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MINIMAL IMMERSIONS OF PROJECTIVE SPACES
INTO SPHERES

By

Hajime URAKAWA

Introduction and statement of results.

The purpose of this paper is to show positivity of the dimension of the
parameter space of equivalence classes of all full isometric minimal immersions
of the complex projective space P™(C)(n=2) or the quaternion projective space
P%(H) into spheres.

Let (M, g) be a d-dimensional irreducible Riemannian symmetric space of
compact type. An isometric immersion @ of (M, g) into the unit sphere Stin
R!'+! is called to be minimal if for every normal deformations @, of @ with
@,=®, the first variation of the volume (M, @.*g,) is zero at t=0, where g, is
the standard Riemannian metric on S! with constant curvature one. For a con-
venience, we call that a minimal immersion @ of (M, g) into S{CR'** is full if
the image @(M) is not contained in a hyperplane of R'*!, and that two such
immersions @,, @, are equivalent if there exists an isometry p of S} such that
D,=p-D,.

The first main problem of minimal immersions would be to determine the
set A of equivalence classes of all full isometric minimal immersions of M into
St This problem was solved by do Carmo and Wallach [2], and Li [13].

We explain the standard construction of minimal immersions of a compact
irreducible Riemannian symmetric space (M, g) into spheres (cf. [2], [5]): Let
A, be the usual non-negative Laplace operator of (M, g) acting on the space
C=(M) of all real valued C= functions on M. We denote by

0:20<21<22< e <2k< )

the set of all mutually distinct eigenvalues of A,, and by V* the eigenspace of
A, with the eigenvalue 1,. Put dim(V*)=m(k)-+1. For each k=1, let {fo, -+
fmex,} be an orthonormal basis of V* with respect to the inner product (o, @)=

Sugo(xk/:(x)dp with the canonical measure dy of (M, g) normalized by SMd;z:
m(k)+1. Then the mapping x, of M into R™‘®¥+! defined by
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et M3p——(fo(D), =, fmm(P))ER™ F+1

gives a minimal isometric immersion of (M, ~dig), d=dim (M), into the unit

sphere SP®, Then the second main problem would be:

Problem (A). Is the minimal immersion x, rigid ?

Here the rigidity means, if @ is another full minimal isometric immersion
of M into SP*®, then @ is equivalent to x,.

Now the results of do Carmo and Wallach, and Li are the following :

THEOREM 1 (cf. do Carmo and Wallach [2], Li [13], Ohnita [7])
1) Assume that there exists a full isometric minimal immersion @ of (M, Cg)
with a positive constant C, into a unit sphere Si. Then, for some k=1, [<m(k)

and C= —':;—.
2) The set N of equivalence classes of all full isometric minimal immersions
of (M, % g) into S{({=m(k)) can be smoothly parametrized by a convex body L

in a vector space W, such that the interior points of L correspond to those [D]
for which l=m(k), and the boundary points of L correspond to those [®] for
which [ <m(k).

Theorem 1 answers the first problem and Problem (A) is reduced in some
sense to the following :

Problem (A’). Whether or not is dim (W) positive ?

In fact, do Carmo and Wallach showed:

THEOREM 2 (cf. do Carmo and Wallach [2])
Assume that (M, g) is the d-dimensional unit sphere of constant curvature.

Then
dim (W,)=18 for d=3, and k=4.

Therefore the rigidity does not hold in the situation of Theorem 2. On the
contrary,

THEOREM 3 (cf. Calabi [12], do Carmo and Wallach [2])
In case of M=S*; or SY(d=3) and k=3, every full isometric minimal im-

mersion @ of (M, %’-’—g) into St is equivalent to x,, that is, the rigidity holds.
THEOREM 4 (cf. Wallach [10], Mashimo [5], [6])

In case of M=P™(C), P"(H), or P*(Cay), the rigidity holds in some sense for
k=1, i.e., dim(W,)=0 for the immersion x,.
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In the other cases, the problems (A), (A’) have been left to be open because
of a technical difficulty to estimate the dimension of W, below. In this paper,
we answer partially the problems (A), (A’) as follows:

THUEOREM B. Assume that M is the complex projective space P™C)=
SUn+1)/S(UQ) X Un)) with the SU(n+1)-invariant Riemannian metric g. Then
we have

dim (W,)=91 for n=2, and kz=4.
That is, in this case, the rigidity does not hold and arbitrary two full mimimal

isometric immersions of (P"(C), %ﬁ—g) into ST® can be deformed into each other

by a smooth homotopy of minimal immersions of the same type. Here m(k)+1=

THEOREM C. Let P*H)=Sp(3)/Sp(1)xSp(2) be the quaternion projective
space of real dimension 8 with the Sp(3)-invariant Riemannian metric g. Then
we have

dim (W) =29,007 for k=4.
That is, in this case, the rigidity does not hold and arbitrary two full minimal

isometric immersions of (Pz(H ), isk— g) into ST® can be deformed into each other
by a smooth homotopy of minimal immersions of the same type. Here m(k)+1=
(k+44)! (k+3)!

(k1 D)1 k15131 2R
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§1. The standard minimal immersions.

In this section, we give the notion of the standard minimal immersions
after [2], [5].

Let M=G/K be a d-dimensional irreducible symmetric space of compact type,
and let g be a G-invariant Riemannian metric on M=G/K. We denote the set
of all mutually distinct eigenvalues of the Laplace-Beltrami operator A, of (M, g)
acting on the space C=(M) of all real valued C* functions on M by
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0=2, <A <A< =+ <A< o0,

and the eigenspace of A, corresponding to the eigenvalue 2, by V* Put
dim(V®=m(k)+1. We give the L%inner product (,) on V¥ by (f, h)=

SM fhdp, I fl=(f, /)'?, where dy is the canonical measure of (M, g) normalized

by SMdyzm(k)—I—l.

Suppose that £=>1. Let {fo, f1, ***» fmw,} be an orthonormal basis for V*
with respect to (, ) and define a mapping x, of R™®+! by

xk(p):(fo(p)) fl(p)y Tty fm(k)(p))r pEM'

The action of G on M induces a natural one on V* by (¢-f)(p)=f(a7'p), 0 =G,
peM. The orthonormality of {f;}7® and the homogeneity of M imply the
image x,(M) is included in the unit sphere S*‘®*> of the Euclidean space R™*+!,
Moreover by the G-invariance of the metric g and the assumption of the irredu-
cibility of the linear isotropy action of K, the mapping x, is an immersion and
the induced metric g=x¥g, coincides with the metric g up to a positive constant
C, where g, is the standard Euclidean metric of R™**!  Since x;: (M, g)—

Sm® is an isometric immersion and the Laplace-Beltrami operator A;z%AE of
(M, &) satisfies A,;fi:%f,-, i=0, 1, -+, m(k), a theorem of Takahashi [9] implies

that x, is a minimal immersion of (M, ) into a sphere of radius v dC/4,. It

A . . .. . . o .
follows that C=-=%, The isometric minimal immersion x,: (M, §)—Sr®*® is

d
called the k-th standard minimal immersion. Note that another orthonormal basis

of V* gives also an isometric minimal immersion of (M, g) into S*®, which is
equivalent in the sense of the introduction to the immersion x,.

