $g$ and the canonical inclusion $\kappa:P_{i+1}\rightarrow E(P_{i+1})$ . Since
$E(P_{i+1})=P(I_{i})=P_{1}$ and $E(P_{j+2})=P(I_{i+1})$ by Lemma 2.2, we have the following diagram
with exact rows.

$ 0\rightarrow$ $P_{i+1}$
$\rightarrow^{\kappa}$

$P_{1}$ $\rightarrow I_{i}$ $\rightarrow 0$

$g|$ $p.0$ . $\downarrow g^{\prime}$

$\Vert$

$ 0\rightarrow$ $P_{i+2}$ $\rightarrow$ $H$ $\rightarrow I_{i}$ $\rightarrow 0$

$\kappa^{\prime}$

$\Vert$

$1^{\rho}$ $\downarrow h$

$ 0\rightarrow$ $P_{j+2}$ $\rightarrow^{v}E(P_{i+2})\rightarrow I_{i+I}\rightarrow 0$

Since $I_{i}$ has no composition factor which is isomorphic to $S_{i+1}=soc(I_{i+1})$ , we have $h=0$ .
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Thus there exists a map $\mu:H\rightarrow P_{j+2}$ such that $\rho=\mu v$ . So we have $v=\kappa^{\prime}\mu v$ . Since $v$ is a
monomorphism, we have $\kappa^{\prime}\mu=1_{P_{\ell+2}}$ . Thus we have a decomposition $H=(P_{i+2}\kappa^{\prime})\oplus J$ where
$J\cong I_{i}$ . Then we have $Hom_{\Lambda}(P_{1}, H)\cong Hom_{\Lambda}(P_{1}, J)$ by Lemma 2.1, and hence $g\kappa^{\prime}=\kappa g^{\prime}=0$ .
Since $\kappa^{\prime}$ is a monomorphism, we see $g=0$ , which is a contradiction. Therefore $I_{i+1}$ is alocal
module.

On the other hand, $V_{i+1}\subset I_{i+1}$ induces a monomorphism: $I_{i}\cong V_{l+1}/S_{j+1}\rightarrow I_{i+1}/S_{j+1}$ . Since
$I_{i+1}/S_{i+1}$ is local, we have $I_{i}\cong I_{i+1}/S_{i+1}$ , which shows $I_{i+1}=V_{i+1}$ . Furthermore we have
$P_{1}=P(I_{i+1})$ by the fact that $I_{i+1}$ is local. It remains to show that $V_{k}$ is uniserial. We have
already shown $I_{k-1}/S_{k-1}\cong I_{k-2}$ and $P(I_{k-1})\cong P(I_{k-2})\cong P_{1}$ . Thus we have the following com-
mutative diagram with exact rows.

$0\rightarrow P_{k}$ $\rightarrow P(I_{k-1})\rightarrow I_{k-1}\rightarrow 0$

$\downarrow$

$\Vert$

$\downarrow$

$0\rightarrow P_{k-1}\rightarrow P(I_{k-2})\rightarrow I_{k-2}\rightarrow 0$

Therefore we have $P_{k}\cong NP_{k-1}$ . Since we have already shown $P_{i+1}\cong NP_{i}$ for $1\leqq i\leqq k-2$ , we
see that $V_{k}\cong P_{1}/N^{k}P_{1}$ is uniserial.

Proof of the implication (5) $\Rightarrow(4)$ .

We keep the notation in the preceding argument. Then it follows from Lemma 1.3 that
there exists an index $k>1$ such that $Hom_{\Lambda}(S_{k}, \Lambda)\neq 0$ and $Hom_{\Lambda}(S_{j}, \Lambda)=0$ for $j<k$ . By

Lemma 2.4 we have the following exact sequence:

$0\rightarrow S_{k}\rightarrow V_{k}\rightarrow I_{k-1}\rightarrow 0$

where $V_{k}$ is colocal and $I_{k-1}$ is indecomposable injective. Thus it follows from Lemma 2.3
that $S_{k}$ is projective.

Next we shall that the condition (4) implies the condition (1). So in the remainder of
the present section we assume that $\Lambda$ is an artinian basic connected QF-3, l-Gorenstein
ring with a simple projective left module $P_{1}=S_{1}$ .

