CORRECTIONS TO MY PAPER "ZETA FUNCTIONS OF INTEGRAL GROUP RINGS OF METACYCLIC GROUPS"

By

Yumiko HIRONAKA

In that paper, the countings of the local isomorphism classes were incorrect. For the case $A = \mathbf{Z}_p G_p$, $G_p = C_p \cdot C_q$, p and q are primes and C_q acts faithfully on C_p (cf. § 3), there are $\sum_{t=1}^q {q \choose t} 2^t \cdot t^{q-t}$ isomorphism classes of full Λ -lattices in $\Lambda \mathbf{Q}_p$, where ${q \choose t}$ is the binomial coefficient. In fact, let $\mathfrak{M} = \{\mathbf{Z}_p[\varepsilon_p] \circ C_q\text{-lattices}$ of $\mathbf{Z}_p[\varepsilon_p]\text{-rank }q\}$. Then every full Λ -lattice M in $\mathbf{Q}_p\Lambda$ can be realized as an extension of \mathbf{Z}_pC_q by some M_0 in \mathfrak{M} , and from non-isomorphic M_0 's, we have non-isomorphic Λ -lattices. Let $P = (\varepsilon_p - 1)\mathbf{Z}_p[\varepsilon_p]$ and $P^0 = \mathbf{Z}_p[\varepsilon_p]$. For a subset T of $\{0, 1, \dots, q-1\}$ such that $\#(T) = t \ge 1$, define \mathfrak{M}_T by

$$\mathfrak{M}_T = \{ M_0 \in \mathfrak{M} \mid M \oplus \bigoplus_{j \in T} P^j, i \in T \text{ if } M \oplus P^i \}.$$

Then $\#(\mathfrak{M}_T)=t^{q-t}$ and we see that $\bigcup_{T\subseteq\{0,1,\cdots,q-1\}}\mathfrak{M}_T$ (disjoint union) is a full set of representatives of the isomorphism classes of \mathfrak{M} . There are 2^t isomorphism classes in $\operatorname{Ext}_A(\boldsymbol{Z}_pC_q,M_o)$ for each $M_0\in\mathfrak{M}_T$. If $t(1\leq t\leq q)$ is given, there are $\binom{q}{t}$ choices of subsets T of $\{1,2,\cdots,q-1\}$ such that #(T)=t. Thus we have the required number.

In the case q=2, i.e. G_p is the dihedral group D_p of order 2p, we shall correct Proposition 3.6. and Theorem 3.7. to the form:

$$\begin{split} \zeta(\boldsymbol{Z}_pD_p\,;\;s) &= \frac{1 + (p-1)t^2 + 2p^2t^3 + (p^2-p)t^4 + p^3t^6}{(1-t)^2(1-t^2)(1-pt^2)}\,,\;\;\text{where}\;\;t = p^{-s}\,;\\ \zeta(\boldsymbol{Z}D_p\,;\;s) &= \zeta_{\boldsymbol{Z}}(s)^2\zeta_R(2s)\zeta_R(2s-1)\\ &\qquad \times (1 - 2^{-s} + 2^{1-2s})(1 + (p-1)t^2 + 2p^2t^3 + (p^2-p)t^4 + p^3t^6)\,, \end{split}$$

where $R = \mathbb{Z}[\varepsilon_p + \varepsilon_p^{-1}]$ and $t = p^{-s}$.

For the case $A = \mathbb{Z}_p[\xi_d] \circ G_p$ (cf. § 4), there are q+1 isomorphism classes of full A-lattices in \mathbb{Q}_p , and $L_{(\underbrace{1,\cdots,1}_r,0,\cdots,0)}$, $0 \le r \le q$, are the representatives. Hence,

we shall correct Proposition 4.5 to the form:

Received April 17, 1985.

$$\zeta(\mathbf{Z}_{p}[\xi_{d}] \circ G_{p}; s) = \sum_{r=0}^{q} \sum_{h=0}^{r} \left(\prod_{i=h}^{r-1} \frac{(P^{q} - P^{i})^{2}}{P^{r} - P^{i}} \times \prod_{i=0}^{h-1} \frac{P^{q} - P^{i}}{P^{h} - P^{i}} \times \frac{P^{-q(q+r-2h)s}}{\prod_{i=h}^{q-1} (1 - P^{i-qs})^{2}} \right).$$

Finally, we have, in stead of Theorem 4.6,

$$\begin{split} \zeta(ZD_n; s) = & \zeta_Z(s)^2 \Big(\prod_{\substack{d \mid n \\ d \neq 1}} \zeta_{R_d}(2s) \zeta_{R_d}(2s-1) \Big) \\ & \times (1 - 2^{-s} + 2^{1-2s}) \prod_{\substack{p \mid n \\ p \neq 1}} \Big(F_{p,1}(s) \prod_{\substack{d \mid n \mid p \\ d \neq 1}} F_{p,d}(s)^{g_d} \Big), \\ F_{p,1}(s) = & 1 + (p-1)t^2 + 2p^2t^3 + (p^2 - p)t^4 + p^3t^6 \qquad (t = p^{-s}), \end{split}$$

and for $d \neq 1$,

$$F_{p,d}(s)=1-(P_d+1)T_d^2+(P_d^3+2P_d^2+3P_d)T_d^4-(P_d^3+P_d^2)T_d^6+P_dT_d^8$$
 $(T_d=P_d^{-s})$,

where for each $p \mid n$ and $d \mid n/p$, $d \neq 1$, g_d is the number of distinct prime ideals over (p) in $R_d = \mathbb{Z}[\varepsilon_d + \varepsilon_d^{-1}]$ and $P_d = p^{\phi(d)/2g_d}$.

The author wishes to express her gratitude to Prof. I. Reiner for pointing out to her that the results of § 3 and § 4 of that paper are not true in general.

References

[1] Hironaka, Y., Zeta functions of integral group rings of metacyclic groups, Tsukuba J. Math. 5(2) (1981), 267-283.

Department of Mathematics Faculty of Science Shinshu University Matsumoto, Japan