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0. Introduction.

The notion of normal numbers was first introduced by Emile Borel [3] in 1909.
He considered the decimal expansion of real numbers in the unit interval to the
base $r$ and assuming that every digit of their decimal expansions is independent

and also takes all possible values $0,1,$ $\cdots$ and $r-1$ with equal probability, he proved
that almost all real numbers are normal to the base $r$ in the sense of Lebesgue
measure.

For a real number $\omega$ , we denote $\{\omega\}$ the fractional part of $\omega$ defined by

$\{\omega\}=\omega-[\omega]$ ,

where $[\cdot]$ is the Gauss’ symbol, so that $\{\omega\}$ is contained in the unit interval $I_{0}=[0,1$)

for every real number $\omega$ . We consider the decimal expansion of $\{\omega\}$ to the base
$r$ :

(1) $\{\omega\}=\sum_{n=1}^{\infty}\frac{x_{n}(\omega)}{r^{n}}$ ,

where $x_{n}(\omega)$ is the n-th digit of development of $\{\omega\}$ and takes one of the values
in $R=\{0,1, \cdots,r-1\}$ . For an r-adic rational number, we agree to write a termi-
nating expansion in the form (1) in which all digits from a certain point on are $0$ .

Thus every real number in $I_{0}$ is uniquely expressed by (1) and an infinite
sequence of integers $\{a_{n}\}_{n=1,2}\cdots$ taking one of the values in $R$ can be corresponded
to a unique real number $a$ in $I_{0}$ defined by

$a=\sum_{n=1}^{\infty}\frac{a_{n}}{r^{n}}$ .

We call a real number $\omega$ to be simply normal to the base $r$ if, for each $j$ in
$R$ ,

(2) $\lim_{N\rightarrow\infty}\frac{A_{N}(j;\omega)}{N}=\frac{1}{r}$ ,
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where $A_{N}(j;\omega)$ is the number of indices $n$ up to $N$ satisfying

$x_{n}(\omega)=j$

for the expansion (1) of $\{\omega\}$ .
A real number $\omega$ is said to be normal to the base $r$ if, for every positive

integer $k$ and each string

$\Delta_{k}=(j_{1},j_{2}, \cdots,j_{k})$

in $R^{k}$ ,

(3) $\lim_{N\rightarrow\infty}\frac{A_{N}(\Delta_{k};\omega)}{N}=\frac{1}{r^{k}}$ ,

where $A_{N}(\Delta_{k};\omega)$ is the number of indices $n$ between 1 and $N$ satisfying

$x_{n}(\omega)=j_{1},x_{n+1}(\omega)=j_{2},$ $\cdots,x_{n+k-1}(\omega)=j_{k}$

for the expansion (1) of $\{\omega\}$ .
A normal number to every positive integer base greater than 1 is called to

be absolutely normal. The set of all simply normal numbers and normal numbers
to the base $r$ are denoted by $S(r)$ and $B(r)$ , respectively. $B$ denotes the set of all
absolutely normal numbers and

$B=\bigcap_{r=2}^{\infty}B(r)$ .

The very definition indicates that $S(r)$ is a Borel set of the type $G_{\delta\sigma\delta}$ and from
another equivalent definition of normal numbers, $B(r)$ is proved to be a Borel set
of the type $G_{\delta\sigma\delta\delta}$ (K. Nagasaka [9]). $B(r)$ is of full measure but of the first cate-
gory (T. \v{S}al\’at[13]).

From Borel’s assumptions corresponding to (2) and (3), it seems that the de-
cimal expansion of a normal number to the base 6 may be considered as an infi-
nite sample paths of fair dice throwings. Indeed, an interesting application of
normal numbers occurs in the foundation of probability theory, namely, in von Mises’
theory of collectives (von Mises [8]). Let us consider a real number in the unit
interval whose decimal expansion is identical to an arithmetic progression of that
of a normal number. D.D. Wall [18] proved in his theorem 7 that this considered
real number is also normal, which suggests us certain collective conditions to be
satisfied for normal numbers. We know moreover this kind of property (Teturo

Kamae and Benjamin Weiss [51).

