A REMARK ON HIGMAN'S RESULT ABOUT SEPARABLE ALGEBRAS

In memory of Professor Akira Hattori

By

Koichiro Ohtake and Hiroshi Fukushima

1. Introduction.

Let k be a field with arbitarary characteristics and A a finite dimentional k algebra. Then A is said to be a separable algebra if for any extension field E of $k, A \bigotimes_{k} E$ is a semisimple E-algebra. Let a_{1}, \cdots, a_{n} be a k-basis of A and $T_{A, k}$ $=T$ a trace form of A over k, that is, for $x \in A$, if $a_{i} x=\sum_{j} \alpha_{i j} a_{j}\left(\alpha_{i j} \in k\right)$ then $T(x)$ $=\Sigma \alpha_{i i}$.

It is well known that if A is a finite extension field of k, then A is a separable extension of k iff A is a separable algebra and iff T is nondegenerate (the bilinear form $A \times A \rightarrow k$ is defined by $(x, y) \longmapsto T(x y)$ as usual). But in case where an algebra A is not necessarily a field, the situation is more complicated.

Before stating Higman's result, let us fix the algebra A with several assumptions. Throughout this paper unless otherwise specified let k be a field with arbitrary characteristic and A a finite dimensional Frobenius k-algebra with nondegenerate associative bilinear from $\phi: A \times A \rightarrow k$ with fixed dual bases $\left\{a_{i}\right\},\left\{b_{i}\right\}$ (i.e. $\left.\phi\left(a_{i}, b_{j}\right)=\delta_{i j}\right)(i, j=1, \cdots, n)$.

Now Higman's result is as follows.
Theorem 1 (Higman). The following are equivalent.
(i) A is a separable k-algebra.
(ii) There exists a nondegenerate associative bilinear from $\psi: A \times A \rightarrow k$ with dual bases $\left\{a_{i}^{\prime}\right\},\left\{b_{i}^{\prime}\right\}$ such that $\Sigma b_{i}^{\prime} x a_{i}^{\prime}=1$ for some $x \in A$.

It should be noted that under the same situation of the theorem $\Sigma b_{i}^{\prime} x a_{i}^{\prime}$ is always in the center of A for any $x \in A$ but $\Sigma a_{i}^{\prime} x b_{i}^{\prime}$ is not (we shall give a simple example later). It seems natural to ask that what $\Sigma a_{i}^{\prime} x b_{i}^{\prime}=1$ does imply. To this question we obtained the following result.

Theorem 2. Let $\left\{a_{i}\right\},\left\{b_{i}\right\}$ be dual bases with respect to ϕ. Then the following are equivalent.

[^0](i) A is a separable k-algebra.
(ii) $\Sigma b_{i} c a_{i}=1$ for some unit $c \in A$.
(iii) $\Sigma b_{i} c a_{i}$ is a unit for some unit $c \in A$.
(iv) $\Sigma b_{i} x a_{i}$ is a unit for some $x \in A$.
(v) $\Sigma a_{i} c b_{i}$ is a unit for some unit $c \in A$.
(iv) $\sum a_{i} x b_{i}$ is a unit for some $x \in A$.

Each condition in the above theorem is not equivalent to the condition " $\Sigma a_{i} x b_{i}$ $=1$ for some $x \in A$ (or a unit $x \in A$)" (see Example). Conditions (ii) to (iv) are known, but conditions (v) and (vi) are new, which we want to remark in this paper.

For the next theorem the equivalence of (i) and (iii) are well known.
Theorem 3. The following are equivalent.
(i) The trace form $T_{A \mid k}$ is nondegenerate,
(ii) $\Sigma a_{i} b_{i}$ is a unit.
(iii) There exists an extention field E of k such that $A \otimes_{k} E \equiv \oplus_{i} M_{n_{i}}(E)$ such that $n_{i} \neq 0$ in k for each i, where $M_{n_{i}}(E)$ is a full matrix algebra of degree n_{i} over E.

2. Proof of Theorems.

To prove Theorem 2 we need several lemmas. The methods of proofs of next two lemmas are the same as in [1, section 71], so the proofs are omitted.

Lemma 1. Let U_{A} and ${ }_{A} V$ be right and left A-modules with finite dimentions over k, respectively. Let $\psi: U \times V \rightarrow k$ be a nondegenerate associative bilinear from and $\psi^{\prime}: U \times V \rightarrow k$ any map. Then ψ^{\prime} is a nondegenerate asociative bilinear form if and only if there exist automorphisms F of U_{A} and G of ${ }_{A} V$ such that the diagram

is commutative.
Corollary. Let $\psi: A \times A \rightarrow k$ be a nondegenerate associative bilinear form. Then there exist units $c_{1}, c_{2} \in A$ such that $\left\{c_{1} a_{i}\right\},\left\{b_{i}\right\}$ and $\left\{a_{i}\right\},\left\{b_{i} c_{2}\right\}$ are dual bases with respect to ψ.

