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1. Statement of the result.

Let $G$ be a 3-dimensional Lie group, $\mathfrak{g}$ its Lie algebra of left invariant
vector fields and $\langle, \rangle$ a left invariant metric on $G$ . A 1 or 2-dimensional sub-
algebra 1 of $\mathfrak{g}$ gives rise to a foliated riemannian manifold $(G, \langle, \rangle, \mathcal{F}(\mathfrak{l}))$ (cf. [2]).

Then we have the following

THEOREM. Suppose that $G$ is simply connected and nonunimodular. If $(G$ ,
$\langle, \rangle$ , $\mathcal{F}(\mathfrak{l}))$ is a minimal foliation and the metric $\langle, \rangle$ is bundle like, then, in-
dependent of the dimension of 1, $G$ is isomorphic to a semidirect product $S\times\tau R$

and $S(\subset G)$ is of negative constant Gaussian curvature. Here $S=\{\left(\begin{array}{ll}a & \xi\\ 0 & 1/a\end{array}\right);a>0$,

$\xi\in R\},$ $R$ the additive group of real numbers and $\tau$ a homomorphism of $R$ into

the group of automorphism of $S$ .

REMARK 1. If $\dim \mathfrak{l}=2$ (resp. $\dim \mathfrak{l}=1$ ) in the above theorem, $S$ (resp. $R$) is
the leaf through the identity of $G$ .

REMARK 2. Suppose that $G$ is unimodular and $(G, \langle, \rangle, \mathcal{F}(I))$ is a minimal
foliation with bundle like metric $\langle, \rangle$ , then all leaves are flat (cf. [1]).

2. Definitions.

Let $(M, g, \mathcal{F})$ be an n-dimensional foliated riemannian manifold, that is, an
n-dimensional riemannian manifold $M$ with a riemannian metric $g$ admitting a
foliation $\mathcal{F}$ . The foliation $\mathcal{F}$ is given by an integrable subbundle $E$ of the tan-
gent bundle of $M$. The maximal connected integral submanifolds of $E$ are called
leaves. $(M, g, \mathcal{F})$ is called minimal if all leaves are minimal submanifolds of $M$,
and the metric $g$ is called bundle like metric with respect to $\mathcal{F}$ if for each point
$x\in M$ there exists a neighborhood $U$ of $x$ , a $(n-p)$-dimensional $(p=rankE)$ rieman-
nian manifold (V, g) and a riemannian submersion $\varphi:(U, g[U)\rightarrow(V,\overline{g})$ such that
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$\varphi^{-1}(y)$ is an intersection of $U$ and some leaf.
Let $G$ be an n-dimensional connected Lie group and $\mathfrak{g}$ the Lie algebra of

left invariant vector fields on $G$ . Taking a left invariant metric $\langle, \rangle$ on $G$ and
a p-dimensional subalgebra 1, we have in a natural manner a foliated riemannian
manifold $(G, \langle, \rangle, \mathcal{F}(\mathfrak{l}))$ . Let $\{e_{1}, \cdots, e_{n}\}$ be an orthonormal basis for $\mathfrak{g}$ with
$e_{i}\in \mathfrak{l}(i=1, \cdots, p)$ . If we denote by $C_{ij}^{k}$ the structure constants of $\mathfrak{g}$ with respect
to this basis: $[e_{i}, e_{j}]=\Sigma_{k=1}^{n}C_{ij}^{k}e_{k}$ , then the metric $\langle, \rangle$ is bundle like with respect

to $\mathcal{F}(\mathfrak{l})$ if and only if

(2.1) $C_{ij}^{k}+C_{ik}^{j}=0$ , $1\leqq i\leqq p,$ $p+1\leqq j,$ $k\leqq n$ ,

and $(G, \langle, \rangle, \mathcal{F}(\mathfrak{l}))$ is minimal if and only if

(2.2) $\Sigma_{i=1}^{p}C_{ji}^{i}=0$ , $p+1\leqq j\leqq n$ .

Let $q,$ $\mathfrak{m}$ be Lie algebras, $\sigma$ a representation of $\mathfrak{m}$ in $q$ such that $\sigma(Y)$ is a
derivation of $q$ for all $Y\in \mathfrak{m}$ . For $X,$ $X^{\prime}\in q$ and $Y,$ $Y^{\prime}\in \mathfrak{m}$ , let

$[(X, Y), (X^{\prime}, Y^{\prime})]=([X, X^{\prime}]+\sigma(Y)X^{\prime}-\sigma(Y^{\prime})X, [Y, Y^{\prime}])$ .

It is then verified that this converts the vector space $q\times \mathfrak{m}$ into a Lie algebra.

We denote it by $q\times\sigma \mathfrak{m}$ and call it the semidirect product of $q$ with $\mathfrak{m}$ relative
to $\sigma$ . Let $A$ and $B$ be connected Lie groups and let $\tau(b\rightarrow\tau_{b})$ be a homomorphism

of $B$ into the group of automorphism of $A$ . We assume that the map $(a, b)\rightarrow$

$\tau_{b}(a)$ is of class $C^{\infty}$ from $A\times B$ into $A$ . For $a_{1},$ $a_{2}\in A$ and $b_{1},$ $b_{2}\in B$ , let $(a_{1}, b_{1})$

$(a_{2}, b_{2})=(a_{1}\tau_{b_{1}}(a_{2}), b_{1}b_{2})$ . Then this converts the set $A\times B$ into a Lie group. We
denote this Lie group by $A\times_{\tau}B$ and call it the semidirect product of $A$ with $B$

relative to $\tau$ .