As we have seen before, the decimal expansion of a normal number is a good
model of random sequences. On the other hand, the set of non-normal numbers,
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simply called often as a non-normal set, attracts our attention also. Those non-
normal sets are generally defined by digit properties and Lebesgue null sets, there-
fore Hausdorff dimension is widely used in order to compare the sizes of non-
normal sets.

For any set $L$ in Euclidean n-space $R^{n},$ $\dim L$ denotes the Hausdorff dimension
of $L$ . For a linear set $M,$ $\dim M$ is invariant under translation, therefore we
assume that every linear set may be contained in the unit interval $I_{0}$ when we
consider its Hausdorff dimension, that is, we consider $S(r)\cap I_{0},$ $B(r)\cap I_{0}$ and $B\cap I_{0}$

instead of $S(r),$ $B(r)$ and $B$, respectively. We also write, for two linear sets $A$

and $B$ in $I_{0}$ , the difference

$A-B=A\cap(I_{0}-B)$ .

By applying the theorem on entropies of Markov processes (P. Billingsley [2],

Theorem 14.1), we gave a proof for which the set of all non-normal numbers to
the base $r$ has Hausdorff dimension 1 and the set of all simply normal numbers
but not normal numbers to the base $r$ has also Hausdorff dimension 1 (Nagasaka

[9]). In my preceding note [10], it has been demonstrated, by making use of W.A.
Beyer’s calculation technique for Hausdorff dimension (Beyer [1]), that $B(r)-B(s)$

is of Hausdorff dimension 1 unless $\log r/\log s$ is rational.
In the next Section, we shall give a refinement of these results, by recon-

siderring the results obtained by J.W.S. Cassels [4] and Wolfgang M. Schmidt [14].

In the last Section, we shall construct uncountable non-normal numbers to
both bases 3 and 5 and estimate their Hausdorff dimension. Further we shall give
another simple proof of A.D. Pollington’s result [12], which is a final result for
the Hausdorff dimension of non-normal sets.

1. The set of normal numbers to every base except powers of one number.

H. Steinhaus once raised a question in the ” New Scottish Book” as to how
far the property of being normal with respect to different bases is independent.

This problem was cited as Problem 144 by J.W.S. Cassels [4], but we cannot find
any trace of this problem in the ” Scottish Book” newly edited by R. Daniel
Mauldin [71.

Cassels [4] replied to this question. Let us denote $C(3)$ a modified ternary

Cantor set, that is, the set of numbers in $I_{0}$ in whose expansion to the base 3 the
digit 2 never occurs. To every number

$\omega=\sum_{n=1}^{\infty}\frac{x_{n}(\omega)}{3^{n}}$ , ( $x_{n}(\omega)=0$ or 1)



92 Kenji NAGASAKA

in $C(3)$ , corresponds the number

$f_{3.2}(\omega)=\sum_{n=1}^{\infty}\frac{x_{n}(\omega)}{2^{n}}\in I_{0}$ .

Introducing a measure $\mu$ on $C(3)$ by $\mu=\mu_{0}\circ f_{3.2}$ , where $\mu_{0}$ is the Lebesgue measure,
it is proved that $\mu$ -almost all $\omega$ in $C(3)$ are normal to every base $r$ which is not
a power of 3.

From the result above and from

$ B(3)=B(3^{2})=\cdots=B(3^{n})=\cdots$ ,

we have $\mu(C(3)\cap(B\ominus B(3))=1$ , where $B\ominus B(3)$ is the set of all normal numbers to
every base except powers of three. Then we have

$\dim_{\mu}(C(3)\cap(B\ominus B(3)))=1$ .

