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1. Introduction.

Let $k$ be a field with arbitarary characteristics and $A$ a finite dimentional k-
algebra. Then $A$ is said to be a separable algebra if for any extension field $E$ of
$k,$ $A\otimes_{k}E$ is a semisimple E-algebra. Let $a_{1},$ $\cdots,$ $a_{n}$ be a k-basis of $A$ and $T_{A_{1}k}$

$=T$ a trace form of $A$ over $k$ , that is, for $x\in A$ , if $a_{i}x=\sum_{j}\alpha_{ij}a_{j}(\alpha_{ij}\in k)$ then $T(x)$

$=\Sigma\alpha_{ii}$ .
It is well known that if $A$ is a finite extension field of $k$ , then $A$ is a sepa-

rable extension of $k$ iff $A$ is a separable algebra and iff $T$ is nondegenerate (the

bilinear form $A\times A\rightarrow k$ is defined by $(x, y)-T(xy)$ as usual). But in case
where an algebra $A$ is not necessarily a field, the situation is more complicated.

Before stating Higman’s result, let us fix the algebra $A$ with several assump-
tions. Throughout this paper unless otherwise specified let $k$ be a field with
arbitrary characteristic and $A$ a finite dimensional Frobenius k-algebra with non-
degenerate associative bilinear from $\phi:A\times A\rightarrow k$ with fixed dual bases $\{a_{i}\},$ $\{b_{i}\}$ (i.e.
$\phi(a_{i}, b_{j})=\delta_{ij})(i, j=1, \cdots, n)$ .

Now Higman’s result is as follows.

THEOREM 1 (Higman). The following are equivalent.
(i) $A$ is a separable k-algebra.
(ii) There exists a nondegenerate associative bilinear from $\psi:A\times A\rightarrow k$ with dual

bases $\{a_{i}^{\prime}\},$ $\{b_{i}^{\prime}\}$ such that $\Sigma b_{i}^{\prime}xa_{i}^{\prime}=1$ for some $x\in A$ .

It should be noted that under the same situation of the theorem $\Sigma b_{i}^{\prime}xa_{i}^{\prime}$ is
always in the center of $A$ for any $x\in A$ but $\Sigma a_{i}^{\prime}xb_{i}^{\prime}$ is not (we shall give a simple
example later). It seems natural to ask that what $\Sigma a_{i}^{\prime}xb_{i}^{\prime}=1$ does imply. To
this question we obtained the following result.

THEOREM 2. Let $\{a_{\dot{t}}\},$ $\{b_{i}\}$ be dual bases with respect to $\phi$ . Then the following
are equivalent.
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(i) $A$ is a separable k-algebra.
(ii) $\Sigma b_{i}ca_{i}=1$ for some unit $c\in A$ .
(iii) $\Sigma b_{i}ca_{i}$ is a unit for some unit $c\in A$ .
(iv) $\Sigma b_{i}xa_{i}$ is a unit for some $x\in A$ .
(v) $\Sigma a_{i}cb_{i}$ is a unit for some unit $c\in A$ .
(iv) $\Sigma a_{i}xb_{i}$ is a unit for some $x\in A$ .

Each condition in the above theorem is not equivalent to the condition “
$\Sigma a_{i}xb_{i}$

$=1$ for some $x\in A$ (or a unit $x\in A$) (see Example). Conditions (ii) to (iv) are
known, but conditions (v) and (vi) are new, which we want to remark in this
paper.

For the next theorem the equivalence of (i) and (iii) are well known.

THEOREM 3. The following are equivalent.
(i) The trace form $T_{A/k}$ is nondegenerate,
(ii) $\Sigma a_{i}b_{i}$ is a unit.
(iii) There exists an extention field $E$ of $k$ such that $A\otimes_{k}E\equiv\oplus_{i}M_{n_{i}}(E)$ such that

$n_{i}\neq 0$ in $k$ for each $i$ , where $M_{n_{i}}(E)$ is a full matrix algebra of degree ni over
E.

2. Proof of Theorems.

To prove Theorem 2 we need several lemmas. The methods of proofs of
next two lemmas are the same as in [1, section 71], so the proofs are omitted.

LEMMA 1. Let $U_{A}$ and $AV$ be right and left A-modules with finite dimentions
over $k$ , respectively. Let $\psi:U\times V\rightarrow k$ be a nondegenerate associative bilinear from
and $\psi^{\prime}$ : $U\times V\rightarrow k$ any map. Then $\psi^{\prime}$ is a nondegenerate asociative bilinear form
if and only if there exist automorphisms $F$ of $U_{A}$ and $G$ of $AV$ such that the dia-
gram

$U\times V\underline{F\times G}U\times V$

$\psi^{\prime}\backslash k\nearrow^{\psi}$

is commutative.