Now we choose an element f in V* as f(eK)=0, and put f.’,=SKk-f dk and
fo=f4/lfell, where dk is the Haar measure on K normalized by Sxdk=1. Then
k-fo=fo, k€K, and fo(eK)=0. That is, the G-module V* is a class one repre-

sentation of the pair (G, K). We can take an orthonormal basis {f;}2® of V*
in such a way that (fo(eK), fi(eK), -, fm(eK))=(1, 0, ---, 0), because there
exists an isometry A of the Euclidean space R™®>*! such that A(x,(eK))=(1, 0,

-+, 0). Then it can be proved that
(1.1) (0 K)=(fo(6K), f1(eK), -, fam(dK)=a"f,,

for every o <G, under the identification R™®+'=(a,, -+, Gmay) — 2P a, f, = V*.
Therefore the standard immersion x; can be obtained as the orbit x,(¢ K)=a"f,,
g =G, in the class one representation V* over R of (G, K).
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The differential x,. of x, can be expressed in terms of the Lie algebra g
of G as follow: Let t be the Lie subalgebra of g corresponding to the Lie group
K, and let p be the orthogonal complement of f in g with respect to the Killing
form of . We identify p with the tangent space TexM by p3X— X g€ T kM,
and the tangent space T,., V* at ¢-f, with V* itself. Then the differential
xmox Of x, at ¢ K=G/K is given by

(1.1 xk.m(r,,-Xew:—;—i;xk(aexp(tX>K>,=0=a<X-fo>,

where 7,. is the differential of the translation by ¢: G/K2¢’K— o0’ KeG/K.

Moreover we give an inner product (, ) on p from the G-invariant metric g=

Ak
PR by

§<X€K, YeK):(X; Y): X) Yep'
Then the mapping x, is isometric from (M, &) into V* if and only if
(1.2) (X fo, 0 X - fo)=(X, X), Xep, and geG,

by and the above identifications. The mapping x, is an immersion of M
into V* if and only if the mapping p=>X— X: fo& V* is injective.

§ 2. Parametrization of minimal immersion.

In this section, we preserve the notations in §1. Let (M=G/K, g) be an
irreducible Riemannian symmetric space of compact type and let x, be the k-th
standard minimal isometric immersion of (M, &) into S?*‘®*, Then we have:

THEOREM 2.1 (cf. [2], [7], [13])
1) Assume that there exists a full isometric minimal immersion of (M, Cg)
with a positive constant C, into a unit sphere S,. Then, for some k=1, [Sm(k)

and C:%’i where d—dim (M).

2) The set N of equivalence classes of all full isometric minimal immersions
of (M, %fg) into Si, [=m(k), can be smoothly parametrized by a convex body L

in a vector space W, such that the interior points of L correspond to those [@]
for which l=m(k), and the boundary points of L correspond to those [D] for
which [ <m(k).

The sets W,, L in the above theorem can be constructed as follows: Let
Vo, V; be the K-invariant subspaces of V* defined by

Vo=Rf,, and V,={X-f,; Xep}.



326 Hajime URAKAWA

By the G-invariance of the inner product (, ) of V*, the subspaces V, and V,
are mutually orthogonal with respect to (, ). Put V’ the orthogonal complement
of the sum V,+V, in the space V* with respect to (,). Then we get the
decomposition of V* as K-modules:

(2.1) V=V ,QV.BV’.

Let P, be the projection of V* into V,; under this decomposition. Let S be the
set of all linear (over R) mappings of V¥ into itself which are symmetric with
respect to (, ). Define the G-action on S by ¢-A=0¢Ac7?, G, A< S, and the
G-invariant inner product (,) on S by (A, B)=trace(AB), A, BES. Let S, be
the set of all symmetric linear mappings of V, into itself. The set S, can be
considered as a subset of S. For every u, ve V*, define a linear mapping P, ,
by P, «t)=(u, t)v, t€ V* Then the mapping Q. ,=1/2(Py, .+ Py ) belongs to S
and the linear span of Q, ,, u V*, coincides with S. Moreover Q, ,€S; for
u, ve V,, and the linear span of Q. ., u€V,, coincides with S;. Note that

(2.2) (B, Qu .)=(B(u), u), for every BeS and ucV*

by definition. ‘
Now let W, be the linear span of the G-orbit of S, in S and W,={AeS;

(A, W,)=0} its orthogonal complement. Define the subset L of W, by
L={CeW,; C+1=0},

where I is the identity mapping of V* and C+/=0 means that (C+I)(u), u)=0

for all us V&,
can be proved by the same manner as Theorems 1.3 and 1.5

in (cf. see Li [137).

§3. Estimation of the dimension of W,.

We preserve the notations in §2. Consider the natural isomorphism Q of
the symmetric square S?V* of V* onto Sinduced by S?V*2u-v—Q, ,=S. The
G-action on V* is extended naturally to S?V*, and the G-invariant inner product
(,) on V* can be extended to the G-invariant one on S®V*. Since we have

U’Qu,v:o'Qu,va”l:Qou, oV and
(Qu,v’ Qu',v’):(u‘v) u/'v/)’ fOI' UEG) u, v, u/’ vlevk:

the mapping Q is G-isomorphic and isometric. Moreover the image Q(S?V,) of

the symmetric square SV, of V,; in by Q coincides with S;,. Therefore
the space W, is identified by Q with the linear span of the G-orbits of S?V, in
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S*V* and W, is also identified with its orthogonal complement in S?V*.

Furthermore, in order to estimate dimension of W, we consider its com-
plexification W§. We denote by W€ the complexification of a real vector space
W. We extend the inner product (,) on S®*V* to the hermitian inner product
on (S*V*)°=S*V*¢). Then WY is the linear span of the G-orbit of S%* V%) in
S*V*€) and W is its orthogonal complement in SV *¢). We have:

LEMMA 3.1. Let W, be the sum of G-submodules of S*V*¢) over C, not
containing the K-irreducible components of S¥V$). Then W, is included in WS.

PROOF. It can be proved by the same manner as Lemma 5.4 in [2]. We
have only to consider unitary representations instead of real orthogonal ones of
compact Lie groups, making use of the Frobenius reciprocity theorem as in [1],
[3]. Proof is omitted.