For an $\omega\in I_{0}$ , let us define the 3-adic cylinder set containning $\omega$ of length $3^{-n}$

by

$u_{n}(\omega)=\{\omega^{\prime}\in I_{0} ; x_{k}(\omega^{\prime})=x_{k}(\omega), k=1,2, \cdots,n\}$ ,

where

$\omega=\sum_{n=1}^{\infty}\frac{x_{n}(\omega)}{3^{n}}$

and

$\omega^{\prime}=\sum_{n=1}^{\infty}\frac{x_{n}(\omega^{\prime})}{3^{n}}$ .

Then,

$\mu_{0}(u_{n}(\omega))=3^{-n}$

and

$\mu(u_{n}(\omega))=\mu_{0}(f_{3.2}(\omega))=2^{-n}$ .

Thus

$C(3)\cap(B\ominus B(3))\subset\{\omega\in I_{0}$ ; $1_{n}i_{\rightarrow}m_{\infty}\frac{\mu(u_{n}(\omega))}{\mu_{0}(u_{n}(\omega))}=\frac{\log 2}{\log 3}|$

From the Theorem 14.1 of Billingsley [2], we obtain

THEOREM 1. $\dim(C(3)\cap(B\ominus B(3)))=\log 2/\log 3$ .
Abondonning to fix ourselves to $C(3)$ , we can prove a stronger result:
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THEOREM 2. $\dim(B\ominus B(3))=1$ .

REMARK. The above value of the Hausdorff dimension of the set $B\ominus B(3)$

cannot be improved. For any linear subset $L$ ,

$0\leq\dim L\leq 1$ .

PROOF. The idea of the proof of Theorem 2 is the same as that in my pre-
vious note [10]. First we need next lemma.

LEMMA 1. For a given $y\in B(r)\cap I_{0}$ , the vector $(x, y)\in I_{0}\times I_{0}$ is normal to the
base $r$ for almost all $x\in I_{0}$ in the sense of Lebesgue measure.

COROLLARY 1. For a given $y\in C(3)\cap(B\ominus B(3))$ and for any positive integer $k$ ,

the k-tuple $(x_{1},x_{2}, \cdots,x_{k-1},y)$ is normal to every base $r$ except powers of 3 for al-
most all $(x_{1},x_{2}, \cdots,x_{k-1})\in I_{0}^{k-}$ .

This set of full measure in the Corollary 1 is denoted by $P_{k-1}$ , and put

$G_{k}=P_{k-1}\cap[T_{k-1}(B)]\times\{y\}\subset I_{0}^{k}$ ,

where $y\in C(3)\cap(B\ominus B(3))$ and $T_{k}$ is a transformation from $I_{0}$ to $I_{0}^{k}$ defined as the
following: For

$\omega=\sum_{n=1}^{\infty}\frac{x_{n}(\omega)}{r^{n}}\in I_{0}$ ,

$T_{k}(\omega)=(\omega_{1},\omega_{2}, \cdots,\omega_{k})\in I_{0}^{k}$ ,

where $x_{j}(\omega_{i})=x_{(j-1)\cdot k+i}(\omega)$ for every $i=1,2,$ $\cdots,k$ and $j=1,2,$ $\cdots$ .
An extended version of a theorem of Beyer [1] is necessary to complete the

proof.

THEOREM A. (Beyer) For any subset $M$ in $I_{0}$ ,

$\dim M=\dim T_{k}M/k$ ,

where $T_{k}M$ is the set of $(\omega_{1},\omega_{2}, \cdots,\omega_{k})\cap I_{0}^{k}$ for which there exists an $\omega\in M$ such that

$T_{k}\omega=(\omega_{1},\omega_{2}, \cdots,\omega_{k})$ .

From the Theorem 7 of Wall [18], it is easy to see that

$T_{k}^{-1}G_{k}\subset(B\ominus B(3))$ .

