A REMARK ON MINIMAL FOLIATIONS
 OF LIE GROUPS

By
Shin-ichi NAGAMINE

1. Statement of the result.

Let G be a 3-dimensional Lie group, g its Lie algebra of left invariant vector fields and \langle,$\rangle a left invariant metric on G$. A 1 or 2 -dimensional subalgebra \mathfrak{l} of g gives rise to a foliated riemannian manifold ($G,\langle\rangle,, ~(f)$) (cf. [2]). Then we have the following

Theorem. Suppose that G is simply connected and nonunimodular. If (G, $\langle\rangle,, \mathscr{F}(\mathfrak{l})$) is a minimal foliation and the metric \langle,$\rangle is bundle like, then, in-$ dependent of the dimension of \mathfrak{l}, G is isomorphic to a semidirect product $S \times{ }_{\tau} \boldsymbol{R}$ and $S(\subset G)$ is of negative constant Gaussian curvature. Here $S=\left\{\begin{array}{cc}a & \boldsymbol{\xi} \\ 0 & 1 / a\end{array}\right) ; a>0$, $\boldsymbol{\xi} \in \boldsymbol{R}\}, \boldsymbol{R}$ the additive group of real numbers and τ a homomorphism of \boldsymbol{R} into the group of automorphism of S.

Remark 1. If $\operatorname{dim} \mathfrak{l}=2$ (resp. $\operatorname{dim} \mathfrak{l}=1$) in the above theorem, $S($ resp. $\boldsymbol{R})$ is the leaf through the identity of G.

Remark 2. Suppose that G is unimodular and $(G,\langle\rangle,, \mathcal{G}(\mathrm{y})$) is a minimal foliation with bundle like metric \langle,$\rangle , then all leaves are flat (cf. [1]).$

2. Definitions.

Let (M, g, \mathcal{F}) be an n-dimensional foliated riemannian manifold, that is, an n-dimensional riemannian manifold M with a riemannian metric g admitting a foliation \mathscr{F}. The foliation \mathscr{F} is given by an integrable subbundle E of the tangent bundle of M. The maximal connected integral submanifolds of E are called leaves. (M, g, Ψ) is called minimal if all leaves are minimal submanifolds of M, and the metric g is called bundle like metric with respect to \mathscr{F} if for each point $x \in M$ there exists a neighborhood U of x, a ($n-p$)-dimensional ($p=$ rank E) riemannian manifold (V, \bar{g}) and a riemannian submersion $\varphi:(U, g \upharpoonright U) \rightarrow(V, \bar{g})$ such that
$\varphi^{-1}(y)$ is an intersection of U and some leaf.
Let G be an n-dimensional connected Lie group and g the Lie algebra of left invariant vector fields on G. Taking a left invariant metric \langle,$\rangle on G$ and a p-dimensional subalgebra \mathfrak{l}, we have in a natural manner a foliated riemannian manifold $(G,\langle\rangle,, \mathscr{G}(\mathfrak{l}))$. Let $\left\{e_{1}, \cdots, e_{n}\right\}$ be an orthonormal basis for g with $e_{i} \in \mathfrak{l}(i=1, \cdots, p)$. If we denote by $C_{i j}^{k}$ the structure constants of \mathfrak{g} with respect to this basis: $\left[e_{i}, e_{j}\right]=\sum_{k=1}^{n} C_{i j}^{k} e_{k}$, then the metric \langle,$\rangle is bundle like with respect$ to $\mathscr{F}(\mathfrak{l})$ if and only if

$$
\begin{equation*}
C_{i j}^{k}+C_{i k}^{j}=0, \quad 1 \leqq i \leqq p, p+1 \leqq j, k \leqq n, \tag{2.1}
\end{equation*}
$$

and $(G,\langle\rangle,, \mathscr{F}(\mathfrak{l}))$ is minimal if and only if

$$
\begin{equation*}
\sum_{i=1}^{p} C_{j i}^{i}=0, \quad p+1 \leqq j \leqq n . \tag{2.2}
\end{equation*}
$$