By Lemma 31, we can give an estimation of dim (W,) by the analogous way
asin [2]. In order to estimate dicm(Ws), note that, if the symmetric space M=

G/K is of rank one, i.e., a maximal abelian subalgebra of ¢ contained in p is
one dimensional, then every eigenspace of the Laplace-Beltrami operator is an
irreducible class one representation of the pair (G, K) over R and its complexi-
fication is also irreducible. Therefore we can make use of a finite dimensional
unitary representation theory of a compact Lie group to estimate dicm(Ws), which

are carried out in the following sections, in case of projective spaces.

§4. Complex projective spaces (I).
4.1. In this section, we use the following notations:
G=SU(n+1), n=2,

1/dete 0
K=S(U(1)><U(n))={[ 0 ]; o‘eU(n)},
g

g=8u(n+1)={X€M,,,(C); *X+X=0, trace(X)=0},
—trace(X) 0 —
0 X
B(X, Y)=2(n+1) trace(XY), X, Y g, the Killing form of g,
0 —3, - —3,

=3l 21 EM(C); 2y, -, 2,€C,
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&1
T= % 0 |eMui0); scC, lal=1, He=1y,

0 .3n+1
n+1
t:{H(xl’ Xgy 0y Xn+1); XiER, Elx,-=0},
i<

Xy

Xy 0

where H(x,, X5, =+, Xns1)=21+/— 1 Then we can identify

0 Xn+1

P™(C) with the coset space G/K having the G-invariant Riemannian metric

induced from the inner product (X, Y):——E_—{l_—l—B(X, V), X, Yep.

Define an element A; in the dual space t* of t over R by t= H(x,, x5, ***, Xn+1)
— x;, 1=i<n-+1, and introduce a lexicographic order>on t* in such a way that

11>22> A >2n>0>2n+1.
Put

D(G)={A=g‘,lmiliet*; m;EZ(1=isn), my=my= - gnzn;O},

DK)={A=F kiictr; ki ZASisn), b2k - 2k, 20},

Then D(G)(resp. D(K)) is the set of all dominant integral forms of G (resp. K)
with respect to . Thus there exists a bijection between a complete set 9(G)
(resp. 9(K)) of nonequivalent irreducible modules of G(resp. K) over C and the
set D(G)(resp. D(K)) assigning A= D(G)(resp. D(K)) to an element V=V, &
D(G)(resp. D(K)) with the highest weight 4. Under the above situations, we
have

THEOREM 4.1. (the branching theorem) Let V=V, be an irreducible G-
module over C with highest weight A=7 mA;, M=M= --- Zm,=0. Then V

=V, decomposes as a K-modules, into irreducible ones:

VA:E Vk121+~-~+knin ’
where the summation runs over all the integers ky, ---, k, for which there exists a
non-negative integer k satisfying

M= kot Zme= ket Zm= - Zma 2k +Hh2xm 2k,

and

3

me=3 by -(n+1)k.
1 t=1

1
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ProoOF. See [3].

Note that the irreducible modules V4, -#21,,, With highest weight k4, —k4n.,
=2k, +kAs+ -+ +E2A,, =0, exhaust all class one (i. e., including the trivial repre-
sentation of K) irreducible modules of the pair (G, K) over C. The modules
Via,-k1,4+, are represented as follows (see for example [5]):

Let S* *(C™+') be the space of all complex valued C* functions f on C"**
such that f(z)=[2|%**f(z) for every zeC"*!, 2C. Put H**C"*)={fe
Sk k(Cn+YY; A, f=0}, where A,=>7410%/0z,0Z;, the standard Laplacian of C"*'.
Define an action of U(n+1), also SU(n-+1) on S**(C"*!) by

(6-f)2)=f(c"12), zeC"", eg&€Un+1).

Then H**C™*) is the SU(n-+1)-irreducible submodule of S* *(C™*!) with heig-
hest weight kd,—kA,+:. Let C=(C™*!, R) be the set of all real valued C* func-
tions on C**! and put Vt=H%*C"*)NC=(C"", R). Then V* is a class one
representation over R of the pair (G, K) whose complexification V*¢ is
Vir-kape, =H"*C™), and it induces the eigenspace of the Laplace-Beltrami
operator of the G-invariant Riemannian metric on G/K corresponding to the
inner product ——-7;!1_—1—B with the eigenvalue k(k-+n).

4.2. Now by [Theorem 4.1, the class one representation V*¢ is decomposed
into irreducible K-modules as follows:

(4.1 V= 3 > Vo

p:(), 1, k q=0, 1, k
where V, 4, p, ¢=0, 1, ---, k, are the irreducible K-modules with highest weight
Cp—) (Pt @At pAs+ -+ +DpAy (n23)
p(xl_’lnﬁl)"{‘Q(_ll"’_Zz): .
(2]5—6])11+(P+(])22 (n=2).
0 wyw,
The K-module p®=,| z, : 0z, w;€C(1=:/=n); is decomposed into irredu-
cible K-modules as follows :
pC:VLo@ VO,l-
Then the components of the decomposition V*¢=(V)¢E (V) E (V)¢ are given

as K-modules by
(Vo)¢=Vo,, (V)¢=V, BV, and (V/)C:( > IV;o,q,

POE

where I={(p, q); P, ¢=0, 1, ---, £}\{(0, 0), (0, 1), (1, 0)}. Then the K-module
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S*V¢S) is decomposed as follows :

4.2) Sz(V‘f)Z Vz(zl—2n+1)®V12—Xn+l@v,'211+212®vo,0'
Therefore we have:

LEMMA 4.2. Every G-module over C which contains some of the K-irreducible
components (4.2) of S V$) has the highest weight 31, m;2;, where m;, 1<i<n,
are one of the n-tuples in the following table:

(1) In case of n=4,

m, 2k 2k—1 2k—2 2k+3 2k+2 2k+6
me k. k+1 k4+2 k+1 k+2 k42

me  kk k B+l k1l k42
Muer bk k B+l k4+1 k42
m, Bk k k b k

(ii) in case of n=3,
my 2k 2k—1 2k+3 2k—2 2k+2 2k+6
my, k  kR+1 k+1 k+2 k+2 k42
ms k k k k k k
(iii) n case of n=2,
m, 2k 2k—3 2k+3 2k+6 2k—6
m, k k k k k

where, in each case, k varies over the set of non-negative integers satisfying the
inequalities m;=my,= -+ =m,=0.

PROOF. For example, we determine the G-modules containing the K-module
Vig-1,4,;» The remains are proved by the same manner. The weight 2,—21,.,
coincides with 2,422,445+ -+ +2,(n=3) or 2,4-22,(n=2). By [Theorem 4.1, the
weight 357-,m;4; of the G-module should satisfy the following :

(i) in case of n=4,

mi22+kzm,214+k=zme= - Zmy =1+k=m, =k,

and
S mi=(n+1(k+1),

(ii) in case of n=3,
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m=2+kzm,=1+k=zm,=k, and my+m.t+my=4(k+1),
(ili) in case of n=2,
my=2+k=m,=k, and m;+m,=3(k-+1),

for a certain non-negative integer . Thus we can determine (m,, ---, m,)
satisfying the above conditions. Q. E.D.