By virtue of the Theorem A and from a fundamental property of Hausdorff
dimension, we get
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$\dim(B\ominus B(3))\geq\dim\bigcup_{k=2}^{\infty}T_{k}^{-1}G_{k}=\sup_{k}\dim T_{k}^{-1}G_{k}$

$=\sup_{k}(k-1)/k=1$ .
$\langle Q.E.D.\rangle$

NOTE. $C(3)$ is eventually contained in $I_{0}-S(3)$ . From this remark we may
rewrite Theorem 1 and Theorem 2 as follows:

THEOREM 1’. $\dim(C(3)\cap(B\ominus S(3)))=\log 2/\log 3$ , where $B\ominus S(3)$ is the set of all
normal numbers to every base except powers of three which are neither simply normal
to the base 3.

THEOREM 2;. $\dim(B\ominus S(3))=1$ .
Independently of Cassels, Wolfgang M. Schmidt $\lceil 14$] answered the Steinhaus

problem. For two positive integers $r$ and $s$ greater than 1, we write $r\sim s$ , if there
exist integers $n$ and $m$ with $r^{n}=s^{m}$ . 0therwise $r*s$ . For integers $s$ and $t$ with
$1<t<s$ , we define a function $g_{s.l}$ from $I_{0}$ to $I_{0}$ as follows: Assume that $\omega\in I_{0}$ is
developped to the base $t$ ,

$\omega=\sum_{n=1}^{\infty}\frac{x_{n}(\omega)}{t^{n}}$ .

Then,

$g_{s.l}(\omega)=\sum_{n=\iota}^{\infty}\frac{x_{n}(\omega)}{s^{n}}\in I_{0}$ ,

where $x_{n}(\omega)$ takes one of the values 0,1, $\cdots$ and $t-1$ . Introducing a measure
$\mu_{s.l}$ on $g_{s,t}(I_{0})$ by $\mu_{s.t}=\mu_{0}\circ g_{s,t}^{-1}$ , it is proved that, for almost all $\omega\in g_{s,t}(I_{0})$ with re-
spect to $\mu_{s,t},\omega$ is normal to the base $r$ whenever $r*s$ , which implies that

$\mu_{s,l}(g_{s.i}(I_{0})\cap(B\ominus B(s)))=1$ ,

where $B\ominus B(s)$ is the set of all normal numbers to every base except powers of
$s$ . Cassels’ result is a special case of this result of Schmidt with $t=2,$ $s=3$ and
$f_{3,2}=g_{3,2}^{-1}$ .

By virtue of $g_{\epsilon,t}(I_{0})\subset(I_{0}-S(s))$ , we get analogously to Theorem 1’ and Theorem
2’,

THEOREM 3. For integers $s$ and $t$ with $1<t<s$ ,

$\dim(g_{s.l}(I_{0})\cap(B\ominus S(s)))=\log t/\log s$ ,

where $B\ominus S(s)$ is the set of all normal numbers to every base except powers of $s$
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which are neither simply normal to the base $s$ .

THEOREM 4. For any integer $r>1$ ,

$\dim(B\ominus S(r))=1$ ,

where $B\ominus S(r)$ is the set of all normal numbers to every base except powers of $\gamma$

which are neither simply normal to the base $r$ .

NOTE. $S(r)\supset B(r)$ assures that we can replace $S(r)$ in above Theorems by
$B(r)$ .

These Theorems are refinements of my preceding result in [10].

Recently Bodo Volkmann [17] generalized Schmidt’s theorem as follows: Let
$r$ and $s$ be integers greater than 1 with $r*s$ . We denote $M_{r}(\nu_{0},\nu_{1}, \cdots,\nu_{r-1})$ the
set of real numbers $\omega$ in $I_{0}$ satisfying

$\lim_{N\rightarrow\infty}\frac{A_{N}(j;\omega)}{N}=\nu_{j}$ , $j=0,1,$ $\cdots,r-1$ ,

where

(4) $0\leq\nu j\leq 1$ , $j=0,1,$ $\cdots,r-1$ ,

(5) $\sum_{j=0}^{r-1}\nu_{j}=1$

and there exists at least one $j$ such that

(6) $\nu_{j}\neq 1/r$ .