Lemma 2. Let U, V and $\psi: U \times V \rightarrow k$ be as in Lemma 1. Let $\left\{u_{i}\right\},\left\{v_{i}\right\}$ and
$\left\{u_{i}^{\prime}\right\},\left\{v_{i}^{\prime}\right\}$ be two pairs of dual bases. Then for any $a \in A, \Sigma u_{i} a \otimes v_{i}=\Sigma u_{i}^{\prime} a \otimes v_{i}^{\prime}$ in $U \bigotimes_{k} V$.

Corollary. Let e and f be idempotents in A. Suppose there exists a nondegenerate associative bilinear form $\psi: e A \times A f \rightarrow k$ with dual bases $\left\{c_{i}\right\},\left\{d_{i}\right\}$ and $\left\{c_{i}^{\prime}\right\}$, $\left\{d_{i}^{\prime}\right\}$. Then for any $a \in A, \Sigma c_{i} a d_{i}=\Sigma c_{i}^{\prime} a d_{i}^{\prime}$ holds.

Lemma 3. Let B be a finite dimensional simple k-algebra. If B is separable then there exists a nondegenerate associative bilinear form $\psi: B \times B \rightarrow k$ with dual bases $\left\{c_{i}\right\},\left\{d_{i}\right\}$ such that $\Sigma d_{i} c_{i}=1$.

Proof. We may assume $B=M_{n}(D)$ with D a division algebra. For any extension field E of $k, M_{n}(D) \otimes_{k} E \cong M_{n}\left(D \otimes_{k} E\right)$ is a semisimple E-algebra by assumption. Hence $D \otimes_{k} E$ is also a semisimple E-algebra by Morita theorem. This prove that D is a separable k-algebra. Then by Theorem 1 and Lemma 1, there exists a nondegenerate associative bilinear form $\phi_{0}: D \times D \rightarrow k$ with dual bases $\left\{g_{i}\right\},\left\{h_{i}\right\}$ such that $\Sigma h_{i} g_{i}=1$. Let us define

$$
\begin{gathered}
\phi_{1}: M_{n}(D) \times M_{n}(D) \rightarrow k \text { via } \phi_{1}(\alpha \beta)=\sum_{i, j} \phi_{0}\left(\alpha_{i j}, \beta_{j i}\right) \\
\text { for } \alpha=\left(\alpha_{i j}\right) \text { and } \beta=\left(\beta_{i j}\right)
\end{gathered}
$$

Then by a routine verification we know that ϕ_{1} is a nondegenerate associative bilinear form. Let $e_{i j}^{k}=\left(\alpha_{l m}\right)$ and $f_{j i}^{k}=\left(\beta_{l m}\right)$ be such that $\alpha_{i j}=g_{k}, \beta_{j i}=h_{k}, \alpha_{l m}=0$ for $(l, m) \neq(i, j)$ and $\beta_{l m}=0$ for $(l, m) \neq(j, i)$. Then

$$
\begin{aligned}
\phi_{1}\left(e_{i j}^{k}, f_{r s}^{t}\right) & =\sum_{l m} \phi_{0}\left(\alpha_{l m}, \beta_{m l}\right) \\
& =\phi_{0}\left(\alpha_{i j}, \beta_{j i}\right)+\phi_{0}\left(\alpha_{s r}, \beta_{r s}\right) \\
& =\delta_{i s} \delta_{j r} \phi_{0}\left(g_{k}, h_{t}\right) \\
& =\delta_{i s} \delta_{j r} \delta_{k t} .
\end{aligned}
$$

Thus $\left\{e_{i j}^{k}\right\},\left\{f_{j i}^{k}\right\}$ are dual bases. Moreover

$$
\begin{aligned}
\sum_{i, j, k} f_{i j}^{k} e_{j i}^{k} & =\sum_{i, j, k}\left(h_{k} e_{i j}\right)\left(g_{k} e_{j i}\right) \quad\left(e_{i j}=\text { matrix unit }\right) \\
& =\sum_{i, j}\left(\sum_{k} h_{k} g_{k}\right) e_{i i} \\
& =\sum_{i, j} e_{i i} \\
& =n I \quad(I=\text { identity }) .
\end{aligned}
$$

Let $c=\left(c_{i j}\right) \in M_{n}(D)$ be nonsingular such that $c_{11}=1$ and $e_{i i}=0$ for $i \geq 2$. Thus by Lemma 1, $\left\{e_{i j}^{k}\right\},\left\{f_{j i}^{k} c\right\}$ are dual bases of some nondegenerate associative bilinear form $\psi: M_{n}(D) \times M_{n}(D) \rightarrow k$. In this case $\sum_{i, j, k} f_{j i}^{k} c e_{i j}^{k}=I$ holds.