4.3. We need the following lemma in order to decompose the G-module
S?(V*C) into the sum of irreducible G-modules.

LEMMA 4.3. For a G-module (V, p) over C with a character X, the character
Xy of the symmetric square S®V is given by

Xioy(T)= %—(%(1)2—}-%(?2)), reG.

PROOF. See for example. For completeness, we give here its proof.
For a fixed TG, let e;€V be the eigenvectors of p(r) with the eigenvalues 4;,
i.e., p(r)e;=2A;e;, i=1, -+, N=dim (V). Then the basis ef*1-----eR~¥ (m+---+my
=k) of the k-th symmetric product S*V of V satisfies

PP (T) (@1 e @R N)=AP1 e AMNQPMe - TN |

where eli=e¢;-----¢;(m; times), and p‘®(r) is the G action on S*V induced from
the one on V. Then the character X, (z) of p‘®(z) is given by

X(k)(‘l')= > AL - AN

my++my==~k

Consider the following generating function of the characters:

P@)= 3 z*La(@).
Then we have

PE=3 B (@) @A)y

0my+Fmy=

(2A1)™1 oo+ (2AN)™N

N=0

I
3l

my,

[ (1—24,)7

umz

=det(/—zp(7))™!
_—_exp(trace(E p(Tk) ))

*exp( E (Tk) k)‘
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In fact, the series P(z) has the convergent radius bigger than or equal to
(ClX(t)])~*, where the constant C satisfies |X(r,7.)| =C|X(z))||X(ry)| for every
7y, 2€G. Then the coefficients P,=P™(0)/n! of P coincide with X,,(r). For
example, P,=1, P,=X(t), P,=1/200(7)?+X(z?)), ---. Q.E.D.

§5. Complex projective spaces (II).

In this section, we investigate the irreducible decomposition of the symmetric
square SV #€) due to In order to show dim (IW,)>0, we have only
to show the existence of the irreducible of the irreducible G-submodules of
S*V*€) which do not appear in the table in Lemma 412.

5.1. In this section, we use the following notations:

G=Un+1),
. .
T=]l = 0 |eMu(0); sieC, lal=L1sisa+1),
0 '5n+1

§=u(n+1)={XEM,..(C); ‘X+X=0},
t={H(xy, =+, Xa+1); x.€ER1=iSn+1)}.
Define an element Z; in the dual space t* of t over R by {2 H(x,, -+, Xn+1)—x1,
1=/=n+1, and introduce a lexicographic order>on t* in such a way that
A A> 0 >0 >0> A0

Note that 4; is the restriction of i; to t(1<:<n-+1). Put
~ ~ n+1 -~
D&={1= 3 fiki; [1€2, [rZ[sZ -~ ZfaZfauf.

Then D(&) coincides with the set of all dominant integral forms of G with
respect to t and there exists a bijection between a complete set 2(G) of non-
equivalent irreducible modules of G over C and D(@), assigning A eD(&) to an
element Vsze.CD(é) with the highest weight 4. Moreover for each V=Vye
2D(G) with A= D(G), the module V=V|g;, considered as a G-module, belongs to
D(G), its highest weight A is the restriction of A4 to t and its character X, is
the restriction of the one X3 of ¥ to G. By the character formula of Weyl [11],

‘ e
5.1) Da(Ry=1els|  for each fi=| . 0 et

€n+1
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where |eli| is the determmant of (n+1)x(n-+1) matrix whose (7, j) entries

are elJ,

(5.2) ' lLi=fj+n+1—; (j=1, ---, n+1),
and D(h) is given as follows :

(5.3) Dhy=ler»i|= _II  (si=e)).

Note that the G- module V*¢=H* k(C"*1) in 4.1 is also G= U(n+l) 1rreduC1bIe
module with hlghest weight 2A,—EAns1.

5.2. First let us consider the irreducible decomposition of S V*C) as G-
modules :

(5-4) SZ<VkC):ZN(f1) T fn+1>Vf1,---,fn+11

where f,, “+y fas1 vary over the set {(f1, =+, for1); Fi€Z, 12 = [rui)s
V g1 fnaq 1S the G-irreducible module with highest weight 32! f.4;, and the
number N(fi, - fn+1) is the multiplicity of V.. s,,, in SXV*©). Then since
V41 rnsy 1S also the G-irreducible module V4 with highest weight A=312,m;4;,
mi=fi—fns(G=1, -, n), we obtain the irreducible decomposition of S* V*°) as
G-modules :
‘ SHV* )= M(my, -+, ma)VEP myas»

where my, -, m, run over the set {(my, -, m,); m;€Z, m= - 2m,=0}, and
M(my, -, mp)= 3 N(fi1, =+, fns1) is the multiplicity of the G-

Jizzlpen mi=fi-Sns1
module Vg7 m;z; in the one S(V*C). Then if we find an irreducible module

Vit fney Of G in with- N(f1, =+, fn+1)>0, then S*V*€) includes at least
one the irreducible module Vgp  m;:; of G. Therefore we have only to consider
the decomposition [5.4) of SXV*°) as G-modules.

Now by Lemma 4.3, the character X%, of the G-module SXV*€) is given by :

(5.5) Dn+1X’€z>——{le’le/Dn+1+Is%’Jl/D +1},
where |e7/| i‘s the determinant whose (7, j)-entries are &}/, r1='k+n, rj=n4+1l-—j

(]:2, Tty n); 7’n-kl::_'"k’ Dn+1: H (si""sj) and D;‘L+1: H (8,;"‘1"5_;). The

1siljsn+1 15i<jsn+1

right hand side of [5.5) can be written as
n+1 k ~
t_1;[13?2 Priiey, -+, nv1),
where ﬁnﬂ(s], -+, €n41) is the polynomial in (ey, -+, €,41) given by

66 Broi= 3 1801/ Dot 68| Dl
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where p,=n+2k, p;=k+n+1—j(j=2, ---, n) and p,,;=0. Note that the poly-
nomial |&®i|(resp.|&%?i|) can be divided formally be the one D,.,(resp. Dj.,).
On the other hand, according to the decomposition [5.4), we get

(5.4") Dn+1x’€2): > N(fl» Tty fn+1)!55jl y

f1z2fn+1
where /;=f,+n+1—j, j=1, ---, n+1. We arrange the right hand side of (5.4")
as the sum of the terms &%t - e2%f! with a;> --- >a,.; and the terms &bt ... ghntt
where there exist two integers 1=/<j=n-1 such that b;<b;, that is,