Let $\mathfrak{q}, \mathfrak{m}$ be Lie algebras, σ a representation of \mathfrak{m} in \mathfrak{q} such that $\sigma(Y)$ is a derivation of \mathfrak{q} for all $Y \in \mathfrak{m}$. For $X, X^{\prime} \in \mathfrak{q}$ and $Y, Y^{\prime} \in \mathfrak{m}$, let

$$
\left[(X, Y),\left(X^{\prime}, Y^{\prime}\right)\right]=\left(\left[X, X^{\prime}\right]+\sigma(Y) X^{\prime}-\sigma\left(Y^{\prime}\right) X,\left[Y, Y^{\prime}\right]\right) .
$$

It is then verified that this converts the vector space $\mathfrak{q} \times \mathfrak{m}$ into a Lie algebra. We denote it by $\mathfrak{q} \times{ }_{\sigma} \mathfrak{m}$ and call it the semidirect product of \mathfrak{q} with \mathfrak{m} relative to σ. Let A and B be connected Lie groups and let $\tau\left(b \rightarrow \tau_{b}\right)$ be a homomorphism of B into the group of automorphism of A. We assume that the map $(a, b) \rightarrow$ $\tau_{b}(a)$ is of class C^{∞} from $A \times B$ into A. For $a_{1}, a_{2} \in A$ and $b_{1}, b_{2} \in B$, let (a_{1}, b_{1}) $\left(a_{2}, b_{2}\right)=\left(a_{1} \tau_{b_{1}}\left(a_{2}\right), b_{1} b_{2}\right)$. Then this converts the set $A \times B$ into a Lie group. We denote this Lie group by $A \times{ }_{\tau} B$ and call it the semidirect product of A with B relative to τ.

3. Proof of Theorem

We consider first the case of $\operatorname{dim} \mathfrak{l}=2$. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis for \mathfrak{g} with respect to \langle,$\rangle such that \mathfrak{l}$ is generated by e_{2} and e_{3}. By (2.1) and (2.2) we see that the bundle-likeness of the metric and the minimality of the foliation implies the following relation.

$$
\begin{align*}
& {\left[e_{1}, e_{2}\right]=s e_{2}+A e_{3}} \\
& {\left[e_{1}, e_{3}\right]=B e_{2}-s e_{3}} \tag{3.1}\\
& {\left[e_{2}, e_{3}\right]=a e_{2}+b e_{3},}
\end{align*}
$$

where a, b, A, B, s are constants. Now we recall that a connected Lie group is called unimodular if the linear transformation $\operatorname{ad}(X)$ has trace zero for every X in the associated Lie algebra. Since G is nonunimodular we see that $\left[e_{2}, e_{3}\right] \neq 0$,
and from the Jacobi identity it follows that $\left[e_{1},\left[e_{2}, e_{3}\right]\right]=0$, that is,

$$
\begin{equation*}
a s+b B=0, \quad a A-b s=0 . \tag{3.2}
\end{equation*}
$$

Without loss of generality we may assume that $b \neq 0$. Then, putting $E_{1}=e_{1}$, $E_{2}=(1 / b) e_{2}, E_{3}=\left[e_{2}, e_{3}\right]$, we have from (3.2)

$$
\begin{align*}
& {\left[E_{1}, E_{2}\right]=k E_{3} \quad\left(k=A / b^{2}\right)} \tag{3.3}\\
& {\left[E_{1}, E_{3}\right]=0, \quad\left[E_{2}, E_{3}\right]=E_{3} .}
\end{align*}
$$

Let \mathfrak{q} and \mathfrak{m} denote the Lie algebras of S and \boldsymbol{R} respectively. Choose a basis $\{X, Y\}$ for q so that $[X, Y]=Y$, and let $\{Z\}$ be a basis for \mathfrak{m}. For the representation σ of \mathfrak{m} in \mathfrak{q} defined by $\sigma(Z)=a d(-k Y)$ we construct the semidirect product $\mathfrak{q} \times{ }_{\sigma} \mathfrak{m}$. Then $X^{\prime}=(X, 0), Y^{\prime}=(Y, 0)$ and $Z^{\prime}=(0, Z)$ form a basis for $\mathfrak{q} \times{ }_{\boldsymbol{\sigma}} \mathfrak{m}$ and satisfy $\left[Z^{\prime}, X^{\prime}\right]=k Y^{\prime},\left[Z^{\prime}, Y^{\prime}\right]=0,\left[X^{\prime}, Y^{\prime}\right]=Y^{\prime}$, w hich implies together with (3.3) that \mathfrak{g} and $\mathfrak{q} \times_{\sigma} \mathfrak{m}$ are isomorphic. Now define the homomorphism τ of \boldsymbol{R} into the group of automorphism of S by $\tau_{t}(g)=a_{t} g a_{t}^{-1}, g \in S$, where $a_{t}=$ $\exp t(-k Y)$. Since G and $S \times{ }_{\tau} \boldsymbol{R}$ are simply connected and their Lie algebras are isomorphic, G is isomorphic to $S \times{ }_{\tau} \boldsymbol{R}$.