Proof of the implication (4) $\Rightarrow(1)$ .

If $P_{1}$ is injective, we have $\Lambda\Lambda=P_{1}$ because $\Lambda$ is connected. So $\Lambda\cong End(P_{1})$ and it is a
division ring. Hence we can assume that $P_{1}$ is not injective.

Let $\sigma=\sigma_{\Lambda}$ be the permutation in Lemma 1.3, and let $\sigma(i)=i+1$ for $i\leqq k-2$ . Then we
assume that we have a series of uniserial projective non-injective left modules $P_{1},$ $P_{2},$ $\cdots$ ,

$P_{k-1}$ such that $NP_{i}\cong P_{i-1}$ for $2\leqq i\leqq k-1$ . Then $k-1<n$ because $\Lambda$ is QF-3 and $\Lambda$ has an in-
decomposable injective projective module, where $n$ is the number of non-isomorphic in-
decomposable projective modules. Let $k=\sigma(k-1)$ . In other words we let $ s_{k}\cong$

soc $(E(P_{k-1})/P_{k-1})$ . Then $S_{i}\not\cong S_{j}$ for $1\leqq i<j\leqq k$ by Lemma 1.3.
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We shall prove $NP_{k}\cong P_{k-1}$ , which shows that $P_{k}$ is also uniserial. Now we take the pull
back of the canonical surjection: $E(P_{k-1})\rightarrow E(P_{k-I})/P_{k-1}$ and the canonical inclusion:
$S_{k}\rightarrow E(P_{k-1})/P_{k-1}$ .

$\kappa$

$t*)$

$ 0\rightarrow P_{k-I}\Vert\rightarrow$
$ U_{k}\downarrow$

$\rightarrow$

$ S_{k}\downarrow$

$\rightarrow 0$

$0\rightarrow P_{k-1}\rightarrow E(P_{k-1})\rightarrow E(P_{k-1})/P_{k-1}\rightarrow 0$

If $U_{k}$ is not uniserial, then there exists $i,$ $2\leqq i\leqq k-1$ , such that $NP_{j}\cong P_{j-1}$ is uniserial and $P_{i}$

is not uniserial. This gives a contradiction that $E(P_{i-1})/P_{i-1}$ is not colocal. Thus $U_{k}$ is
uniserial. Take the projective cover of $U_{k}$ .

$0\rightarrow W_{k}\rightarrow P_{k}\rightarrow^{\pi}U_{k}\rightarrow 0$

Take the pull back of $\pi$ and $\kappa$ .

$0\rightarrow W_{k}\rightarrow Y\rightarrow P_{k-1}\rightarrow 0$

$(**)$
$\Vert$

$\downarrow$ $\downarrow$

$0\rightarrow W_{k}\rightarrow P_{k}\rightarrow U_{k}\rightarrow 0$

Then $P_{k}/Y\cong U_{k}/P_{k-1}\cong S_{k}$ and hence $Y\cong NP_{k}$ . Therefore $NP_{k}\cong W_{k}\oplus P_{k-1}$ . Suppose
$W_{k}\neq 0$ . Then neither $P_{k}$ nor $W_{k}$ is injective because $P_{k}$ is local. Hence $E(P_{k})/P_{k}\neq 0$ and
$E(W_{k})/W_{k}\neq 0$ . Moreover we have the following exact sequence:

$0\rightarrow P_{k}/NP_{k}\underline{(\lambda_{1},\lambda_{2})}[E(W_{k})/W_{k}]\oplus[E(P_{k-I})/P_{k-1}]\rightarrow E(P_{k})/P_{k}\rightarrow 0$ .
Since $E(P_{k})/P_{k}$ is colocal and $P_{k}/NK_{k}\cong S_{k}$ , it follows from Lemmas 1.2 and 1.3 that $\lambda_{1}=0$

and hence $S_{k}\cong E(P_{k-1})/P_{k-1}$ . In view of the diagram $t*$ ), $U_{k}\cong E(P_{k-1})$ and it is projective.
This shows $W_{k}=0$ , which is a contradiction. Thus we have $P_{k}\cong U_{k}$ , and $NP_{k}\cong P_{k-1}$ by the
definition of $U_{k}$ . Since $\Lambda$ has at least one indecomposable projective injective left module,
we have by induction a series of uniserial projective left modules $P_{I},$

$\cdots,$
$P_{k}$ with

$P_{i-1}\cong NP_{i}(2\leqq i\leqq k)$ such that $P_{1},$
$\cdots,$ $P_{k-1}$ are non-injective and $P_{k}$ is injective.