Further, introducing a probability measure $\mu_{\nu}$ on $I_{0}$ as the product measure of
$\nu=(\nu_{0},\nu_{1}, \cdots,\nu_{r-1})$ , he proved that, for $\mu_{\nu}$ -almost all $\omega$ in $M_{r}(\nu_{0},\nu_{1}, \cdots,\nu_{r-1}),$ $\omega$ is
normal to every base $s*r$ .

Using the same theorem of Billingsley, we obtain

$T_{HEOREM}5$ .

$\dim(M_{r}(\nu_{0},\nu_{1}, \cdots,\nu_{r-1})\cap B)=-\frac{1}{\log r}\sum_{J=0}^{r-1}\nu_{j}\cdot\log\nu_{j}$ ,

for every integer $r$ greater than 1.
It is clear that

$M_{r}(\nu_{0},\nu_{1}, \cdots,\nu_{r-1})\cap B\subset(B\ominus S(r))$ .
Then,

$\dim(B\ominus S(r)))\geq\sup(M_{r}(\nu_{0},\nu_{1}, \cdots,\nu_{r-1})\cap B)$
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$=\sup\{-\frac{l}{\log r}\sum_{J=0}^{r-1}\nu_{J}\cdot\log\nu_{j}\}$

$=1$ ,

where the supremum is taken over all $\nu=(\nu_{0},\nu_{1}, \cdots,\nu_{r-1})$ satisfying (4), (5) and (6).

Thus we get another proof of Theorem 4.

2. The set of non-normal numbers to different bases.

Hereafter we consider the decimal expasion of a real number $\omega$ to the base
$r$ and also to the base $s$ . In order to distinguish different bases, we agree to write

$\omega=\omega_{r}=\sum_{n=1}^{\infty}\frac{x_{n}^{r}(\omega)}{r^{n}}$ ,

if we need to specify the base $r$ of the development of $\omega$ .
M.J. Pelling [11] proposed to construct an uncountable class of reals not normal

in the scales of 3 and 5.
An uncountable class is indeed indispensable. Let us take a rational number

$\omega$ in $I_{0}$ , then $\omega=a/b$ , where $a$ and $b$ are integers with $0\leq a<b$ . The fractional
part of

$\omega,$ $\gamma\omega,$
$\gamma^{2}\omega,$ $ r^{s}\omega$ , $\cdot$ . .

take only values in the finite set

$0,1/b,$ $2/b,$ $\cdots,$ $(b-1)/b$ .

From the Dirichlet’s pigeon-hole principle, we may conclude that the decimal ex-
pasion of $\omega_{r}$ is ultimately periodic with the period of length at most $b$ to every

base $\gamma$ . This means that this $\omega$ has not normality of order $b[6]$ . Hence any
rational number is not normal to every base, but the set of rationals is countable.

Before mentionning the answer to Pelling’s problem given by Andrew Odlyzko

and also by the proposer himself, we want to give our construction of uncountable
non-normal numbers to the bases 3 and 5.

For every non-negative integer $k$ , the $10^{k}th$ through $5\cdot 10^{k}$ digits of $\omega$ are
prescribed to be zero to the base 3. This $\omega$ is evidently not normal to the base
3. Then let us consider the decimal expansion of the same $\omega$ to the base 9, that
is $\omega_{9}$ , then the $10^{k}/2th$ through $5\cdot 10^{k}/2$ digits of $\omega_{9}$ are prescribed to be zero.
This prescription defines only about 4 $\cdot$ $10^{k}\cdot\log 3/\log 5$ digits in $\omega_{5}$ to be zero. Then

$\lim_{N\sim}\inf_{\infty}\frac{A_{N}(0;\omega_{5})}{N}\geq 4/9=0.44\cdots$ ,
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which signifies that $\omega_{5}$ is neither normal to the base 5. The digits other than
the above prescription of $\omega$ are able to take all possible values. Thus we con-
struct an uncountable class of real $\omega s$ that are neither normal to the base 3 nor
to the base 5.