(5.4”) Dn+1x’f2): p N(fy, -, fn+1)8{1 5511?‘*‘0(51, o, Ens1),

S12"afn+1

where Q(e;, '+, €n+1) is the sum of the latter type.
Now we decompose the polynomial }N’n“(el, s+, Ea41) In such a way that

(5.6") ﬁn+1: > A(Qh ) Qn+1)5fn E%TYI‘*‘R(SD ot En+1),

Q1> >qn 41320

where R(ey, -+, €n+y) is the sum of the monomials &1 .- e224! of }N’,m where
there exist two integers 1=:/<j=<n-+1 such that b;<b;, Then comparing with
(5.4”) and (5.6"), their first term sums coincide each other, in particular, we have

A(CIu Tty Qn+1):N(f1) Tty fn+l))

where f;=q;—(n+1)—k-+j, j=1, ---, n+1. Therefore we have only to decompose
ﬁnﬂ(el, -+, €n41) as (5.6’) and to seek the terms et --- elndl, g,> -+ >qn41 20
with a non-zero coefficient A(g,, :-, ¢gn+1). Then we obtain the G-module
Ven_ mga, With mj=¢;—gn+;—m+1)+j, j=1, -, n, which is included in S*(V*°).

5.3. The task of the last step in 5.2 is accomplished as follows.
(i) First, decompose 1'5,,“ as a sum of the constant term ﬁnﬂ(el, e, 8., 0)
in €,+; and the higher order term Q.. =Q.:1(€1, *-, €n+1) In &,4+;. Then the

constant term 13,,+1(e,, cev, &g, 0) is
Poiiey, -, &0, 00=A,P,.
Here A,=TI%_,e**! and P, is the polynomial in (e, -, €,) given by
Pu=g {11/ Dyt 168051/ Di
where l,=k+n—1, l;=n—j, j=2, ---, n. Then we have

ﬁn+1:AnPn+Qn+l .

(ii) In case of n=3, we furthermore decompose P, into the sum of the
constant term P,(&,, -+, &,-1, 0) in &, and the higher order term Q,(e,, ---, €n)
in ¢,. The former P,(e,, -, €,-1, 0) is calculated as
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Pn(ely vy €a-1, O)ZAn—l n-1e
Here A,-,=II?te¢; and P,-, is the polynomial in (&;, ---, &,-,) given by
1 ,
Pn-1=§{Isiflz/Dn-Hrls%'fl/Dn-l},

where |eli| is the determinant of (n—1)X(n—1) matrix whose entries are &lj,
1=ign—1, l;=k+n—2, [;=n—1—j, j=2, .-, n—1. Then we have

Pn:An-l n-1+Qn .

(iii) Go on inductively the above process. Lastly, we have

ef+2 & 1 2 s%(k+2) e‘% 1
1
P=5{let & 1| /DiH et & 1|/Di,
e§+2 &5 1 s%(k+2) 5% 1

S%UH'I) 1

ek'i—l 1
Pg-——:-l‘{ '
1

€§+1

2/(61—62)+

'/(51+52)}9

E%“’”) 1
AgZEIEg > and
PS(EI: €y, 63):A2P2+QS(51’ &, 53);

where @, is the sum of the terms of P; higher than the constant in e;. Then
we have, in case of n=3,

G.7) ﬁn+1:AnAn—1 o APyt izZ)sﬁnAn-l 0 8;Qi+Qryy ’
where
(5.8) ApAgy e Ag==glk+n-1 ]ﬁ;e§k+n+1—j,
3=
(5.9) MDAy - A= ﬁ g2krn+i-i ﬁ g2hen+i-g
Jj=1 j=i+1

where 7=3, ---, n.
In case of n=2, we have

(5.7’) ﬁ3252P2+Q8)
where
(5.8 A= z1;[1&:%"’“.

Note that the first term A,A,-; -+ AP, of is a homogeneous polynomial
in (ey, -*+, €,) whose degree is 2k+n+1—7 in the variable ¢;, =3, ---, n, and the
sum of the degrees in &, and ¢, is 6£+2n—1. The terms A,A,_; --- A;Q; are



336 Hajime URAKAWA

homogeneous polynomials in (e, ---, €,) Whose degrees in ¢; are greater than
2k+n+1—7, and the degree of the last term Q,., in ¢,4, is greater than or
equal to 1. Therefore all the monomials of A,A,-,---A,P, are different from
the ones of 22 3AAn_;+ AiPi+Q i

(iv) Now we calculate the polynomial P, in (&,, ¢,): for 2=4,

P,= % {(eb'—ef*)?/(e1—en)+(el* 2 —ef**?)/(e1te0)}

1 k+1 k+1 s k-8 2kL1 $.8,.2k+1-8
=5 (ei*'—es )g)slsz - SZ_‘:) (—1)ete;

—g2kH1gd | g2k-1g2 1 e2%-%¢4 4+ (the lower order terms in &,).
Thus we have, in case of n=3, k=4,

- n

— a4k k+n— k 1-

AnAn—l "'Azpz—-—sf +ns% +n 1:_[];8% +n+1-j
j=

n

4k+n-2.2k+n+1 2k+n+1-j7

+ &1 €2 IIsej 7
J=

n
4k4+n-4.2k+n+3 2k+n+1-
+ &1 €2 11 &j 4

j=3
+(the lower order terms in &,).

Therefore the polynomial ﬁ,m includes the terms g --- e3%4!, where (g, ***, Gn+1)
are

1) gi=4k+n, ¢.=2k+n—1, ¢;=2k+n+1—7, j=3, -+, 1, g2+:=0,

2) g=4k+n—2, g.=2k+n+1, ¢;=2k+n+1—j, j=3, -+, n, ga+1=0,

3) q=4k+n—4, q,=2k+n+3, ¢;=2k+n+1—j, 7=3, -+, n, gn+1=0.
Therefore, together with 5.2, in case of n=3, the G-module S%(V*¢) includes the
G-modules Vz?_ m;2, Mj=q¢;—qn1—m+1)+7, j=1, ---, n, as follows:

1) (my, my, ms, ---, my)=4k, 2k, 2k, .-+, 2k), for k=1,

2) (my, my, mg, -+, my)=1Ak—2, 2k+2, 2k, ---, 2k), for k=2,

3) (my, my, mg, -+, my)=0Ak—4, 2k+4, 2k, .-+, 2k), for k=4.