We shall show that $P_{1}\oplus\cdots\oplus P_{k}$ forms a block of $\Lambda$ . We have only to show
$Hom_{\Lambda}(P_{i}, Q)=0$ and $Hom_{\Lambda}(Q, P_{i})=0$ for any indecomposable projective module $Q$ which
is not isomorphic to $P_{j}$ for $1\leqq i\leqq k$ . Suppose that there exists a nonzero map $f:P_{i}\rightarrow Q$ . If
$Ker(f)\neq 0$ , then soc $({\rm Im}(f))\cong S_{j}$ for some $j>1$ . Since $\Lambda$ is QF-3, $E(S_{j})$ is projective. On
the other hand, we see $S_{j}=soc(E(P_{j-1})/P_{j-1})$ and hence $E(S_{j})$ is a direct summand of
$ E(\Lambda)/\Lambda$ . It is impossible by Lemma 1.3. Therefore such a map $f$ is a monomorphism. Since
we have shown $E(P_{i})=P_{k}$ , there exists a nonzero map $g$ which makes the diagram below
commutative.
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$P_{i}$
$\underline{f}Q$

$\downarrow$ $f$ $g$

$P_{k}=E(P_{i})$

Therefore we have only to show $Hom_{\Lambda}(Q, P_{i})=0$ . Suppose $Hom_{A}(Q, P_{i})\neq 0$ . Then we
have $Hom_{\Lambda}(Q, P_{k})\neq 0$ because $P_{i}$ is embedded into $P_{k}$ . Let $g$ be a nonzero map of $Q$ into $P_{k}$ .
Since every nonzero submodule of $P_{k}$ is isomorphic to some $P_{i}$ , we have $Q\cong P_{i}$ for some
$i\leqq k$ because $Q$ is indecomposable. It contradicts our assumption $Q\not\cong P_{i}$ for each $i$ .
Therefore we see that $P_{1}\oplus\cdots\oplus P_{k}$ is a block of $\Lambda$ . Since $\Lambda$ is connected, we have
$\Lambda=P_{1}\oplus\cdots\oplus P_{k}$ which shows that $\Lambda$ is left hereditary. Since $\Lambda$ is an artinian ring, $\Lambda$ is
hereditary.

\S 3. Proof of Theorem II

It follows from Lemma 1.2 that Theorem II stated in Introduction is a special case of
the following.

THEOREM II’. Let $\Lambda$ be an artinian ring. Let

$(*)$
$0\rightarrow P\rightarrow^{\lambda}G_{1}\oplus\cdots\oplus G_{n}\rightarrow^{\pi}L\rightarrow 0$

be an exact sequence of nonzero finitely generated $\Lambda$ -modules satisfying the following pro-
perties.

(i) $\lambda$ is an essential monomorphism.
(ii) $P$ is local and distributive.

(iii) $L$ is colocal.
(iv) $G_{i}$ is colocal for each $i$ .

Then we have soc $(P)|\leqq 2$ . In particular if soc $(P)|=2$ , then the following statements
hold.

(1) $P$ has the smallest loose waist $X$ so that top $(X)\cong soc(L)$ .
(2) $P/W$ is isomorphic to a submodule of $L$ where $W$ is the negligible submodule of $P$

with respect to the sequence $(*)$ .
(3) $W$ is the sum of all colocal submodules of $P$.

REMARK 3.1. As is easily seen by our proof, we have $n\leqq 2$ without the hypothesis (iv).

In this setting, however, soc $(P)|\leqq 2$ need not hold.

In the sequel we keep the above setting and denote soc $(G_{i})$ by $S_{i}$ and soc $(L)$ by $S$ . We
let $\lambda_{i},$

$\pi_{i},$ $\psi_{i},$ $W,$ $V,$ $W_{i},$ $V_{i},\tilde{W}$ and $\tilde{V}$ be the same ones in the proof of Proposition 1.5. In
order to show our statements, we can assume $n\geqq 2$ and we have only to show $n=2$ and that
our statements (1), (2) and (3) hold.
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LEMMA 3.2. $V/W=soc(P/W)\cong S$ .

