UNIQUENESS OF CERTAIN 3-DIMENSIONAL HOMOLOGICALLY VOLUME MINIMIZING SUBMANIFOLDS IN COMPACT SIMPLE LIE GROUPS

By
Yoshihiro Ohnita and Hiroyuki Tasaki

1. Introduction.

The purpose of this paper is to prove uniqueness of certain 3-dimensional homologically volume minimizing submanifolds in compact simple Lie groups.

Let G be a connected compact simple Lie group whose rank is greater than 1 and G_{1} be an analytic subgroup of G associated with the highest root of G. The explicit definition of G_{1} will be found in Section 2. It is well known that the homology class [G_{1}] represented by G_{1} generates the real homology group $H_{3}(G ; \boldsymbol{R})$ of G. Furnishing G with a bi-invariant Riemannian metric <, >, we consider a volume minimizing submanifold contained in the real homology class [G_{1}]. Using the notion of calibration introduced by Harvey-Lawson [1], the second named author has proved the following theorem in his paper [5].

Theorem 1. If M is a compact oriented 3-dimensional submanifold of G contained in the real homology class [$\left.G_{1}\right]$, then

$$
\operatorname{vol}\left(G_{1}\right) \leqq \operatorname{vol}(M) .
$$

In this paper we investigate submanifolds M contained in [G_{1}] which satisfy the equality:

$$
\operatorname{vol}\left(G_{1}\right)=\operatorname{vol}(M)
$$

and obtain the following theorem.
Theorem 2. Let M be a compact oriented 3-dimensioual submanifold of G contained in $\left[G_{1}\right]$. The equality

$$
\operatorname{vol}\left(G_{1}\right)=\operatorname{vol}(M)
$$

holds if and only if M is congruent with G_{1} in G. In particular, G_{1} is a unique volume minimizing submanifold contained in $\left[G_{1}\right] u p$ to congruence in G.

[^0]Remark. Theorem 2 is an affirmative answer to the problem posed in [5, p. 126 Remark].

2. Preliminaries.

Let g be the Lie algebra of G. Take a maximal Abelian subalgebra t in g, then the complexification tc of t is a Cartan subalgebra of the complexification g^{C} of g. For each element α in t, put

$$
\left.\mathfrak{g}_{\alpha}=\{X \in \mathfrak{g} \boldsymbol{c} ;[H, X]=\sqrt{-1}\langle\alpha, H\rangle X \text { for each } H \in\}\right\}
$$

An element α in $t-\{0\}$ is called a root if $\mathfrak{g}_{a} \neq\{0\}$. Let Δ denote the set of all roots. We obtain a direct sum decomposition of g^{c} :

$$
\mathfrak{g}_{\boldsymbol{c}}^{\boldsymbol{c}}={ }_{\mathrm{t}}^{\boldsymbol{c}} \boldsymbol{C}+\sum_{\boldsymbol{\alpha} \in \mathcal{A}} \mathrm{g}_{\alpha} .
$$

Fix a lexicographic ordering on t and denote by Δ_{+}the set of all positive roots in Δ.

The following lemma follows from the above direct sum decomposition of $\mathbf{g C}$. For details of the proof, see Section 3 of Chapter VI in Helgason [2].

Lemma 3. There exist unit vectors E_{α}, F_{α} in g for each $\alpha \in \Delta_{+}$in such a way that:
i)

$$
\mathfrak{g}=\mathfrak{t}+\sum_{\alpha \in A_{+}} \boldsymbol{R} E_{\alpha}+\sum_{\alpha \in \Theta_{+}} \boldsymbol{R} F_{\alpha}
$$

is an orthogonal direct sum decomposition of \mathfrak{g};
ii)

$$
\left[H, E_{\alpha}\right]=\langle\alpha, H\rangle F_{\alpha}, \quad\left[H, F_{\alpha}\right]=-\langle\alpha, H\rangle E_{\alpha}, \quad\left[E_{\alpha}, F_{\alpha}\right]=\alpha
$$

for $\alpha \in \Delta_{+}$and $H \in t$.
Let δ be the highest root in Δ_{+}and set

$$
\mathfrak{g}_{1}=\boldsymbol{R} \delta+\boldsymbol{R} E_{\mathbf{\delta}}+\boldsymbol{R} F_{\boldsymbol{j}}
$$

Then g_{1} is a compact 3 -dimensional simple Lie subalgebra of \mathfrak{g}. Let G_{1} be the analytic subgroup of G corresponding to g_{1}. Wolf has proved that G_{1} is simply connected when G is centerless in the proof of Theorem 5.4 in [6]. Therefore G_{1} is simply connected, even if G has a nontrivial center.

Put

$$
\phi(X, Y, Z)=\frac{1}{|\delta|}\langle[X, Y], Z\rangle
$$

for X, Y, and Z in \mathfrak{g}. By regarding an element of g as a left-invariant vector field on G, ϕ is a bi-invariant 3 -form on G. In particular, ϕ is a closed form on G.

