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1. Introduction.

The purpose of this paper is to prove uniqueness of certain 3-dimensional
homologically volume minimizing submanifolds in compact simple Lie groups.

Let $G$ be a connected compact simple Lie group whose rank is greater than
1 and $G_{1}$ be an analytic subgroup of $G$ associated with the highest root of $G$ .
The explicit definition of $G_{1}$ will be found in Section 2. It is well known that
the homology class $[G_{1}]$ represented by $G_{1}$ generates the real homology group
$H_{3}(G;R)$ of $G$ . Furnishing $G$ with a bi-invariant Riemannian metric $\langle$ , $\rangle$ , we
consider a volume minimizing submanifold contained in the real homology class
$[G_{1}]$ . Using the notion of calibration introduced by Harvey-Lawson [1], the second
named author has proved the following theorem in his paper [5].

THEOREM 1. If $M$ is a compact oriented 3-dimensional submanifold of $G$ con-
tained in the real homology class $[G_{1}]$ , then

$vol(G_{1})\leqq vol(M)$ .

In this paper we investigate submanifolds $M$ contained in $[G_{1}]$ which satisfy

the equality:

$vol(G_{1})=vol(M)$

and obtain the following theorem.

THEOREM 2. Let $M$ be a compact oriented 3-dimensioual submanifold of $G$

contained in $[G_{1}]$ . The equality

$vol(G_{1})=vol(M)$

holds if and only if $M$ is congruent with $G_{1}$ in G. In particular, $G_{1}$ is a unique
volume minimizing submanifold contained in $[G_{1}]$ up to congruence in $G$ .
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REMARK. Theorem 2 is an affirmative answer to the problem posed in [5,

p. 126 Remark].

2. Preliminaries.

Let $\mathfrak{g}$ be the Lie algebra of $G$ . Take a maximal Abelian subalgebra $t$ in $\mathfrak{g}$ ,

then the complexification $l^{C}$ of $\iota$ is a Cartan subalgebra of the complexification $\mathfrak{g}^{C}$

of $\mathfrak{g}$ . For each element $\alpha$ in $t$ , put

$\mathfrak{g}_{\alpha}=$ { $X\in \mathfrak{g}c;[H,$ $X]=\sqrt{-1}\langle\alpha,$ $H\rangle X$ for each $H\in t$}.

An element $\alpha$ in $l-\{0\}$ is called a root if $\mathfrak{g}_{a}\neq\{0\}$ . Let $\Delta$ denote the set of all roots.
We obtain a direct sum decomposition of $\mathfrak{g}^{C}$ :

$\mathfrak{g}^{C}=1^{C}+\sum_{\alpha\in\Delta}\mathfrak{g}_{\alpha}$ .

Fix a lexicographic ordering on $l$ and denote by $\Delta_{+}$ the set of all positive roots
in $\Delta$ .

The following lemma follows from the above direct sum decomposition of $\mathfrak{g}c$.
For details of the proof, see Section 3 of Chapter VI in Helgason [2].

LEMMA 3. There exist unit vectors E., $F_{\alpha}$ in $\mathfrak{g}$ for each $\alpha\in\Delta_{+}$ in such a way

that:

i) $\mathfrak{g}=t+\sum_{a\in\Delta+}RE_{a}+\sum_{+\alpha\in A}RF_{\alpha}$

is an orthogonal direct sum decomposition of $\mathfrak{g}$ ;

ii) $[H, E_{\alpha}]=\langle\alpha, H\rangle F_{\alpha}$ , $[H, F_{\alpha}]=-\langle\alpha, H\rangle E_{\alpha}$ , $[E_{a}, F_{\alpha}]=\alpha$

for $\alpha\in\Delta_{+}$ and $H\in t$ .

Let $\delta$ be the highest root in $\Delta_{+}$ and set

$\mathfrak{g}_{1}=R\delta+RE_{\delta}+RF_{\delta}$ .

Then $\mathfrak{g}_{1}$ is a compact 3-dimensional simple Lie subalgebra of $\mathfrak{g}$ . Let $G_{1}$ be the an-
alytic subgroup of $G$ corresponding to $\mathfrak{g}_{1}$ . Wolf has proved that $G_{1}$ is simply

connected when $G$ is centerless in the proof of Theorem 5.4 in [61. Therefore
$G_{1}$ is simply connected, even if $G$ has a nontrivial center.