The 1) and 2) appear in the table in Lemma 4.2, but the last 3) does not so.
Therefore the G-module S*V*C) includes the G-irreducible module Vg2_ a2,
(my, my, ms, <= my)=(4k—4, 2k+4, 2k, ---, 2k), for k=4, which does not include

the K-irreducible components of S*(V¢). The dimension of Vg2 m;1, is given
by the dimension formula of Weyl [1I]: '
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D4k—4-+n, 2k+3+n, 2k+n—2, ---, 2k+1, 0)
D(n: n_]-, Tty 1: 0) :

_ Rk—7(n+1)(n+2)4k+n—4)2k+n-+3) (2k+ n—5>(2k—l— n—2)
24(n—1) 2k—3 2k

=4,725, for n=3 and £k=4.

dim (Vzpyma)=

In case of n=2, the first term A,P, of (5.7') is
ApPy==ghk+2e2k+1 | g4k 2k +3 | o4k-2.2k+5 L (the lower order terms in &,).
Then S*V*¢) includes the following irreducible G-modules Vi 1 4mq1,°
1) (my, my)=(4k, 2k), k=1,
2) (ms, m)=(4k—2, 26+2), k22,
3) (my, me)=(4k—4, 2k+4), k=4.

The 1) and 2) belong to the table in but the last Vig-g1,+cr+02,
does not so. The dimension of V(x-s21,+cr+02, IS given by

dim (V yg-0 2,4 crro 20 =D(@4k—4+4-2, 2k +4+1, 0)/D(2, 1, 0)
= 2 (2 T4k —2)(2k+5)
=91, for k=4.
Theorem B is proved completely.
REMARK. In case of n=2 anci k=2, we have the following irreducible
decomposition of the symmetric square S* V3*¢) of V*=H?>2(C?):
SH V)=V 4PV PV * PV PVHPVS P2V 2PV PV,

where V* ¢ means the irreducible G-module with highest weight x4;+y4,. In
this case, each irreducible component of S*V?*¢) includes certain K-irreducible
components of S%VY¢), and we have dim (W;)=0. It seems to be dim (W,)=0.

§6. Quaternion projective spaces P"~'(H)=Sp(n)/Sp(l) X Sp(n—1).
6.1. In this section, we use the following terminologies :

G=Sp(n)={xcU@2n); *xJox=J,}, n=3,

where j,,:( ? IO") and I, is the identity matrix of degree n.
—dn



338 Hajime URAKAWA

a O0/b O 5 4 B
0 Ao B) /(@ 3
K=Sp(1)x Spin—1)=1| —F51——& ,(c d)eSpa), (C D)eSp(n b,
0 clo D
G=§P(n)={XEu(2n); thn"']nX:O}
A B _
={( _ _);A, BeM,(C), *A+ A=, B-——‘B},
—B A

t=ap(1) X 8p(n—1)

x Oly 0
= By 6"'2 T xeV=TR, ye€, X, YeM,(€), X+ X=0, 'Y=V},
0 —Y0 X
B(X, Y)=(2n+2)Trace(XY), X, Y =g, the Killing form of g,
0 zZl 0w
p— "O'Z_ﬁ(l, tv(’)’ g . Z, WeMd, n—1,0)},
—tW 0 |—*Z 0

the orthocomplement of t in g relative to B,

€1

T= €n ; eC, lal=1(1<i<n)},
et

t={H(x,, -+, x); x;€R(1=<i=n)}, the Cartan subalgebra of g and ¥, where

X3

H(xy, o, xp)=2m+/ = 1| —22

-

e
Then we can identify P*-'(H) with G/K having the G-invariant Riemannian
metric induced from the inner product (X, Y)=—B(X, Y), X, Y €p.

Define an element A; in the dual space t* of t over R by {3 H(x,, -}, x,)—
xi{(1=¢=n) and introduce a lexicographic order>on t* by

4> - >2,>0.

Let 2*(G)(resp. X*(K)) be the set of positive roots of the complexification g€
(resp. f€) of g(resp. ¥) relative to t. Then we have
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JHG)y={A;E4;; 1=i<j=n}U{24;; 1Si<n},
JHK)={A;x4;; 2=5i<j<n}U{24;; 1=i<n}.
Put

DG)={4=F aidi; a;cZU=in), a,20,Z - 2a,20},

D(K)s{/l:g_‘,:b,-li; b,e Z(1<i<n), b,=0 and b,= --- gbngo}.

Then D(G)(resp. D(K)) is the set of all dominant integral forms of G (resp. K)
with respect to . Moreover there exists a bijection between D(G)(resp. D(K))
and a complete set 9(G)(resp. D(K)) of non-equivalent irreducible modules of G
(resp. K) over C corresponding A< D(G)(resp. D(K)) to an element V=V, 9(G)
(resp. 9(K)) with the highest weight A.

Then we have:

THEOREM 6.1. (Lepowsky [4]) Let A=X27,a,4,€D(G), p=21 b4, € D(K).
Then the multiplicity m(, p) of the K-module V, in the G-module V, is given
as follows: Define

A,=a,—max (a,, b,),
A;=min(a;, b;)—max(a;,,, b;+1), 2=i<n—1,
A,=min(a,, b,)=0.
Then m(2, p)=0 unless b;+>%,A;€2Z and A, A, -+, Ap-1=0. Under these

conditions,

G e Ll(n—2—1L|+1/2<—b1+29=1A»—ZELAi)
nmiA, )= —1)' ’
L

n—2
where L runs over all the subsets of {1, 2, ---, n}(also the empty set), | L| denotes
the number of elements in L, and (f}) denotes the binomial coefficient, which is

defined to be zero if x<y.

It turns out by that V*“=V,; 481, k=0, are the class one
modules of the pair (G, K) over C.

The complexification p¢ of p is the irreducible module of K with highest
weight 4,+4,. Then the symmetric square S*$°) of p¢, which is S} V¢) in §3,
is decomposed as a K-module into as follows:

(6.1) Sz(pc):V221+212@V22+13@V0-
Then by [Theorem 6.1, we have:
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LEMMA 6.2. (1) Let n=3. Then every G-module over C which includes
certain of the K-irreducible components of S%p°) has the highest weight
>3.,a:4;, where the triple (a,, a,, as;) is one of them in the following table:

a, k+2 k+3 k+1| k+4 k+2 R

a, k k k k k k

as 2 1 1 0 0 0
k=2 kzl kzl | k=0 7k;1 k=0

(II) In case of n=4, if a,=a,= -+ =a,=0 satisfy one of the following con-
ditions :

(1) a,=3, (i) a,=2, or (ili) a;=1, for some 5=i=n, then the G-module
V4 with the highest weight A=, a;A; includes no the K-irreducible components
of S*(p°).

PrROOF. We give only a proof of (II). Case (I) can be proved by the
same manner as case (II).