Let ∇ denote the riemannian connection associated with \langle,$\rangle , then it holds$ that for every $X, Y, Z \in g$

$$
\begin{equation*}
2\left\langle\nabla_{X} Y, Z\right\rangle=\langle[X, Y], Z\rangle+\langle[Z, X], Y\rangle-\langle[Y, Z], X\rangle . \tag{3.4}
\end{equation*}
$$

Let L denote the connected Lie subgroup of G with Lie algebra \mathfrak{l}. If we denote by $\bar{\nabla}$ the induced connection on L and by \bar{R} its curvature tensor, then we have by (3.4)

$$
\begin{array}{ll}
\bar{\nabla}_{e_{2}} e_{2}=-a e_{3}, & \bar{\nabla}_{e_{3} e_{3}}=a b_{2}, \\
\bar{\nabla}_{e_{3}} e_{2}=-b e_{3}, & \bar{\nabla}_{e_{2}} e_{3}=a e_{2},
\end{array}
$$

and therefore

$$
\begin{aligned}
\left\langle\bar{R}\left(e_{2}, e_{3}\right) e_{3}, e_{2}\right\rangle & =-\left\langle\bar{\nabla}_{e_{2}} e_{2}, \bar{\nabla}_{e_{3}} e_{3}\right\rangle+\left\langle\bar{\nabla}_{e_{2}} e_{3}, \bar{\nabla}_{e_{3}} e_{2}\right\rangle-a\left\langle\bar{\nabla}_{e_{2}} e_{3}, e_{2}\right\rangle-b\left\langle\bar{\nabla}_{e_{3}} e_{3}, e_{2}\right\rangle \\
& =-a^{2}-b^{2} .
\end{aligned}
$$

This shows that the Gaussian curvature of L with respect to the induced connection equals $-\left|\left[e_{2}, e_{3}\right]\right|^{2}<0$.

Finally, in the case of $\operatorname{dim} \mathfrak{l}=1$, if $\left\{e_{1}, e_{2}, e_{3}\right\}$ is an orthonormal basis for g with $e_{1} \in \mathfrak{l}$, then from (2.1), (2.2) it follows that for some constant A

$$
\left[e_{1}, e_{2}\right]=A e_{3}, \quad\left[e_{1}, e_{3}\right]=-A e_{2} .
$$

So, putting $\left[e_{2}, e_{3}\right]=c e_{1}+a e_{2}+b e_{3}$ and taking account of the nonunimodularity we have

$$
a^{2}+b^{2} \neq 0, \quad 0=\left[e_{1},\left[e_{2}, e_{3}\right]\right]=-b A e_{2}+a A e_{3},
$$

which implies that $A=0$ and e_{1} belongs to the center of g. Consequently, e_{1} is parallel and $c=0$. Hence the bracket relation between e_{1}, e_{2} and e_{3} is given by (3.1) with $s=A=B=0$. Therefore the preceeding argument applies also in this case. Actually we have $G=S \times \boldsymbol{R}$ (direct product), and this is also a riemannian product and S is of negative constant Gaussian curvature. Now the proof is completed.

The author would like to express his thanks to the referee for his kind suggestion.

References

[1] Milnor, J., Curvature of left invariant metrics on Lie groups, Advances in Math. 21 (1976), 293-329.
[2] Takagi, R. and Yorozu, S., Minimal foliations of Lie groups, Tôhoku Math. J. vol. 36, no. 4 (1984), 541-554.

Department of Liberal Arts
Kanazawa Institute of Technology
Nonoichi-machi, 921 Japan