PROOF. Since $P$ is distributive, we have $S\cong V/W=soc(P/W)$ by Proposition 1.5 and
[1, Theorem 1].

LEMMA 3.3. $n=2$ and $P/W$ can be embedded into $L$ .

PROOF. By Proposition 1.5, the following sequence is exact.

$0\rightarrow V/W\rightarrow^{\lambda\overline}(V_{1}/W_{1})\oplus\cdots\oplus(V_{n}/W_{n})\rightarrow^{\pi^{\overline}}S\rightarrow 0$

By Lemma 3.2 we can assume $V_{1}/W_{1}\cong V_{2}/W_{2}\cong S$ and $V_{i}/W_{i}=0$ for $i\geqq 3$ . On the other
hand we have the following commutative diagram.

$V/W\rightarrow V\lambda_{1}/W\lambda_{1}$

$\downarrow$ $|$

$P/W\rightarrow P\lambda_{1}/W\lambda_{1}$

Here the vertical maps are canonical inclusions. Hence the map: $P/W\rightarrow P\lambda_{1}/W\lambda_{1}$ is an
isomorphism. So we have $P/W\cong P\lambda_{1}/W\lambda_{1}\cong P\lambda_{2}/W\lambda_{2}$ . We define a $\Lambda$ -module $L^{\prime}$ and a $\Lambda-$

map: $L^{\prime}\rightarrow L$ in the following commutative diagram with exact rows in which $P\lambda_{j}/W\lambda_{i^{\rightarrow}}$

$G_{i}/W_{i}$ is the canonical inclusions for each $i$.

$0\rightarrow P/W\rightarrow(P\lambda_{1}/W\lambda_{1})\oplus\cdots\oplus(P\lambda_{n}/W\lambda_{n})\rightarrow L^{\prime}\rightarrow 0$

$\Vert$

$|$ $\downarrow$ $|$

$0\rightarrow P/W\underline{\overline{\lambda}}$
$(G_{1}/W_{1})\oplus\cdots\oplus$ $(G_{n}/W_{n})\underline{\overline{\pi}}L\rightarrow 0$

Then $L^{\prime}$ is nonzero because $P$ is local and $P\lambda_{i}/W\lambda_{i}\neq 0$ for $i=1,2$ , and $L^{\prime}\rightarrow L$ is a monomor-
phism. Therefore $L^{\prime}$ is colocal and soc $(L^{\prime})\cong soc(L)=S$ . Since we have

$(P\lambda_{I}/W\lambda_{1})\oplus\cdots\oplus(P\lambda_{n}/W\lambda_{n})=(P/W)\overline{\lambda}\oplus(P\lambda_{2}/W\lambda_{2})\oplus\cdots\oplus(P\lambda_{n}/W\lambda_{n})$ ,

we have $L^{\prime}\cong(P\lambda_{2}/W\lambda_{2})\oplus\cdots\oplus(P\lambda_{n}/W\lambda_{n})$ . Since $L^{\prime}$ is colocal and $P\lambda_{2}/W\lambda_{2}\cong P/W\neq 0$ ,

we have $L^{\prime}\cong P\lambda_{2}/W\lambda_{2}\cong P/W$ and $P\lambda_{i}/W\lambda_{i}=0$ for each $i\geqq 3$ . Since we have shown $\psi_{i}\neq 0$

for each $i$ in Proposition 1.5, we have $P\lambda_{j}=W\lambda_{j}=0$ for each $i\geqq 3$ . This completes the proof.

LEMMA 3.4 $W$ is the sum of all colocal submodules of P. In particula we have soc $(W)$

$=soc(V)=soc(P)$ .