We introduce an orientation on \mathfrak{g}_{1} such that $\left\{\delta, E_{\dot{\delta}}, F_{\dot{\delta}}\right\}$ is a positive basis of \mathfrak{g}_{1}.
Lemma 4. ([5]) For each 3-dimensional oriented subspace ξ in \mathfrak{g}, the inequality

$$
\left.\phi\right|_{\xi} \leqq \operatorname{vol}_{\xi}
$$

holds. The equality holds if and only if there is an element g in G such that

$$
\boldsymbol{\xi}=\operatorname{Ad}(g) g_{1}
$$

and that $\operatorname{Ad}(g): g_{1} \rightarrow \xi$ is orientation preserving.

3. Proof of Theorem 2.

At first we review the proof of Theorem 1.
Let M be a compact oriented 3 -dimensional submanifold of G contained in the real homology class [G_{1}]. Since ϕ is a bi-invariant form on G, the inequality of ϕ stated in Lemma 4 holds at every point in G. The proof of Theorem 1 is as follows:

$$
\operatorname{vol}\left(G_{1}\right)=\int_{G_{1}} \operatorname{vol}_{G_{1}}=\int_{G_{1}} \phi=\int_{M} \phi \leqq \int_{M} \operatorname{vol}_{M}=\operatorname{vol}(M)
$$

The equality holds if and only if $\left.\phi\right|_{M}=\operatorname{vol}_{\boldsymbol{M}}$. A 3-dimensional oriented submanifold M of G which satisfies $\left.\phi\right|_{M}=\operatorname{vol}_{M}$ is called a ϕ-submanifold of G. So the following lemma completes the proof of Theorem 2.

Lemma 5. If M is a ϕ-submanifold of G, then M is congruent with a piece of G_{1} in G. Furthermore, if M is complete, then M is congruent with G_{1}.

Proof. We show that M is totally geodesic in G. Let x be any point of M. Since G is a homogeneous Riemannian manifold, we may suppose that x is the identity element e of G. We may show that the second fundamental form h of M vanishes at e. It follows from Lemma 4 that there is an element g in G such that $T_{e}(M)=\operatorname{Ad}(g) g_{1}$. For simplicity we set $T_{e}(M)=T_{e}\left(G_{1}\right)$ and identify $T_{e}(G)$ with g. Then the following equations hold:

$$
\begin{equation*}
T_{e}(M)=g_{1} \tag{1}
\end{equation*}
$$

and

$$
T_{e}^{\perp}(M)=\{H \in \mathrm{t} ;\langle\delta, H\rangle=0\}+\sum_{\alpha \in A_{+}(\delta)}\left(\boldsymbol{R} E_{\alpha}+\boldsymbol{R} F_{\alpha}\right) .
$$

The curvature tensor R of G is given by

$$
\begin{equation*}
R(X, Y) Z=-\frac{1}{4}[[X, Y], Z] \tag{2}
\end{equation*}
$$

for X, Y and Z in g. See, for example, Milnor [3], So the assumption on M and Lemma 4 imply that $R(X, Y) Z$ is contained in the tangent space of M for any tangent vectors X, Y, and Z of M, that is, M is a curvature invariant submanifold of G. As M is curvature invariant and G is locally symmetric, the equation

$$
\begin{align*}
h(W, R(X, Y) Z)= & R(h(W, X), Y) Z+R(X, h(W, Y)) Z \tag{3}\\
& +R(X, Y) h(W, Z)
\end{align*}
$$

holds for tangent vectors X, Y, Z, and W of M. The above equation is due to Ohnita [4], Putting $W=X$ and $Z=Y$ in (3), we obtain

$$
\begin{align*}
h(X, R(X, Y) Y)= & R(h(X, X), Y) Y+R(X, h(X, Y)) Y \tag{4}\\
& +R(X, Y) h(X, Y)
\end{align*}
$$

From now on we shall consider h at e. Let X and Y be orthonormal vectors in g_{1}. Then

$$
R(X, Y) Y=\frac{1}{4}|\delta|^{2} X
$$

By (2) and (4),

$$
\begin{align*}
|\delta|^{2} h(X, X)= & -[[h(X, X), Y], Y]-[[X, h(X, Y)], Y] \tag{5}\\
& -[[X, Y], h(X, Y)] .
\end{align*}
$$

Let \mathfrak{z} be the centralizer of g_{1} in \mathfrak{g} and \mathfrak{m} be the orthogonal complement of \mathfrak{z} in $T_{e}^{\perp}(M)$. Then

$$
z=\{H \epsilon \mathfrak{f} ;\langle\delta, H\rangle=0\}+\sum_{\substack{\alpha \in a_{+} \\\langle\alpha, \delta\rangle=0}}\left(\boldsymbol{R} E_{\alpha}+\boldsymbol{R} F_{\alpha}\right)
$$

and

$$
\mathfrak{m}=\sum_{\substack{\alpha \in \alpha+-(8) \\\langle\alpha,\rangle \neq 0}}\left(R E_{\alpha}+R F_{\alpha}\right) .
$$

According to Wolf [6], $\left(g, z+g_{1}\right)$ is a compact quaternionic symmetric pair. So the right hand side of the equation (5) is contained in \mathfrak{m}. Therefore the image of h is contained in \mathfrak{m}.