COROLLARY. Let $\psi:A\times A\rightarrow k$ be a nondegenerate associative bilinear form.
Then there exist units $c_{1},$ $c_{2}\in A$ such that $\{c_{1}a_{i}\},$ $\{b_{i}\}$ and $\{a_{i}\},$ $\{b_{i}c_{2}\}$ are dual bases
with respect to $\psi$ .

LEMMA 2. Let $U,$ $V$ and $\psi:U\times V\rightarrow k$ be as in Lemma 1. Let $\{u_{i}\},$ $\{v_{i}\}$ and
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$\{u_{i}^{\prime}\},$ $\{v_{i}^{\prime}\}$ be two pairs of dual bases. Then for any $a\in A,$ $\Sigma u_{i}a\otimes v_{i}=\Sigma u_{i}^{\prime}a\otimes v_{i}^{\prime}$ in
$U\otimes_{k}V$.

COROLLARY. Let $e$ and $f$ be idempotents in A. Suppose there exists a non-
degenerate associative bilinear form $\psi:eA\times Af\rightarrow k$ with dual bases $\{c_{i}\},$ $\{d_{i}\}$ and {c\’i},
$\{d_{i}^{\prime}\}$ . Then for any $a\in A,$ $\Sigma c_{i}ad_{i}=\Sigma c_{i}^{\prime}ad_{i}^{\prime}$ holds.

LEMMA 3. Let $B$ be a finite dimensional simple k-algebra. If $B$ is separable
then there exists a nondegenerate associative bilinear form $\psi:B\times B\rightarrow k$ with dual
bases $\{c_{i}\},$ $\{d_{i}\}$ such that $\Sigma d_{i}c_{i}=1$ .

PROOF. We may assume $B=M_{n}(D)$ with $D$ a division algebra. For any ex-
tension field $E$ of $k,$ $M_{n}(D)\otimes_{k}E\cong M_{n}(D\otimes_{k}E)$ is a semisimple E.algebra by assump-
tion. Hence $D\otimes_{k}E$ is also a semisimple E-algebra by Morita theorem. This prove
that $D$ is a separable k-algebra. Then by Theorem 1 and Lemma 1, there exists
a nondegenerate associative bilinear form $\phi_{0}$ : $D\times D\rightarrow k$ with dual bases $\{g_{i}\},$ $\{h_{i}\}$

such that $\Sigma h_{i}g_{i}=1$ . Let us define

$\phi_{1}$ : $M_{n}(D)\times M_{n}(D)\rightarrow k$ via $\phi_{1}(\alpha\beta)=\sum_{i,j}\phi_{0}(\alpha_{ij}, \beta_{ji})$

for $\alpha=(\alpha_{ij})$ and $\beta=(\beta_{ij})$

Then by a routine verification we know that $\phi_{1}$ is a nondegenerate associative
bilinear form. Let $e_{ij}^{k}=(\alpha_{lm})$ and $f_{ji}^{k}=(\beta_{lm})$ be such that $\alpha_{ij}=g_{k},$ $\beta_{ji}=h_{k},$ $\alpha_{lm}=0$ for
$(l, m)\neq(i, j)$ and $\beta_{lm}=0$ for $(l, m)\neq(j, i)$ . Then

$\phi_{1}(e_{ij}^{k}, f_{rs}^{l})=\sum_{lm}\phi_{0}(\alpha_{lm}, \beta_{ml})$

$=\phi_{0}(\alpha_{ij}, \beta_{ji})+\phi_{0}(\alpha_{sr}, \beta_{rs})$

$=\delta_{is}\delta_{jr}\phi_{0}(g_{k}, h_{t})$

$=\delta_{is}\delta_{jr}\delta_{kl}$ .