PROOF. In the proof of Proposition 1.5, we have already shown that $W$ is a sum of
some colocal submodules of $P$. So we have only to show that every colocal submodule $X$ of
$P$ is contained in $W$. It is obvious that soc (X) is isomorphic to $S_{1}$ or $S_{2}$ by Lemma 3.3. Let
soc $(X)\cong S_{I}$ for instance. Since $P$ is distributive, it follows from [1, Theorem 1] that $\lambda_{i}$ :
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$X\rightarrow G_{1}$ is a monomorphism. Furthermore we have $X\lambda_{2}=0$ . For, $S_{2}\lambda^{-1}\cong S_{2}$ because $\lambda$ is an
essential monomorphism, and hence $X\lambda_{2}\neq 0$ implies $X+S_{2}\lambda^{-1}=X\oplus(S_{2}\lambda^{-1})$ in $P$, and con-
sequently we have a monomorphism

$S_{2}\oplus S_{2}\rightarrow(X\oplus(S_{2}\lambda^{-1}))/(X\cap Ker(\lambda_{2}))$ ,

which is impossible because $P$ is distributive. By the formulae $\psi_{1}+\psi_{2}=0$ and $X\lambda_{2}=0$ , we
have easily $W\supset X$.

LEMMA3.5. Take two elements $x$ and $y$ in $V$ so that $x\not\in W,$ $y\not\in W$ and top $(\Lambda x)\cong$

top $(\Lambda y)\cong S$. Then $\Lambda x=\Lambda y$ .

PROOF. Suppose $\Lambda x\neq\Lambda y$ . Then we can assume $\Lambda x\cap\Lambda y\subset Nx$ where $N$ denotes the
radical of $\Lambda$ . Since $V/W$ is simple by Lemma 3.2, we have $V=\Lambda x+W=\Lambda y+W$. Let
$x=\iota y+w$ for some $ c\in\Lambda$ and some $w\in W$. Since $P$ is distributive, we have $W\cap(\Lambda x+\Lambda y)$

$=(W\cap\Lambda x)+(W\cap\Lambda y)\subset Nx+Ny$ . Hence we have

$w=x-\alpha=-ax+by$ for some $a\in N$ and $b\in N$.

Thus we have $x+ax=by+\iota y\in\Lambda x\cap\Lambda y\subset Nx$ and hence $x\in Nx$ , which is impossible.

LEMMA 3.6. Take an element $x$ in $V$ such that top $(\Lambda x)\cong S$ and $x\not\in W.$ When $\Lambda x$ is the
smallest loose waist in $P$.

PROOF. We assume $P\subset G_{1}\oplus G_{2}$ in the following discussion. Now $x\not\in W$ implies $x\lambda_{1}\neq 0$

and $x\lambda_{2}\neq 0$ . This shows that $\Lambda x$ is essential in $P$. Take any element $y\in P$ such that $\Lambda y$ is
local and essential in $P$. We have only to show $\Lambda y\supset\Lambda x$ . Now suppose $y\psi_{1}=0$ . Then $y\in W$

because of the formula $\psi_{1}+\psi_{2}=0$ . Hence we have

$\Lambda y=\Lambda y\cap(W_{1}\oplus W_{2})=(\Lambda y\cap W_{1})\oplus(\Lambda y\cap W_{2})$ .

Since $\Lambda y$ is indecomposable, either $\Lambda y\cap W_{1}=0$ or $\Lambda y\cap W_{2}=0$ holds. But it is impossible

because $\Lambda y$ is essential in $P$. Therefore $y\psi_{1}\neq 0$ . Since $L$ has the simple socle $S$, there exists
an integer $h\geqq 0$ such that $N^{h}y\psi_{1}=S$. This shows that there exists an element a in $N^{h}$ such
that $ay\in V,$ $ay\not\in W$ and top $(\Lambda ay)\cong S$. By Lemma 3.5, we have $\Lambda x=\Lambda ay\subset\Lambda y$ .

Theorem II’ is a conclusion of the above Lemmas from 3.2 up to 3.6.

\S 4. Remarks

In the present section we shall give some remarks and examples related to our
theorems.

We have not yet had any examples of artinian left l-Gorenstein ring which is not right
l-Gorenstein, that is, an artinian ring $\Lambda$ such that $ idt_{\Lambda}\Lambda$ ) $=1$ and $ id(\Lambda_{\Lambda})=\infty$ (cf. [14, Lem-
ma $A$]). In case of artin algebras we have the following, which is easily obtained by making
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use of elementary properties of the tilting theory. (See [2] for the tilting theory.)