Put

$\phi(X, Y, Z)=\frac{1}{|\delta|}\langle[X, Y], Z\rangle$

for $X,$ $Y$, and $Z$ in $\mathfrak{g}$ . By regarding an element of $\mathfrak{g}$ as a left-invariant vector
field on $G,$ $\phi$ is a bi-invariant 3-form on $G$ . In particular, $\phi$ is a closed form on $G$ .
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We introduce an orientation on $\mathfrak{g}_{1}$ such that $\{\delta, E_{\delta}, F_{\delta}\}$ is a positive basis of $\mathfrak{g}_{1}$ .

LEMMA 4. ([5]) For each 3-dimensimal oriented subspace $\xi$ in $\mathfrak{g}$ , the inequality

$\phi|_{\xi}\leqq vo1_{\xi}$

holds. The equality holds if and only if there is an element $g$ in $G$ such that

$\xi=Ad(g)\mathfrak{g}_{1}$

and that Ad $(g):\mathfrak{g}_{1}\rightarrow\xi$ is orientatim preserving.

3. Proof of Theorem 2.

At first we review the proof of Theorem 1.
Let $M$ be a compact oriented 3-dimensional submanifold of $G$ contained in the

real homology class $[G_{1}]$ . Since $\phi$ is a bi-invariant form on $G$ , the inequality of $\phi$

stated in Lemma 4 holds at every point in $G$ . The proof of Theorem 1 is as
follows:

$vol(G_{1})=\int_{G_{1}}vo1_{G_{1}}=\int_{G_{1}}\phi=\int_{M}\phi\leqq\int_{M}vo1_{M}=vol(M)$ .

The equality holds if and only if $\phi|_{M}=vo1_{M}$ . A 3-dimensional oriented submanifold
$M$ of $G$ which satisfies $\phi|_{M}=vo1_{M}$ is called a $\phi$-submanifold of $G$ . So the following
lemma completes the proof of Theorem 2.

LEMMA 5. If $M$ is a $\phi$-submanifold of $G$ , then $M$ is congruent with a piece of
$G_{1}$ in G. Furthermore, if $M$ is complete, then $M$ is congruent with $G_{1}$ .

PROOF. We show that $M$ is totally geodesic in $G$ . Let $x$ be any point of $M$

Since $G$ is a homogeneous Riemannian manifold, we may suppose that $x$ is the
identity element $e$ of $G$ . We may show that the second fundamental form $h$ of
$M$ vanishes at $e$ . It follows from Lemma 4 that there is an element $g$ in $G$ such
that $T_{e}(M)=Ad(g)\mathfrak{g}_{1}$ . For simplicity we set $T_{e}(M)=T_{e}(G_{1})$ and identify $T_{e}(G)$ with

$\mathfrak{g}$ . Then the following equations hold:

(1) $T_{e}(M)=\mathfrak{g}_{1}$

and

$T_{e^{\perp}}(M)=\{H\in l;\langle\delta, H\rangle=0\}+\sum_{+\alpha\in\Delta-\{\delta\}}(RE_{\alpha}+RF_{\alpha})$ .

The curvature tensor $R$ of $G$ is given by

(2) $R(X, Y)Z=-\frac{1}{4}[[\sim X, Y],$ $Z$ ]
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for $X,$ $Y$ and $Z$ in $\mathfrak{g}$ . See, for example, Milnor [3]. So the assumption on $M$ and
Lemma 4 imply that $R(X, Y)Z$ is contained in the tangent space of $M$ for any
tangent vectors $X,$ $Y$, and $Z$ of $M$, that is, $M$ is a curvature invariant submanifold
of $G$ . As $M$ is curvature invariant and $G$ is locally symmetric, the equation

(3) $h(W, R(X, Y)Z)=R(h(W, X),$ $Y$ )$Z+R(X, h(W, Y))Z$

$+R(X, Y)h(W, Z)$

holds for tangent vectors $X,$ $Y,$ $Z$, and $W$ of $M$ The above equation is due to
Ohnita [4]. Putting $W=X$ and $Z=Y$ in (3), we obtain

(4) $h(X, R(X, Y)Y)=R(h(X, X),$ $Y$ ) $Y+R(X, h(X, Y))Y$

$+R(X, Y)h(X, Y)$ .
From now on we shall consider $h$ at $e$ . Let $X$ and $Y$ be orthonormal vectors

in $\mathfrak{g}_{1}$ . Then

$R(X, Y)Y=\frac{1}{4}|\delta|^{2}X$ .