Thus $\{e_{ij}^{k}\},$ $\{f_{ji}^{k}\}$ are dual bases. Moreover

$\sum_{i,j,k}f_{ij}^{k}e_{ji}^{k}=\sum_{i.j.k}(h_{k}e_{ij})(g_{k}e_{ji})$ ($e_{ij}=matrix$ unit)

$=\sum(\sum h_{k}g_{k})e_{ii}$

$i.jk$

$=\sum_{t.j}e_{ii}$

$=nI$ $(I=identity)$ .
Let $c=(c_{ij})\in M_{n}(D)$ be nonsingular such that $c_{11}=1$ and $e_{ii}=0$ for $i\geq 2$ . Thus by
Lemma 1, $\{e_{ij}^{k}\},$ $\{f_{ji}^{k}c\}$ are dual bases of some nondegenerate associative bilinear
form $\psi:M_{n}(D)\times M_{n}(D)\rightarrow k$ . In this case $\sum_{i,j,k}f_{ji}^{k}ce_{ij}^{k}=I$ holds.

LEMMA 4. If $A$ is local but not a division algebra, then $\Sigma a_{i}xb_{i}\in N$ for all
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$x\in A$ , where $N$ is the Jacobsm radical of $A$ .

PROOF. Let $\theta;A_{A}\rightarrow\hat{A}_{A}(\hat{A}=Hom_{k}(A, k))$ be the isomorphism induced from $\phi$ .
We can obtain a k-basis $\{b_{i}^{\prime}\}$ of $A$ as a continuation of a k-basis of $N$. Let $\{a_{i}^{\prime}\}$ be

the dual basis of $\{b_{i}^{\prime}\}$ with respct to $\phi$ . Then $\theta(a_{i}^{\prime})=\eta_{b_{i}^{\prime}}$ where $\eta_{b_{i}^{\prime}}(b_{j}^{\prime})=\delta_{ij}$ . By

the corollary of Lemma 2, $\Sigma a_{i}xb_{i}=\Sigma a_{i}^{\prime}xb_{i}^{\prime}$ for all $x\in A$ . We show that if $a_{i}^{\prime}$ is a
unit then $b_{i}^{\prime}\in N$. Suppose $b_{i}^{\prime}$ is a unit. Since $\theta(a_{i}^{\prime})=\theta(1)a_{i}^{\prime}=\eta_{b_{i}^{\prime}},$ $\theta(1)=\eta_{b_{i}^{\prime}}a_{i^{-1}}^{\prime}$ . If
$0\neq\alpha\in N$ then $\theta(\alpha)=\theta(1)\alpha=\eta_{b_{i}^{\prime}}a_{i^{-1}}^{\prime}\alpha$ . Hence for all $a\in A,$ $(\eta_{b_{i}^{\prime}}a_{i^{-1}}^{\prime}\alpha)(a)=\eta_{b_{i}^{\prime}}(a_{i^{-1}}^{\prime}\alpha a)$

$=0$ since $a_{i^{-1}}^{\prime}\alpha a\in N$ and $b_{i}^{\prime}$ is a unit (hence $a_{i}^{J-1}\alpha a$ is expressed as a linear combi-
nation of $b_{j}^{\prime}\in N$). Therefore $\eta_{b_{i}}\prime a_{i^{-1}}^{\prime}\alpha=0$ . This prove $\theta(\alpha)=0$ . But $\theta$ is an iso-
morphism, which is a contradiction.

Now we can prove our result.

PROOF of THEOREM 2.

As we mentioned before, it is known that conditions (i) to (iv) are equivalent
each other. $(i)\Rightarrow(v)$ is clear since $A$ is a symmetric algebra. $(v)\Rightarrow(vi)$ is also
clear. So we only need to prove $(vi)\Rightarrow(i)$ . Let $1=e_{1}+\cdots+e_{n}$ be a decomposi-

tion of 1 to orthogonal primitive idempotents. Then $ A=e_{1}A\oplus\cdots\oplus e_{n}A\cong\hat{Ae}_{1}\oplus\cdots$

$\oplus\hat{Ae_{n}}$ . Hence there is a permutation $\sigma$ of $\{$ 1, 2, $\cdot$ . . $n\}$ such that $e_{1}A\cong\hat{Ae_{\sigma(i)}}$ .
Note that $e_{i}A\cong e_{j}A$ iff $Ae_{i}\cong Ae_{j}$ . Suppose $eA\cong\sigma(i)A$ . Then $Ae_{\sigma^{2}(i)}\cong e_{\sigma(i)}\hat{A}\cong\hat{e_{i}A}$

$\cong Ae_{\sigma(i)}$ . Hence $e_{\sigma(i)}A\cong e_{\sigma^{2}(i)}A$ . By the same argument we obtain $e_{i}A\cong e_{\sigma^{r}(i)}A$

for all integers $r$. Let $s$ be the smallest positive integer such that $\sigma^{s}(i)=i$ . Let
$\tau=(i\sigma(i)\cdots\sigma^{s-1}(i))$ be a cyclic permutation. Then $\sigma\tau^{-1}$ fixes $\sigma^{f}(i)$ for $r=0,1$ , $\cdot$