PROPOSITION 4.1. Let $\Lambda$ be an artin algebra over a commutative ring $R$, and $D(\Lambda)$

$=Hom_{R}(\Lambda,$ $E_{R}$ (top $(R)$ ). Then the following conditions are equivalent.
(1) $\Lambda D(\Lambda)_{\Lambda}$ is a tilting module.
(2) $id(\Lambda\Lambda)=1$ .
(3) $id(\Lambda_{\Lambda})=1$ .
Compare the above proposition with Lemma 1.1 in the present paper.
We denote a connected basic serial ring with left admissible sequence $(a_{1}, \cdots, a_{n})$ by

Ser $(a_{1}, \cdots, a_{n})$ . A similar argument as in [10] shows the following, which will be applied
in Examples 4.5 and 4.6.

PROPOSITION 4.2. Let $\Gamma=Ser(a_{1}, \cdots, a_{n})$ with the properties that $a_{1}=2\leqq a_{t}\leqq 3=a_{n}$

and $a_{i}=3$ implies $a_{i+1}=2$ . Let $\{i_{0}<i_{1}<\cdots<i_{t}\}=\{0\}\cup\{i|a_{i}=3\}$ and $ m=\max$

$\{i_{j}-i_{j-1}|1\leqq j\leqq t\}$ . Then gl. $\dim\Gamma=m$ .

PROPOSITION 4.3. For any given $m,$ $ 2\leqq m\leqq\infty$ , there exists a QF-3, l-Gorenstein algebra
with maximal quotient ring $A$ such that $idt_{A}A$ ) $=id(A_{A})=gl.\dim A=m$ .

In fact we shall construct such examples in Examples 4.5, 4.6 and 4.7. We begin with

DEFINITION 4.4. Let $Q$ be a bounden quiver. A vertex $i$ in $Q$ is called a node if $\beta\alpha=0$

for each arrow $\alpha;j\rightarrow i$ and each arrow $\beta:i\rightarrow k$ .

In the sequel let $K$ be a field, and $K(Q)$ the bounden quiver algebra over $K$ for a
bounden quiver $Q$ .

EXAMPLE 4.5. Let $Q$ be the following bounden quiver:

$\underline{\beta}$

$\underline{\alpha}$

2 1 3
$\overline{\gamma}$

$\overline{\delta}$

with the relations that the vertex 1 is a node and $\alpha\gamma=\delta\beta$ . Then $K(Q)$ is a QF-2, l-Gorens-
tein algebra whose maximal quotient ring $A$ is Morita equivalent to the ring Ser $(2, 3)$ .
Therefore gl.$\dim A=2$ by Proposition 4.2.

EXAMPLE 4.6. Let $Q$ be the following bounden quiver:
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$x$

$\alpha\nearrow$ $\backslash \gamma\searrow$

–1 $2\rightarrow 3\rightarrow\cdots\rightarrow n$ $(n\geqq 2)$

$\grave{\beta}^{\searrow}$ $\nearrow_{\delta}$

$y$

in which the vertices 1, 2, $\cdots,$ $n$ are all nodes and the commutative relation $\gamma\alpha=\delta\beta$ holds.
Then $K(Q)$ is a QF-2, l-Gorenstein algebra whose maximal quotient ring $A$ is Morita
equivalent to the ring Ser (2, 2, $\cdots$ , 2, 3) in which the term $=2$ occurs just $n$ times.
Therefore gl.$\dim A=n+1$ by Proposition 4.2.

EXAMPLE 4.7. Let $Q$ be the following bounden quiver:

1
$\nearrow^{\delta}$ $\nwarrow^{\rho}$

3 $|\alpha$ 4; $\delta\beta\alpha=\alpha\delta\beta=\gamma\alpha\delta=\beta\alpha\rho=0\delta\beta=\rho\gamma,$

.
$\beta\backslash $

$\nearrow_{\gamma}$

2

Then $K(Q)$ is a QF-3, l-Gorenstein algebra by Proposition 4.9 below, and its maximal quo-
tient ring $A$ coincides with the following bounden quiver.

1
$\delta\nearrow$

$\backslash ^{\rho}$

3 $\alpha\downarrow|\alpha^{\prime}$ 4; $\delta\alpha=\beta\alpha=\alpha^{\prime}\delta=\alpha\rho=0\delta\beta=\rho\gamma,,$

.
$\beta\backslash $ $\nearrow_{\gamma}$

2

Then it is easy to show $ id(\Lambda A)=id(AAe_{1})=\infty$ .