By [6.1), we have only to consider the K-modules V, with highest weight
A=37,b,4; as follows:

1) (bl» bz; Tty bn):(2} 2’ 0) ) 0):
(2) (bly b2, "ty bn):(ol 1’ 1’ 0) Tty 0);
(3) (bl; b2) Tt bn):(ox 0; "ty 0)-

In each case, the numbers A4;, 1</<n—1, as in are given as follows:
For (1), A;=a,—max (a,, 2), A,=min(a, 2)—as;, Ai=—a;+1, 3=i=n—1. For (2),
A,=a,—max (a,, 1), A,=min(a,, 1)—max(as, 1), As=min(as, 1)—a,, Ai=—a;+1, 4=
i=n—1. For 3), Ai=a,—a,, A;=—0;4+1, 2=1=n—1.
If either the conditions (i), (ii) or (iii) hold, then for every case (1)~(3),
one of the A;’s 1<i<n—1, is negative. Thus implies (II).
Q.E.D.

By the character formula [117], the character X, of the irreducible module
V, with highest weight A=37%,a;4; is given by

&

6.2) D,(e)Xq(e)=|eti—e3t],  for each e= &l |,
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where |eli—e7%| is the determinant of nXn-matrix whose (7, j) entries are

eli—e7ly,
6.3) lj=a;+n+1—j,1=j<n, and
(64) Dn(5)218?+1—j__6;(n+1—j) ]

n
=TI(e;—e37") II (e;—e;—e5'+e7h).
i=1 1si<jsn

6.2. In the following, we assume n=3.
By the character X%, of the symmetric square S%V*¢) of the
class one module V*°=V,; .1, of the pair (G, K) is given by

1 [ Py(e)® | Dy(e)Py(e?)
k —_
6.5 Di(eWtin(e)=5 {5+ )
€
g, 0
for e= ol , Where
€1
0 g3t
e
5f+3"—5T(k+3) E’f+2-6T(k+2) 51“5T1
(66) P3(s)= s’é”——s?"”” 8§+2——E§(k+2) 82—651 .

€§+3_55(k+3) €§+2~55(k+2) &g

Assume that

SHV*C)= > O-N(al, Asy A5)Va airagigragiy-

ajzagzagz

Then we have the identity :
(6.7) Dyl (&)= 35 Nlay, @y, as)|eli—e3%],
aj

Zagzagz

where l;=a;+4—7, j=1, 2, 3. And then the right hand side of [6.7) can be
decomposed of the form:

. MZM \0]\‘7((11, a,, as)eiteezl2e3 1 4Qey, &, &),
1z2a32a3z

where Q(e,, €5, &5) is the sum of the monomials e7'e22¢23, satisfying one of the
following conditions:

(6.8) (i) 0=¢q;, (ii) @=qe, or (iii) g.=gs.
So let .us decompose D.X%, into the following :

(6°9> D3X€2):_ 2 A<q17 C]z; Q3>5315325g3+R<51, 52, 53)7

0>31>92>q3

where R(e,, &,, &;) is the sum of the monomials ¢?'¢3%¢%2, satisfying one of the
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conditions (6.8). Then we have
A(q1, g2, g3)=N(a,, a,, as), 41:“(03+1), 42:—‘(02“1‘2), (]sz—(al+3)-

Therefore we have only to seek the monomials A(g,, ¢z, gs)eiles%es® with A(g,,
gz q2)7#0, 0>¢,>g,>¢qs of Dy(e)X%y(e). Then the module S*V*€) includes the
one V—(q3+3)21—(q2+2)12—(q1+1)13 with multiplicity A(qi, g2, gs)-

6.3. The task of 6.2 is accomplished as follows:

First, we put
Py(ey, €3, €3)=¢3 ¥tV Py(ey, &, €3),
and
Dy(ey, e, 53):5§3ﬁs(51, €2, €3),
where P, and D, are the polynomials given by

£k+3——87(k+3) E§+2_€T(k+2) El_sTl

3 e —(k+3) s12e+2__,;.§<)e+2) g, —e3!

P3(51, €2, €3)=| &3 ’

g2k +o_] e2h+5 g, ghtd_gh+2
Dy(e,, &2, e3)=(g;—7")e,—e3' N —1)

X (e, —€g—e3t+e7!)(e 85— e2—14e7"es)(e265—5—1+€3'es).
Then

1 { Byey, €, €002 | Diles, €2, e)Py(el, &, ez>}
2 U Dyey, €, &) Dy(e2, €, €2) ’

Here Bi(c,, e, €5)® (resp. Dy(es, €5, €3)Py(e?, €3, €2)) is divided formally by Di(e,,
&, &5)(resp. Dy(e, €2, ¢2)). Then it follows that

Py(ey, €, €3)?

6.10 ~ = , P’
(610 Buler, en o0 22 28

and

(6.11) ﬁ3(81, €9, sS)Ps(ely 52) 83) — Ebb(el, 52)5%,

D2, €2, €2)
where both sums are in fact finite sums in p, and both coefficients
ap(es, &), bp(ey, &;) are the sums of the form A(a,, a.)e}1e%?, ay, a,, and A(a,, a,)
being integers. So decompose the constant 1/2(a(e;, €2)+bo(e1, €2)) In &,
into the sum of monomials A(a,, a,)e%e%, and seek the monomials
— A(py, P2y —2k—3)eR1eP2¢32% "% with the conditions 0>p;>p,>—2k—3. Then
the monomial — A(p,, p,, —2k—3)eB1e52e32*~* does never cancel with every term
of 1/235:1(ap(ey, €2)+bpley, €:))e32* %P, Thus D%, should include the
monomial — A(p,, ps, —2k—3)eB1e%2¢3%%* in the decomposition Therefore
the module S%(V*€) should include the one Viii,-(py+224- 412, With multiplicity
A(p1, b2y —2k—3).
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We have only to compute 1/2(ay(e;, €,)+bo(es, €5). By and we

obtain
ﬁa(el, €9, O)ﬁs(e%, &3, 0)

ﬁs(sn &,, 0)?

ao(&y, €)= —x bo(es, €2)=
’ DS(SJ’ 62’ O) ’ ’ -bs(e;z’ Eg, 0) ’
where
ef+3_€;(k+3) 6{2+2_$T(k+2) el_e—l-l
~n
P3(al’ 82, O)z E§+3—$§(k+3) s§+2_e'2-(k+2) 82__5;1
—1 0 0
=(—D{(el*?—e7**D)(ey—e3")—(e;—e7)(ef2— g3 *4D)},

and

Dy(ey, €5, 0)=(—1)(e;—eT")(e2—£3")(e1—e,— €3+ £7Y)
=(—DeT'(e1—e7")(es—e3")(e1—&:)(e,—&3Y).
Dividing formally By(e,, €., 0)% (resp. Dile,, 5, 0)Ps(e3, €3, 0)) by Dyley, e, 0) (resp
ﬁg(s?, ¢, 0)), we have:
LEMMA 6.3.