Lemma 4. If A is local but not a division algebra, then $\sum a_{i} x b_{i} \in N$ for all
$x \in A$, where N is the Jacobson radical of A.
Proof. Let $\theta: A_{A} \rightarrow \hat{A}_{\boldsymbol{A}}\left(\hat{A}=\operatorname{Hom}_{k}(A, k)\right)$ be the isomorphism induced from ϕ. We can obtain a k-basis $\left\{b_{i}^{\prime}\right\}$ of A as a continuation of a k-basis of N. Let $\left\{a_{i}^{\prime}\right\}$ be the dual basis of $\left\{b_{i}^{\prime}\right\}$ with respct to ϕ. Then $\theta\left(a_{i}^{\prime}\right)=\eta_{b_{i}^{\prime}}$. where $\eta_{b_{i}^{\prime}}\left(b_{j}^{\prime}\right)=\delta_{i j}$. By the corollary of Lemma 2, $\Sigma a_{i} x b_{i}=\Sigma a_{i}^{\prime} x b_{i}^{\prime}$ for all $x \in A$. We show that if a_{i}^{\prime} is a unit then $b_{i}^{\prime} \in N$. Suppose b_{i}^{\prime} is a unit. Since $\theta\left(a_{i}^{\prime}\right)=\theta(1) a_{i}^{\prime}=\eta_{b_{i}^{\prime}}, \theta(1)=\eta b_{i}^{\prime} a_{i}^{\prime-1}$. If $0 \neq \alpha \in N$ then $\theta(\alpha)=\theta(1) \alpha=\eta_{b_{i}^{\prime}} a_{i}^{\prime-1} \alpha$. Hence for all $a \in A,\left(\eta_{b_{i}^{\prime}}^{\prime-1} \alpha\right)(a)=\eta_{b_{i}^{\prime}}\left(a_{i}^{\prime-1} \alpha a\right)$ $=0$ since $a_{i}^{\prime-1} \alpha a \in N$ and b_{i}^{\prime} is a unit (hence $a_{i}^{\prime-1} \alpha a$ is expressed as a linear combination of $b_{j}^{\prime} \in N$). Therefore $\eta_{b_{i}^{\prime}}{ }_{i}^{\prime-1} \alpha=0$. This prove $\theta(\alpha)=0$. But θ is an isomorphism, which is a contradiction.

Now we can prove our result.

Proof of Theorem 2.