As is well known, a finite poset can be regarded as an ordinary quiver in a natural way.
Such a quiver is called a poset quiver in the present paper. Let $G$ be a poset. An element
$x\in G$ is said to be regular if $x$ is comparable with any element in G. 0therwise $x$ is said to be
irregular.

DEFINITION 4.8. A finite poset $G$ is said to be admissible if it satisfies the following
conditions.
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(1) For any element $x\in G$ , there exists at most one element in $G$ which is incom-
parable with $x$ .

(2) Let $\{x,y\}$ be a pair of incomparable elements in $G$ .
(2-1) There exists the least upper bound $x\cup y$ of $\{x, y\}$ , which is regular.
(2-2) If there exists the largest lower bound $x\cap y$ of $\{x, y\}$ , then it is regular. If there

does not exist $x\cap y$ , then both $x$ and $y$ are minimal elements.

PROPOSITION 4.9. Let $G$ be an admissible poset, and $\Gamma=K(G)$ . Let $T=\Gamma\ltimes D(\Gamma)$ be the
tnvial extension of $\Gamma$ by $D(\Gamma)=Hom_{K}(\Gamma, K)$ . We $kt1=1_{T}=\Sigma_{xeG}\epsilon_{X}$ , the decomposition of
identity $1_{T}$ into a sum of primitive orthogonal idempotents. Let $\Lambda=$

$T/soc(\Sigma_{x\epsilon G,x:regular}T\epsilon_{X})$ . Then the ring $\Lambda$ is a QF-3, l-Gorenstein algebra.

PROOF. We denote the canonical surjection: $ T\rightarrow\Lambda$ by $\Phi$ and let $\Phi(\epsilon_{X})=e_{x}$ . We can
view $mod (\Lambda)$ as a full subcategory of $mod (T)$ through $\Phi$ . If $x\in G$ is irregular, then $\Lambda e_{X}$ is
identified with $T\epsilon_{x}$ and hence $\Lambda\Lambda e_{x}$ is injective because $T$ is a symmetric algebra. When
$x\in G$ is regular, we let $U(x)=\{y\in G|y>x\}$ and divide the situation into the following two
cases:

(1) The case where $U(x)$ has the smallest element $y$ .
(2) The case where $U(x)$ is empty or $U(x)$ has not the smallest element.
First we consider the case (1). Then $\Lambda e_{x}$ has the simple socle which is isomorphic to

top $(\Lambda e_{y})$ . It is quite easy to show that $\Lambda e_{X}\subset E_{\Lambda}(\Lambda e_{X})\subset E_{T}(\Lambda e_{X})$ and $E_{T}(\Lambda e_{X})/\Lambda e_{\chi}$ is a simple
T-module where, for a $\Lambda$ -module $M,$ $E_{\Lambda}(M)$ or $E_{T}(M)$ is the injective hull of $M$ as $\Lambda-$

module or T-module respectively. Here $E_{T}(\Lambda e_{X})$ cannot be a $\Lambda$ -module by definition.
Therefore $\Lambda e_{\chi}=E_{\Lambda}(\Lambda e_{X})$ and hence it is an injective $\Lambda$ -module.

Next we consider the case (2). Then, by considering the convering of $\Gamma$, we can
assume $ U(x)\neq\phi$ by replacing $G$ into another admissible poset $G^{\prime}$ poset $G^{\prime}$ so that
$T=K(G^{\prime})\ltimes D(K(G^{\prime}))$ . So we can assume that $U(x)$ has two minimal elements $a$ and $b$

which are incomparable each other. By the definition of admissible posets, there exists
$c=a\cup b$ . Now we have soc $(P_{X})\cong top(P_{a})\oplus top(P_{b})$ where $P_{y}=\Lambda e_{y}$ for $y\in G$ . Since both $a$

and $b$ are irregular, we have $E(top(P_{a}))\cong P_{a}$ and $E(top(P_{b}))\cong P_{b}$ and hence $E_{\Lambda}(P_{X})$

$\cong P_{a}\oplus P_{b}$ . Combining results proved above, we see that $\Lambda$ is QF-3. On the other hand we
have immediately $P_{x}/soc(P_{a})\cong rad(P_{a})/soc(P_{a})\cong rad(E_{\Lambda}(P_{X})/P_{X})$ , which has the simple
socle isomorphic to top $(P_{c})$ . As is easily seen, $Y=E_{\Lambda}(P_{X})/P_{X}$ can be embedded into
$E_{T}(top(P_{c}))=T\epsilon_{c}$ as T-module and $T\epsilon_{c}/Y$ is a simple T-module. Since $T\epsilon_{c}$ cannot be a
$\Lambda$ -module by definition, we see that $E_{\Lambda}(P_{X})/P_{X}$ is an injective $\Lambda$ -module. Therefore $\Lambda$ is
l-Gorenstein.