2kh+2-8~20 -S+u 1-3 u 2-8-2¢
0{51 +2-8~-2 us% s+ _EIIH— 8 5§+ s +u

M=~

. E+2 k+1
(1) aoey, e2=— 2 >
§=0 i=0

2k+2-8-2t-U ~1+8-u k+1=8~uU k+8-2t-u
—é&] &y +e7 &2 b,

k 28+1
(i) boey, )= 3 (3*-20v2—g2bvass) 33 (—Iyuggevi-ou
$=0 “=0

— 2 e%k“-zs[é (___1)p+ls§s+2—2p+ ‘Vs\_‘ (_“l)p+s£-2-2—23]
=0 p=0

§=0
k k-s k-8

— Z SII'“[Z (_l)psgk+2-2s-2p+ 2 (_1)k+1+p+38-2-2-2s]'
§=0 p=0 p=0

PROOF. We have
ao(e;, &,)=(—1)e; AB,
where
A={(e}* e 7D (ey—e3") — (e, —eT)(eb  —e3*+9)}/C,
B={(ef**—e7**®)(e,—e3")— (61— &7 )N(eb2—e3**2)}/ D,
Here C=(¢;—e7Y)(e,—e3?) and D=(e,—e,)(e;—e3Y). Then

" krieze pe1oae
A= §O(E1+ “E—gitio),

and the numerator of B is rearranged as
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<8k+2 —l _(k+2))'*["(8 1 k+2 51(k+2)52>*‘"($lf+2551”‘EIET(k+2))
(e ekt — e kD TT)

Thus we have
{i( k+1- S 1 -3 ETS k+2- S) 2(ek+1 S -8 512'38§+2_s)}/(61——62>

k+2 R X L
:‘Z_;) Eosx_s_u(sé-s+u_‘5§ +s-uy

Hence we have (i). For (ii), it follows that

bo(es, e2)=(—1)e {(et***—e1?**)(el—e3?)

_(51"‘5—2)(5212+4 g3k "I}/ (eiter) (e te »1)(51‘!"52)(51"{“50 )
=(—1)e.E/(e;+e7) (et e3")(e1+¢2),
where
E={(et**—e7®* ") (e} —e3®) —(el—eT")(ed 1 —er ")} /(a1 +er?)
::{(e%k+4s§ —2 —Zk 4)%‘(5‘2 2k+4 sTZk—4s?
——(6%’”‘4852——816”‘“ 4)__(52 2k+4 s—zk -ig )}/(5 _}_Ej )

E._ 2: l t 2k+4-t 2L 2-t2k+4-t
6] _ (’—" ) (51 82 E] 82 )

2k+1
. 2 (_l)t(s%k+4—t852—t_ETz_tegk+4_;> .
=0

Thus we obtain

+62k+1

2k
F:€1E/(61—|—€2): Z:O I‘ZO (__1)t+u(s'{k+3—t-ueg-Hu_E%k+..-,-us§2+t—u).

We rearrange F as follows:

F: 2 (_1) {sfl)k-ro -s- 2tsg €2k+5-s—226§s},
8=-(2k+3) t=ag

Where (10:2, b0:2k+3, alzl, b1:2k+2, a—1:3, b—1:2k+4, a3:0, b3:2k+3_s
s=2) and a_,=2-s, b_;=2k+5(s=2). Then we have

($2k+2 _2k'2)(€2—6._.1)
2k+1 2k+1-s . %

+ 2 (__1)3 2 (szk-r -5 -2t 52 —1-s-2t)(s§+2_s;s—2).
§=0 =0

Thus
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2k+1
G=F/(g;+e7)= _( Eo (___1)u8%k+1—2u)(e2__8.2:1)

2ét1 B o h42os-8t_ 2k 542l o842 a—5-2
“'8_20(_1)8 ,Z% (g3ft2-s-2t__glh-s¥2l)(gft2mgl® ).

Here we rearrange G as follows:

G=H+1,
H=the sum of terms of even order in &,, and
I=the sum of odd order in e¢,.

Then
H= §0 (8%k+2'23—3T2k“2”3)(8%”2—8;23'2) ,
and
k
I:_ sgo a%k+l—28{ sgs+3+(_1)382___(__1)35-2-1__8—2-28—3}
+ é5?1'23{Eg(k"3)+3+(—1)k_3€2—(—1)k-88'§1—$§2(k_8)"3} .
Thus
k 2s8+1
H/(ez"l'"e;l): E (€%k+2—28_e~1—2k—2+28) E (_l)us§s+1—2u’
§=0 u=0
and
If(eutsi=— 2 ettri-s] B (—Dpepeto (=1 3~ Dreze=e]
§=0 D=0 D=
+ é EII—ZS[ES(_I)psg(k—-S)+2-—2p+(_1)k—8+1 g}s(—‘l)pS;Z_Zp].
$=0 2=0 =0 -
Therefore we obtain (ii). Q.E.D.

By we obtain the following tables:

(i) the monomials of —ay(e;, €.)=—2 A(a,, a,)e%1edz:

—a, —a, l Alay, ay)
D | —2k—2+s+2t+u ltbs—u X
2 | ThlAstu —h—2-+s+2t—u ~1
) | —2k—2+s+2tu | l—stu B
o | Shotrere | cbmsrmre |1

where 0<s<k-+2, 0<t=<k-+1, and 0=Zu=k.
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(ii)

The monomials of —by(e,, &;)=—3 B(b,, by)elrele:

Hajime URAKAWA

—b, —be B(by, bs)
5 | —2k+2s—2 —25—1+42u (—1)*
0=u=s2s+1
6) 2k —25+2 —25—1+42u (—1)u+t
7) —2k—1+2s —25—2+4+2p (—1)?+
0<p<s
8) —2k—1+42s 24+2p (—1)p+s -
9) 1+2s —2k—242s5+2p (—=1)»
0=p=k—s
10) | 1+2s 2+2p (—1)k+1+p+s

where 0<s<k.
Making use of the above tables, it turns out that 1/2(a,(e;, €5)-+bo(es, €2))
includes the following monomials :

(i) —er'er®*®  (R20),
(i) —e7'e3®*®  (k=4), and
(iii) —epte;@%-® (k=4).

Therefore S*V*¢) includes the following G-irreducible modules with multiplicity
one:

(=0),
(k=4), and
(k=4).

( i ) V2k21+2k12
(ii) V2k21+<zk—s)12
(iii) V2k21+(2k—5)22+313

The module V42,4242, appears in the table in Lemma 6.2, but both the latter
ones Virz +er-02y Veray+r-s1,+32,(2=4) do not so. Thus we obtain, if 2=4,

dim (Wa)=dim (Vo a,+ k-8 2,)Fdim (Va4 on-s5y25+825)
=1,287+-27,720=29,007 .
By Lemma 3.1, we obtain Theorem C.

REMARK.
we have

In case of P*(H) and k=4, it follows that m(4)+1=1,274. Then

29,007 =dim (W, = —%—(m(4)+ D(m(4)4-2)=812,175.
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