$s-1$ . It is clear that $\sigma\tau^{-1}$ plays the same role as $\sigma$ . So we may assume that
$eA\simeq e_{\sigma(i)}A$ iff $\sigma(i)=i$ . Let $\phi_{i}$ : $e_{i}A\times Ae_{\sigma(i)}\rightarrow k$ be the nondegenerate associative bi-

linear form induced from $e_{i}A\cong\hat{Ae_{\sigma(i)}}$ . Let $\psi:A\times A\rightarrow k$ be such that $\psi(a, b)=$

$\sum_{i}\phi_{i}(e_{i}a, be_{\sigma(i)})$ for $a,$ $b\in A$ . Then it is easily verified that $\psi$ is a nondegenerate
associative bilinear form. Let $\{a_{if}|j\},$ $\{b_{j\sigma(i)}|j\}$ be dual bases with respect to $\phi_{i}$ .
Then $\{a_{ij}|i, j\},$ $\{b_{j\sigma(i)}|i, j\}$ form dual bases with respect to $\psi$ . By assumption

$\sum_{i}$ aixbi is a unit in $A$ . There exists a unit $c\in A$ such that $\{a_{i}\},$ $\{b_{i}c\}$ are dual
bases with respect to $\psi$ . Now $u=\sum_{i}a_{i}xb_{i}c=\sum_{j,k}a_{jk}xb_{k\sigma(j)}$ is a unit. Note that if
$\sigma(i)=i$ then $\sum_{j}a_{ij}xb_{f\sigma(i)}=u_{i}$ may be a unit in $e_{i}Ae_{i}$ and if $\sigma(i)\neq i$ then $\sum_{j}a_{ij}xb_{ja(i)}$

$=r_{i}\in N$ since $e_{i}A\not\cong e_{\sigma(i)}A$ implies $a_{ij}xb_{j\sigma(i)}\in e_{i}Ae_{\sigma(i)}=e_{i}Ne_{a(i)}$ After renumbering
we may assume $u=u_{1}+\cdots+u_{t}+r_{l+1}+\cdots+r_{n}$ . Then $ u_{1}+\cdots+u_{t}=u-(r_{t+1}+\cdots$

$i.+r_{n})$ is a unit in $A$ since $r_{l+1}+\cdots+r_{n}\in N$. Thus $t=n$ and this implies $e_{i}A\cong\hat{Ae_{i}}$

for all $i$ . Then it is well known that $eA$ had the same top and socle. Let $\phi_{ij}$ :
$e_{i}Ae_{j}\times e_{j}Ae_{i}\rightarrow k$ be the restriction of $\phi_{i}$ . Then $\phi_{ij}$ is a nondegenerate associative
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bilinear form over the algebra $e_{j}Ae_{j}$ . Now let $\{a_{ij}^{k}|k\},$ $\{b_{ji}^{k}|k\}$ be dual bases with
respect to $\phi_{ij}$ . Then $\{a_{ij}^{k}|j, k\},$ $\{b_{ji}^{k}|j, k\}$ are dual bases with respect to $\phi_{i}$ since
$\phi_{i}(a_{ij}^{k}, b_{li}^{m})=\delta_{jl}\phi_{ij}(a_{ij}^{k}, b_{li}^{m})=\delta_{jl}\delta_{km}$ . Since $\sum_{j,k}a_{ij}^{k}xb_{ji}^{k}$ is a unit in $e_{i}Ae_{i}$ , there is an
index $j$ such that $\sum_{k}a_{ij}^{k}xb_{ij}^{k}$ is a unit in $e_{i}Ae_{i}$ . Let $f=e_{j}fe_{i},$ $g=e_{i}ge_{j}$ be such that
$fg=e_{j},$ $gf=e_{i}$ . Let us define $\psi_{if}$ : $e_{i}Ae_{i}\times e_{i}Ae_{i}\rightarrow k$ as $\psi_{ij}(a, b)=\phi_{ij}(ag, fb)$ . Then it is
easily verified that $\{a_{ij}^{k}f\},$ $\{gb_{ji}^{k}\}$ form dual bases with respect to $\psi_{ij}$ . Then
$\sum_{k}(a_{ij}^{k}f)(gxf)(gb_{ji}^{k})=\sum_{k}a_{ij}^{k}xb_{ji}^{k}$ , which is a unit in $e_{i}Ae_{i}$ . Hence by Lemma 4, $e_{i}Ae_{i}$

is a division algebra. Since the top and the socle of $e_{i}A$ concide, $e_{i}A$ has to be
simple. This proves that $A$ is semisimple. For any extension field $E$ of $k$ ,

$A\otimes_{k}E$ satisfies the condition (vi). This proves that $A$ is a separable algebra.
This completes the proof of the theorem.