Note that the algebra in Example 4.7 is obtained by means of the abobe proposition by
letting $G$ as follows.
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$G:1\rightarrow 2$ $\backslash \nearrow\searrow$ $43$

REMARK 4.10. A triangular matrix ring over a QF ring has a QF maximal quotient
ring, and we have shown in [8] that any l-Gorenstein ring which is its own maximal quo-
tient ring is QF.

REMARK 4.11. In contrast with Proposition 4.3, any QF-3, l-Gorenstein ring with
zero socle has the QF classical quotient ring (cf. [9]). Here a ring $R$ is said to be left QF-3 if
every finitely generated submodule of $Et_{R}R$) is torsionless. See [7], [8] and [12] for the
related topics.

EXAMPLE 4.12. Theorem II does not necessarily hold without the assumption that $P$

is distributive, as the following example shows.
Let $Q$ be the following bounden quiver:

$1_{\frac{\underline{a}}{c}}2\frac{b}{\overline{d}}3$

$\downarrow u$
$y$

$\}$ $\downarrow v\}$
$x$

$\downarrow w$

$4\underline{\underline{a^{\prime}}}c^{\prime}5\frac{\underline{b^{\prime}}}{d^{\prime}}6$

relations:

$va=a^{\prime}u,$ $vd=d^{\prime}w,$ $ac=xv=db$ ,
$uc=c^{\prime}v,$ $wb=b^{\prime}v,$ $a^{\prime}c^{\prime}=d^{\prime}b^{\prime}=vx$ ,
$ba=cd=ca=bd=0=b^{\prime}a^{\prime}=c^{\prime}d^{\prime}=c^{\prime}a^{\prime}=b^{\prime}d^{\prime}$ ,
$yv=vy=by=ya^{\prime}=0=cx=xd^{\prime}=xvx$ .

Then it is verified that $K(Q)$ is a QF-3, l-Gorenstein algebra with a non-distributive in-
decomposable projective left module $P_{5}$ such that soc (P5) $|=3$ .

PROPOSITION 4.13. Let $A$ be a $QF$ algebm over $K$, and $B$ a QF-3, l-Gorenstein algebm
over K. Then $A\otimes_{K}B$ is a QF-3, l-Gorenstein algebm.

PROOF. An easy exercise.

EXAMPLE 4.14. Smallest loose waists are not necessarily waists, as the following ex-
ample shows.

Let $\Lambda$ be the K-algebra in Example 4.7, and $B=Ser(2,2)$ as K-algebra. Then it
follows from Proposition 4.13 that $\Gamma=B\otimes_{K}\Lambda$ is a QF-3, l-Gorenstein algebra. Let $e_{i}$ be the
primitive idempotent of $\Lambda$ corresponding to the vertex $i$ in the quiver in Example 4.7. Also
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let $f_{i}$ be the primitive idempotent of $B$ . As is easily shown, every indecomposable projec-
tive $\Gamma$-module is distributive. But the smallest loose waist in $\Gamma(f_{1}\otimes e_{1})$ is not a waist in it.

EXAMPLE 4.15. There arises an analogous question to Theorem I whether an artinian
l-Gorenstein ring with a simple projective or an injective module is hereditary or not. The
following example tells us that the statement mentioned above does not hold.

Let $Q$ be the bounden quiver below.
3

$\beta_{\nearrow}$

$Q:1\underline{\alpha}2$ $\downarrow\nu$ ; $\gamma\beta=\delta\gamma=\beta\delta=0$ .
$\delta\backslash $

4
Then $K(Q)$ is a left serial l-Gorenstein algebra with a simple injective left module and with
a simple projective right module, which is neither QF-3 nor hereditary.
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