As we mentioned before, it is known that conditions (i) to (iv) are equivalent each other. (i) $\Rightarrow(\mathrm{v})$ is clear since A is a symmetric algebra. $(\mathrm{v}) \Longrightarrow$ (vi) is also clear. So we only need to prove (vi) \Longrightarrow (i). Let $1=e_{1}+\cdots+e_{n}$ be a decomposition of 1 to orthogonal primitive idempotents. Then $A=e_{1} A \oplus \cdots \oplus e_{n} A \cong \widehat{A e_{1}} \oplus \cdots$ $\oplus \widehat{A e_{n}}$. Hence there is a permutation σ of $\{1,2, \cdots, n\}$ such that $e_{1} A \cong \widehat{A e_{\sigma(i)}}$. Note that $e_{i} A \cong e_{j} A$ iff $A e_{i} \cong A e_{j}$. Suppose $e A \cong{ }_{\sigma(i)} A$. Then $A e_{o^{2}(i)} \cong \widehat{e_{\sigma(i)} A} \cong \widehat{e_{i} A}$ $\cong A e_{\sigma(i)}$. Hence $e_{\sigma(i)} A \cong e_{\sigma^{2}(i)} A$. By the same argument we obtain $e_{i} A \cong e_{o^{r}(i)} A$ for all integers r. Let s be the smallest positive integer such that $\sigma^{s}(i)=i$. Let $\tau=\left(i \sigma(i) \cdots \sigma^{s-1}(i)\right)$ be a cyclic permutation. Then $\sigma \tau^{-1}$ fixes $\sigma^{\tau}(i)$ for $r=0,1, \cdots$, $s-1$. It is clear that $\sigma \tau^{-1}$ plays the same role as σ. So we may assume that $e_{i} A \simeq e_{o(i)} A$ iff $\sigma(i)=i$. Let $\phi_{i}: e_{i} A \times A e_{o(i)} \rightarrow k$ be the nondegenerate associative bilinear form induced from $e_{i} A \cong \widehat{A e_{\sigma(i)}}$. Let $\psi: A \times A \rightarrow k$ be such that $\psi(a, b)=$ $\sum_{i} \phi_{i}\left(e_{i} a, b e_{o(i)}\right)$ for $a, b \in A$. Then it is easily verified that ψ is a nondegenerate associative bilinear form. Let $\left\{a_{i j} \mid j\right\},\left\{b_{j_{o(i)} \mid} \mid j\right\}$ be dual bases with respect to ϕ_{i}. Then $\left\{a_{i j} \mid i, j\right\},\left\{b_{j o(i)} \mid i, j\right\}$ form dual bases with respect to ψ. By assumption $\sum_{i} a_{i} x b_{i}$ is a unit in A. There exists a unit $c \in A$ such that $\left\{a_{i}\right\},\left\{b_{i} c\right\}$ are dual bases with respect to ψ. Now $u=\sum_{i} a_{i} x b_{i} c=\sum_{j, k} a_{j k} x b_{k o(j)}$ is a unit. Note that if $\sigma(i)=i$ then $\sum_{j} a_{i j} x b_{j_{\sigma}(i)}=u_{i}$ may be a unit in $e_{i} A e_{i}$ and if $\sigma(i) \neq i$ then $\sum_{j} a_{i j} x b_{j a(i)}$ $=r_{i} \in N$ since $e_{i} A \neq e_{o(i)} A$ implies $a_{i j} x b_{j o(i)} \in e_{i} A e_{o(i)}=e_{i} N e_{a(i)}$ After renumbering we may assume $u=u_{1}+\cdots+u_{t}+r_{t+1}+\cdots+r_{n}$. Then $u_{1}+\cdots+u_{t}=u-\left(r_{t+1}+\cdots\right.$ $\mathrm{i} .+r_{n}$) is a unit in A since $r_{t+1}+\cdots+r_{n} \in N$. Thus $t=n$ and this implies $e_{i} A \cong \widehat{A e_{i}}$ for all i . Then it is well known that $e_{i} A$ had the same top and socle. Let $\phi_{i j}$: $e_{i} A e_{j} \times e_{j} A e_{i} \rightarrow k$ be the restriction of ϕ_{i}. Then $\phi_{i j}$ is a nondegenerate associative
bilinear form over the algebra $e_{j} A e_{j}$. Now let $\left\{a_{i j}^{k} \mid k\right\}$, $\left\{b_{j i}^{k} \mid k\right\}$ be dual bases with respect to $\phi_{i j}$. Then $\left\{a_{i j}^{k} \mid j, k\right\},\left\{b_{j i}^{k} \mid j, k\right\}$ are dual bases with respect to ϕ_{i} since $\phi_{i}\left(a_{i j}^{k}, b_{l i}^{m}\right)=\delta_{j l} \phi_{i j}\left(a_{i j}^{k}, b_{i i}^{m}\right)=\delta_{j l} \delta_{k m}$. Since $\sum_{j, k} a_{i j}^{k} x b_{j i}^{k}$ is a unit in $e_{i} A e_{i}$, there is an index j such that $\sum_{k} a_{i j}^{k} x b_{i j}^{k}$ is a unit in $e_{i} A e_{i}$. Let $f=e_{j} f e_{i}, g=e_{i} g e_{j}$ be such that $f g=e_{j}, g f=e_{i}$. Let us define $\psi_{i j}: e_{i} A e_{i} \times e_{i} A e_{i} \rightarrow k$ as $\psi_{i j}(a, b)=\phi_{i j}(a g, f b)$. Then it is easily verified that $\left\{a_{i j}^{k} f\right\},\left\{g b_{j i}^{k}\right\}$ form dual bases with respect to $\psi_{i j}$. Then $\sum_{k}\left(a_{i j}^{k} f\right)(g x f)\left(g b_{j i}^{k}\right)=\sum_{k} a_{i j}^{k} x b_{j i}^{k}$, which is a unit in $e_{i} A e_{i}$. Hence by Lemma 4, $e_{i} A e_{i}$ is a division algebra. Since the top and the socle of $e_{i} A$ concide, $e_{i} A$ has to be simple. This proves that A is semisimple. For any extension field E of k, $A \otimes_{k} E$ satisfies the condition (vi). This proves that A is a separable algebra. This completes the proof of the theorem.