Next let us give a proof of Theorem 3.

PROOF of THEOREM 3.

Since the equivalence between (i) and (iii) is well known, we only show the
equivalence of (i) and (ii). If $T$ is nondegenerate then $A$ is a separable algebra.
Hence in particular $A$ is a direct sum of simple algebras. Thus the proof is
complete by the next lemma.

LEMMA 5. The following are equivalent if $A$ is simple.
(i) $T_{A/k}$ is nondegenerate.
(ii) $\Sigma a_{i}b_{i}$ is a unit.
(iii) $\Sigma a_{i}b_{i}\neq 0$ .

PROOF. $(i)\Rightarrow(ii)$ . Let $\{a_{i}^{\prime}\},$ $\{b_{i}^{\prime}\}$ be dual bases with respect to $T$. Let $b_{i}^{\prime}a_{j}^{\prime}$

$=\sum_{l}\lambda_{il}b_{l}^{\prime}(\lambda_{il}\in k)$ . For a fixed $a_{j}^{\prime}$ ,

$(1-\Sigma a_{i}^{\prime}b_{i}^{\prime})a_{j}^{\prime}=a_{j}^{\prime}-\sum_{i}a_{i}^{\prime}(b_{i}^{\prime}a_{j}^{\prime})$

$=a_{j}^{\prime}-\sum_{i}a_{i}^{\prime}(\sum_{l}\lambda_{il}b_{l}^{\prime})$

$=a_{j}^{\prime}-\sum_{i,l}\lambda_{il}a_{i}^{\prime}b_{l}^{\prime}$ .
Thus

$T((1-\sum a_{i}^{\prime}b_{i}^{\prime})a_{j}^{\prime})=T(a_{j^{\prime}})-\sum_{i.l}\lambda_{il}T(a_{i}^{\prime}b_{l}^{\prime})$

$=T(a_{j}^{\prime})-\sum_{i}\lambda_{ii}$

$=T(a_{j}^{\prime})-T(a_{j}^{\prime})$

$=0$ .

This holds for all $a_{j}^{\prime}$ . Therefore $\Sigma a_{i}^{\prime}b_{i}^{\prime}=1$ . Now by the corollary of Lemma 1,
$\sum a_{i}^{\prime}b_{i}^{\prime}=1=\sum a_{i}b_{i}c$ for some unit $c\in A$ . This proves $\sum a_{i}b_{i}$ is a unit.

$(ii)\Rightarrow(iii)$ . Clear.
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$(iii)\Rightarrow(i)$ . It always holds that $\phi(\sum a_{i}b_{i}, a_{j})=T(a_{j})$ for all $j$ . Hence there ex-
ists $j$ such that $T(a_{j})\neq 0$ . If $0\neq a\in A$ and $T(aA)=0$ , then $0=T(aA)=T(AaA)=$

$T(A)$ since $A$ is simple. This is a contradiction. Therefore $T$ is nondegenerate.
Finally we give an example as we mentioned in the introduction.

EXAMPLE. Let char $k=2$ and $A=M_{2}(k)$ . Let $P=\left(\begin{array}{ll}1 & 1\\1 & 0\end{array}\right)$ . Then $P^{-1}=\left(\begin{array}{l}01\\11\end{array}\right)$ .
Let $\phi$ and $\psi$ be bilinear forms such that $\phi(e_{ij}, e_{kl})=\delta_{il}\delta_{jk}$ and $\psi(a, b)=\phi(a, bP^{-1})$

for $a,$ $b\in A$ , where $e_{ij},$ $e_{kl}$ are matrix units in $A$ . Then $\{e_{ij}\},$ $\{e_{j}{}_{i}P\}$ are dual bases

with respect to $\psi$ . For $x\in A$ , if $x=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ then $\sum_{i.j}e_{ij}xe_{jj}P=\left(\begin{array}{ll}a+d & a+d\\a+d & 0\end{array}\right)$ . There-

fore there is no possibility for $\sum_{i,j}e_{ij}xe_{ji}P$ to become a central unit.
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