Odlyzko’s answer also uses the prescription technique in the decimal expan-
sion of $x$ in $I_{0}$ . For every nonnegative integer $k$ , the digits $10^{2k}$ through $3\cdot 10^{2k}$

of $x$ to the base 5 are $\beta_{2k}$ and $10^{2k+1}$ through $3\cdot 10^{2k+1}$ to the base 3 are $\beta_{2k+1}$ ,

where $(\beta_{n})$ is an infinite sequence of finite strings of $O\prime s$ and l’s of length $2\cdot 10^{n}$ .
For each sequence $(\beta_{n})$ , this prescribed $x$ is normal to neither of the bases and
there exist uncountably many $(\beta_{n})$ . Thus uncountable non-normal numbers to the
bases 3 and 5 are constructed.

We can estimate the Hausdorff dimension of thus constructed non-normal
numbers to the bases 3 and 5 from my theorem 4 [9]. According to our constru-
ction of non-normal numbers, the limes $\sup$ of the relative freqency of the pre-
scribed digits is equal to 8/9, then its Hausdorff dimension is at least

$ 1-8/9=1/9=0.11\cdots$ .
By using the same calculation technique for Hausdorff dimension as in the

previous Section, we obtain stronger results with the aid of another Schmidt’s
result [15]. The set of all positive integers greater than one is divided into two
disjoint classes $R$ and $S$ so that equivalent integers fall in the same class under
the equivalent relation $\sim$ defined in the previous Section. Schmidt proved

LEMMA 2. There exist uncountably many numbers which are normal to every
base from $R$ and to no base from $S$, where $R$ and $S$ are two disjoint classes of
integers defined above.

Suppose that $S$ contains 3 and 5. Then Lemma 2 assures the existence of
uncountable non-normal numbers to the bases 3 and 5, which are also normal to
every base from $R$ . Theorem 6 below shows a greater value of Hausdorff dimen-
sion of this set, hence we obtain a final result instead of mentioned before. For

$(\bigcap_{r\in R}B(r)-\bigcap_{s\in S}B(s))\subset(I_{0}-(B(3)\cap B(5))$ .

In the case of $ R=\phi$ , Schmidt proved that the Hausdorff dimension of un-
countably many numbers in Lemma 2 is equal to 1 [16].

Now assume that $ R\neq\phi$ . By Lemma 2,

$ Y=[\bigcap_{r\in R}B(r)-\bigcap_{s\in S}B(s)]\neq\phi$ .

Then, we have
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COROLLARY 2 OF LEMMA 1. For a given $y\in Y$ and for every positive integer
$k$ , the k-tuple $(x_{1},x_{2}, \cdots,x_{k-1}, y)$ is normal to every base from $R$ for almost all
$(x_{1},x_{2}, \cdots,x_{k-1})\in I_{0}^{k-1}$ .

Tracing the same arguments as in Theorem 2 together with Corollary 2 of
Lemma 1, we get

THEOREM 6. The Hausdorff dimension of non-normal numbers which are
normal to every base from $R$ and to no base from $S$ is equal to 1, where $ R\neq\phi$ and
$S$ are two disjoint classes of all positive integers greater than 1 so that equivalent
integers fall into the same class.

NOTE. This Theorem was first proved by A.D. Pollington [12], but his proof

needs rather complicated estimation technique for Hausdorff dimension and also
essentially Schmidt’s construction. Our proof is based on only the existence result
of Schmidt and on Beyer’s theorem, which seems to be much simpler than that
of Pollington.
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