Next let us give a proof of Theorem 3.

Proof of Theorem 3.

Since the equivalence between (i) and (iii) is well known, we only show the equivalence of (i) and (ii). If T is nondegenerate then A is a separable algebra. Hence in particular A is a direct sum of simple algebras. Thus the proof is complete by the next lemma.

Lemma 5. The following are equivalent if A is simple.
(i) $T_{A / k}$ is nondegenerate.
(ii) $\sum a_{i} b_{i}$ is a unit.
(iii) $\sum a_{i} b_{i} \neq 0$.

Proof. (i) \Longrightarrow (ii). Let $\left\{a_{i}^{\prime}\right\},\left\{b_{i}^{\prime}\right\}$ be dual bases with respect to T. Let $b_{i}^{\prime} a_{j}^{\prime}$ $=\sum_{l} \lambda_{i l} b_{l}^{\prime}\left(\lambda_{i l} \in k\right)$. For a fixed a_{j}^{\prime},

$$
\begin{aligned}
\left(1-\sum a_{i}^{\prime} b_{i}^{\prime}\right) a_{j}^{\prime} & =a_{j}^{\prime}-\sum_{i} a_{i}^{\prime}\left(b_{i}^{\prime} a_{j}^{\prime}\right) \\
& =a_{j}^{\prime}-\sum_{i} a_{i}^{\prime}\left(\sum_{l} \lambda_{i l} b_{l}^{\prime}\right) \\
& =a_{j}^{\prime}-\sum_{i, l} \lambda_{i l} a_{i}^{\prime} b_{l}^{\prime} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
T\left(\left(1-\sum a_{i}^{\prime} b_{i}^{\prime}\right) a_{j}^{\prime}\right) & =T\left(a_{j}^{\prime}\right)-\sum_{i, l} \lambda_{i l} T\left(a_{i}^{\prime} b_{l}^{\prime}\right) \\
& =T\left(a_{j}^{\prime}\right)-\sum_{i} \lambda_{i i} \\
& =T\left(a_{j}^{\prime}\right)-T\left(a_{j}^{\prime}\right) \\
& =0 .
\end{aligned}
$$

This holds for all α_{j}^{\prime}. Therefore $\Sigma a_{i}^{\prime} b_{i}^{\prime}=1$. Now by the corollary of Lemma 1, $\sum a_{i}^{\prime} b_{i}^{\prime}=1=\sum a_{i} b_{i} c$ for some unit $c \in A$. This proves $\sum a_{i} b_{i}$ is a unit.
(ii) \Longrightarrow (iii). Clear.
(iii) \Longrightarrow (i). It always holds that $\phi\left(\sum a_{i} b_{i}, a_{j}\right)=T\left(a_{j}\right)$ for all j. Hence there exists j such that $T\left(a_{j}\right) \neq 0$. If $0 \neq a \in A$ and $T(a A)=0$, then $0=T(a A)=T(A a A)=$ $T(A)$ since A is simple. This is a contradiction. Therefore T is nondegenerate.

Finally we give an example as we mentioned in the introduction.
Example. Let char $k=2$ and $A=M_{2}(k)$. Let $P=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right) . \quad$ Then $P^{-1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$. Let ϕ and ψ be bilinear forms such that $\phi\left(e_{i j}, e_{k l}\right)=\delta_{i l} \delta_{j k}$ and $\phi(a, b)=\phi\left(a, b P^{-1}\right)$ for $a, b \in A$, where $e_{i j}, e_{k l}$ are matrix units in A. Then $\left\{e_{i j}\right\},\left\{e_{j i} P\right\}$ are dual bases with respect to ψ. For $x \in A$, if $x=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ then $\sum_{i, j} e_{i j} x e_{j j} P=\left(\begin{array}{cc}a+d & a+d \\ a+d & 0\end{array}\right)$. Therefore there is no possibility for $\sum_{i, j} e_{i j} x e_{j i} P$ to become a central unit.

Acknowledgement.

The authors would like to express their gratitude to the referee for many helpful suggestions.

References

[1] Curtis, C. W. and Reiner, I., Representation theory of finite groups and associative algebras, Wiley (Interscience), New York, 1962.
[2] Feit, W., The representation theory of finite groups, North-Holland, Amsterdam • New York - Oxford, 1982.
[3] Higman, D. G., On orders in separable algebras, Can. J. Math. 7 (1955), 509-515,

Faculty of Education
Gunma University
Maebashi, 371, Japan
Faculty of General Study
Gunma University
Maebashi, 371, Japan

[^0]: Received by May 13, 1985.