Since $\left(\mathfrak{g}, \mathfrak{z}+\mathfrak{g}_{1}\right)$ is a quaternionic symmetric pair, \mathfrak{m} has a quaternionic vector space structure and g_{1} acts on \mathfrak{m} as the multiplications by purely quaternionic numbers. In particular, we obtain

$$
\begin{equation*}
[X,[Y, h(X, Y)]]=-[Y,[X, h(X, Y)]], \tag{6}
\end{equation*}
$$

because X and Y are orthogonal vectors in \mathfrak{g}_{1} and $h(X, Y) \in \mathfrak{m}$.
The equation

$$
\begin{equation*}
|\delta|^{2} h(X, X)=-[Y,[Y, h(X, X)]]+3[Y,[X, h(X, Y)]] \tag{7}
\end{equation*}
$$

follows from (5), (6), and the Jacobi identity.
On the other hand

$$
\begin{equation*}
[U,[U, V]]=-\frac{1}{4}|\delta|^{2} V \tag{8}
\end{equation*}
$$

for any unit vector U in \mathfrak{g}_{1} and any vector V in \mathfrak{m}. Indeed, since each unit vector in \mathfrak{g}_{1} is G_{1}-conjugate to $\delta /|\delta|$ and \mathfrak{m} is $\operatorname{Ad}\left(G_{1}\right)$-invariant, we may suppose $U=\delta /|\delta|$. Put

$$
V=\sum_{\substack{\alpha \in A_{1}+(0) \\\langle\alpha, \delta\rangle \neq 0}}\left(s_{\alpha} E_{\alpha}+t_{\alpha} F_{\alpha}\right) .
$$

By ii) of Lemma 3 and the fact that

$$
\frac{2\langle\alpha, \delta\rangle}{\langle\delta, \delta\rangle}=1
$$

for each α in $\Delta_{+}-\{\delta\}$ with $\langle\alpha, \delta\rangle \neq 0$ (cf. Wolf [6]), we have

$$
\begin{aligned}
{[U,[U, V]] } & =-\frac{1}{|\delta|^{2}} \sum_{\substack{\alpha \in \in+,-(0) \\
\langle\alpha, j\rangle \neq 0}}\langle\alpha, \delta\rangle^{2}\left(s_{\alpha} E_{\alpha}+t_{\alpha} F_{\alpha}\right) \\
& =-\frac{|\delta|^{2}}{4} \underset{\substack{\alpha \in+,-(\delta) \\
\langle\alpha, \delta\rangle}}{ }\left(s_{\alpha} E_{\alpha}+t_{\alpha} F_{\alpha}\right) \\
& =-\frac{|\delta|^{2}}{4} V .
\end{aligned}
$$

It follows from (7) and (8) that

$$
\begin{equation*}
\frac{1}{4}|\delta|^{2} h(X, X)=[Y,[X, h(Y, X)]] \tag{9}
\end{equation*}
$$

for any orthonormal vectors X and Y in \mathfrak{g}_{1}. By (9) we also have

$$
\begin{equation*}
\frac{1}{4}|\delta|^{2} h(Y, Y)=[X,[Y, h(Y, X)]] . \tag{10}
\end{equation*}
$$

Thus by (6), (9) and (10) we get

$$
h(X, X)=-h(Y, Y)
$$

Since g_{1} is 3 -dimensional, we have

$$
h(X, X)=0
$$

for any unit vector X in g_{1} and $h=0$.
Hence M is totally geodesic in G. Since G_{1} is also totally geodesic in G, M is a piece of G_{1}.
Q.E.D.

References

[1] Harvey, R. and Lawson, Jr., H. B., Calibrated geometry, Acta Math. 148 (1982), 47-157.
[2] Helgason, S., Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
[3] Milnor, J., Curvatures in left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329.
[4] Ohnita, Y., Stable minimal submanifolds in compact rank one symmetric spaces, Tôhoku Math. J. 38 (1986), 199-217.
[5] Tasaki, H., Certain minimal or homologically volume minimizing submanifolds in compact symmetric spaces, Tsukuba J. Math. 9 (1985), 117-131.
[6] Wolf, J. A., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047.

Yoshihiro Ohnita and Hiroyuki Tasaki
Mathematical Institute Department of Mathematics
Tohoku University
Sendai, 980
Japan Japan
Current address (Y. Ohnita)
Department of Mathematics
Tokyo Metroporitan University
Fukasawa, Setagaya, Tokyo, 158
Japan

[^0]: Received April 4, 1985.

