TSUKUBA J. MATH. Vol. 10 No. 1 (1986). 151-153

A TRANSFORMATION GROUP OF THE PYTHAGOREAN NUMBERS

Jun Morita

Our purpose in this note is to study a transformation group of the Pythagorean numbers using the theory of Kac-Moody Lie algebras. We will essentially use the conjugacy theorem, established by Kac [1], for null roots in infinite root systems. Mariani [3] has also given a transformation group of the Pythagorean numbers in a different way. We will discuss about the relationship.

It is well-known that all the integral solutions, called the Pythagorean numbers, of the Pythagorean equation:

$$x^2+y^2=z^2$$

are given by

 $\begin{cases} x = n(a^{2} - b^{2}) \\ y = 2nab \\ z = n(a^{2} + b^{2}) \end{cases} \text{ or } \begin{cases} x = 2nab \\ y = n(a^{2} - b^{2}) \\ z = n(a^{2} + b^{2}) \end{cases}$

for all $n, a, b \in \mathbb{Z}$.

Put $M = \{(x, y, z) \in \mathbb{Z}^3 | x^2 + y^2 = z^2, gcd(x, y, z) = 1\}$, the set of all the primitive Pythagorean numbers, and $M' = \{(x, y, z) \in M | y = \text{even}, z > 0\}$. We choose the following basic transformations of M:

 $\begin{array}{ll} r_1: & (x, y, z) \longmapsto (-x, y, z), \\ r_3: & (x, y, z) \longmapsto (x, -y, z), \\ -I: & (x, y, z) \longmapsto (-x, -y, -z), \\ t: & (x, y, z) \longmapsto (y, x, z). \end{array}$

These are arising from the symmetries of the Pythagorean equation. Furthermore we can find an important transformation of M:

$$r_2:(x, y, z) \longmapsto (-x-2y+2z, -2x-y+2z, -2x-2y+3z).$$

Let W be the subgroup of $GL_3(\mathbb{Z})$ generated by the r_i $(1 \le i \le 3)$, and G the subgroup of $GL_3(\mathbb{Z})$ generated by W, t and -I. Put $O_{2,1}(\mathbb{Z}) = O(2, 1) \cap GL_3(\mathbb{Z})$, the orthogonal group over \mathbb{Z} defined by the quadratic form $x^2 + y^2 - z^2$.

THEOREM. (a) M' = W.(1, 0, 1) and M = G.(1, 0, 1).

Received May 7, 1985. Revised September 24, 1985.

- (b) [G:W]=4 and $G=O_{2,1}(Z)$.
- (c) The stabilizer of (1, 0, 1) in W is the infinite dihedral group generated by r_2 and r_3 .

PROOF. We choose the following generalized Cartan matrix of hyperbolic type (cf. [2]):

$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 2 \end{pmatrix}.$$

Let $\Lambda = \sum_{i=1}^{3} \mathbf{Z} \alpha_i$ be the root lattice and Δ the root system associated with A. We define the bilinear form on Λ by

$$((\alpha_i, \alpha_j)) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}.$$

Then $\alpha \in \Delta$ if $\alpha \in \Lambda$ has the property $(\alpha, \alpha) = 0$ (cf. [1], [4]). Such an element is called a null root. Put $N = \left\{ \alpha \in \Lambda \left[\frac{1}{n} \alpha \notin \Lambda \ (n=2, 3, \cdots), \ (\alpha, \alpha) = 0 \right] \right\}$, the set of primitive null roots.

Let $\beta_1 = -\alpha_1$, $\beta_2 = -\alpha_3$, $\beta_3 = \alpha_1 + \alpha_2 + \alpha_3$. Then $\{\beta_1, \beta_2, \beta_3\}$ is a new basis of Λ and $(\beta_3, \beta_3) = -1$. Therefore an element $\beta = x\beta_1 + y\beta_2 + z\beta_3$ is a null root if and only if

$$(\beta, \beta) = x^2 + y^2 - z^2 = 0,$$

that is, (x, y, z) is a Pythagorean number. We identify M with N. Then r_i is the reflection with respect to α_i , and W is the Weyl group of Δ . In general, it has been established by Kac [1; Lemma 1.9d)] that a null root is conjugate to a null root of an affine subdiagram under the action of the Weyl group. Therefore, in our case, we see $N = W.(\pm \alpha_1 \pm \alpha_2) \cup W.(\pm \alpha_2 \pm \alpha_3)$, which implies (a). (b): The index [G:W] is 4 since $G = (W \rtimes \langle t \rangle) \times \{\pm I\}$. An element $\alpha \in A$ with $(\alpha, \alpha) = 1$ is a root, so $\{g(\alpha_i)|1 \le i \le 3\}$ is a fundamental system of Δ for all $g \in O_{2,1}(\mathbb{Z})$. Therefore the conjugacy theorem of Kac for fundamental systems (cf. [2]) leads to $G = O_{2,1}(\mathbb{Z})$. (c) follows from the fact that $\alpha_2 + \alpha_3$ is in the (standard) fundamental domain for the action of W on the positive imaginary roots (cf. [2]).

Let ϕ be the isomorphism of W into $PGL_2(\mathbb{Z})$ defined by $\phi(r_1) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\phi(r_2) = \begin{pmatrix} -1 & 2 \\ 0 & 1 \end{pmatrix}$, and $\phi(r_3) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \mod \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$. The group which Mariani [3] has constructed is $\phi(W)$. However, his theorems 2 and 3 are misunderstanding —he claims that $\phi(W)$ is isomorphic to $GL_2(\mathbb{Z})$ in Theorem 2 and that the sta-

152

A Transformation Group of the Pythagorean Numbers

bilizer of an element of M' is the direct product of an infinite cyclic group and a group of order 2 in Theorem 3. To be exact, $\phi(W)$ is a subgroup of $PGL_2(\mathbb{Z})$ with the group index $[PGL_2(\mathbb{Z}):\phi(W)]=3$ and the stabilizer of an element of M'is an infinite dihedral group.

The author wishes to express his sincere gratitude to Professor S. Uchiyama for his valuable advice.

References

- [1] Kac, V.G., Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1980), 57-92.
- [2] Kac, V. G., "Infinite dimensional Lie algebras," Progress in Math. 44, Birkhäuser, Boston, 1983.
- [3] Mariani, J., The group of the Pythagorean numbers, Amer. Math. Monthly 69 (1962), 125-128.
- [4] Moody, R. V., Root systems of hyperbolic type, Adv. in Math. 33 (1979), 144-160.

Institute of Mathematics University of Tsukuba Sakura-mura, Niihari-gun Ibaraki, 305 Japan