By (2) and (4),

(5) $|\delta|^{2}h(X, X)=-[[h(X, X), Y], Y]-[[X, h(X, Y)], Y]$

$-[[X, Y],$ $h(X, Y)$].

Let 3 be the centralizer of $\mathfrak{g}_{1}$ in $\mathfrak{g}$ and $\mathfrak{m}$ be the orthogonal complement of 3
in $T_{e}^{\perp}(M)$ . Then

$\mathfrak{z}=\{H\in \mathfrak{f};\langle\delta, H\rangle=0\}+$

$\sum_{\in\Delta+,\langle\alpha^{a},\delta\rangle=0}(RE_{\alpha}+RF_{\alpha})$

and
$\mathfrak{m}=\sum_{+a\in\Delta-|\delta\}}(RE_{a}+RF_{\alpha})$ .

According to Wolf [6], $(\mathfrak{g}, \mathfrak{z}+\mathfrak{g}_{1})$ is a compact quaternionic symmetric pair. So the
right hand side of the equation (5) is contained in $\mathfrak{m}$ . Therefore the image of $h$

is contained in $\mathfrak{m}$ .
Since $(\mathfrak{g}3+\mathfrak{g}_{1})$ is a quaternionic symmetric pair, $\mathfrak{m}$ has a quaternionic vector

space structure and $\mathfrak{g}_{1}$ acts on $\mathfrak{m}$ as the multiplications by purely quaternionic
numbers. In particular, we obtain

(6) [X, $[Y, h(X, Y)\rfloor]=-[Y, [X, h(X, Y)]]$ ,

because $X$ and $Y$ are orthogonal vectors in $\mathfrak{g}_{1}$ and $h(X, Y)\in \mathfrak{m}$ .
The equation

(7) $|\delta|^{2}h(X, X)=-[Y, [Y, h(X, X)]]+3[Y, [X, h(X, Y)]]$
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follows from (5), (6), and the Jacobi identity.
On the other hand

(8) $[U, [U, V]]=-\frac{1}{4}|\delta|^{2}V$

for any unit vector $U$ in $\mathfrak{g}_{1}$ and any vector $V$ in $\mathfrak{m}$ . Indeed, since each unit
vector in $\mathfrak{g}_{1}$ is $G_{1}$ -conjugate to $\delta/|\delta|$ and $\mathfrak{m}$ is Ad $(G_{1})$-invariant, we may suppose
$U=\delta/|\delta|$ . Put

$V=\sum_{+\alpha\epsilon\Delta-1\delta|}(s_{\alpha}E_{a}+t_{\alpha}F_{\alpha})$ .

By ii) of Lemma 3 and the fact that

$\frac{2\langle\alpha,\delta\rangle}{\langle\delta,\delta\rangle}=1$

for each $\alpha$ in $\Delta_{+}-\{\delta\}$ with $\langle\alpha, \delta\rangle\neq 0$ (cf. Wolf [6]), we have

$[U,$ $[U, V]1=-\frac{1}{|\delta|^{2}}\sum_{+a\in\Delta-\{\delta\}}\langle\alpha, \delta\rangle^{2}(s_{\alpha}E_{\alpha}+t_{\alpha}F_{\alpha})$

$=-\underline{|\delta|^{2}}$

$\Sigma$ $(s_{\alpha}E_{\alpha}+t_{\alpha}F_{\alpha})$

4 $\alpha\in\Delta+-[\delta]\langle\alpha,\delta\rangle\neq 0$

$=-\frac{|\delta|^{2}}{4}V$ .

It follows from (7) and (8) that

(9) $\frac{1}{4}|\delta|^{2}h(X, X)=[Y, [X, h(Y, X)]]$

for any orthonormal vectors $X$ and $Y$ in $\mathfrak{g}_{1}$ . By (9) we also have

(10) $\frac{1}{4}|\delta|^{2}h(Y, Y)=[X,$ $[Y, h(Y, X)]1$

Thus by (6), (9) and (10) we get

$h(X, X)=-h(Y, Y)$ .
Since $\mathfrak{g}_{1}$ is 3-dimensional, we have

$h(X, X)=0$

for any unit vector $X$ in $\mathfrak{g}_{1}$ and $h=0$ .
Hence $M$ is totally geodesic in $G$ . Since $G_{1}$ is also totally geodesic in $G,$ $M$

is a piece of $G_{1}$ . Q.E.D.
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