3. Proof of Theorem

We consider first the case of $\dim \mathfrak{l}=2$ . Let $\{e_{1}, e_{2}, e_{3}\}$ be an orthonormal
basis for $\mathfrak{g}$ with respect to $\langle, \rangle$ such that 1 is generated by $e_{2}$ and $e_{3}$ . By (2.1)

and (2.2) we see that the bundle-likeness of the metric and the minimality of
the foliation implies the following relation.

$[e_{1}, e_{2}]=se_{2}+Ae_{3}$

(3.1) $[e_{1}, e_{3}]=Be_{2}-se_{3}$

$[e_{2}, e_{3}]=ae_{2}+be_{3}$ ,

where $a,$ $b,$ $A,$ $B,$ $s$ are constants. Now we recall that a connected Lie group is
called unimodular if the linear transformation ad (X) has trace zero for every $X$

in the associated Lie algebra. Since $G$ is nonunimodular we see that $[e_{2}, e_{3}]\neq 0$ ,
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and from the Jacobi identity it follows that $[e_{1}, [e_{2}, e_{3}]]=0$ , that is,

(3.2) $as+bB=0$ , $aA-bs=0$ .

Without loss of generality we may assume that $b\neq 0$ . Then, putting $E_{1}=e_{1}$ ,
$E_{2}=(1/b)e_{2},$ $E_{3}=[e_{2}, e_{3}]$ , we have from (3.2)

$[E_{1}, E_{2}]=kE_{3}(k=A/b^{2})$

(3.3)
$[E_{1}, E_{3}]=0$ , $[E_{2}, E_{3}]=E_{3}$ .

Let $q$ and $\mathfrak{m}$ denote the Lie algebras of $S$ and $R$ respectively. Choose a basis
{X, $Y$ } for $q$ so that [X, $Y$ ] $=Y$, and let $\{Z\}$ be a basis for $\mathfrak{m}$ . For the re-
presentation $\sigma$ of $\mathfrak{m}$ in $q$ defined by $\sigma(Z)=ad(-kY)$ we construct the semidirect
product $q\times\sigma \mathfrak{m}$ . Then $X^{\prime}=(X, 0)$ , $Y^{\prime}=(Y, 0)$ and $Z^{\prime}=(O, Z)$ form a basis for
$q\times\sigma \mathfrak{m}$ and satisfy $[Z^{\prime}, X^{\prime}]=kY^{\prime},$ $[Z^{\prime}, Y^{\prime}]=0,$ $[X^{\prime}, Y^{\prime}]=Y^{\prime},w$ hich implies together
with (3.3) that $\mathfrak{g}$ and $q\times\sigma \mathfrak{m}$ are isomorphic. Now define the homomorphism $\tau$ of
$R$ into the group of automorphism of $S$ by $\tau_{t}(g)=a_{t}ga_{l}^{-1},$ $g\in S$ , where $a_{t}=$

$\exp t(-kY)$ . Since $G$ and $S\times_{\tau}R$ are simply connected and their Lie algebras

are isomorphic, $G$ is isomorphic to $S\times_{\tau}R$ .
Let $\nabla$ denote the riemannian connection associated with $\langle$ , $\rangle$ , then it holds

that for every $X,$ $Y,$ $Z\in \mathfrak{g}$

(3.4) $ 2\langle\nabla_{X}Y, Z\rangle=\langle[X, Y], Z\rangle+\langle[Z, X], Y\rangle-\langle[Y, Z], X\rangle$ .

Let $L$ denote the connected Lie subgroup of $G$ with Lie algebra I. If we denote
by V the induced connection on $L$ and by $\overline{R}$ its curvature tensor, then we have
by (3.4)

$\overline{\nabla}_{e_{2}}e_{2}=-ae_{3}$ , $\overline{\nabla}_{e_{3}}e_{3}=eb_{2}$ ,

$\overline{\nabla}_{e_{3}}e_{2}=-be_{3}$ , $\overline{\nabla}_{e_{2}}e_{3}=ae_{2}$ ,

and therefore
$\langle\overline{R}(e_{2}, e_{3})e_{3}, e_{2}\rangle=-\langle\overline{\nabla}_{e_{2}}e_{2},\overline{\nabla}_{e_{3}}e_{3}\rangle+\langle\overline{\nabla}_{e_{2}}e_{3},\overline{\nabla}_{e_{3}}e_{2}\rangle-a\langle 5_{e_{2}}e_{3}, e_{2}\rangle-b\langle\overline{\nabla}_{e_{3}}e_{3}, e_{2}\rangle$

$=-a^{2}-b^{z}$ .
This shows that the Gaussian curvature of $L$ with respect to the induced con-
nection equals $-|[e_{2}, e_{3}]|^{2}<0$ .

Finally, in the case of $\dim \mathfrak{l}=1$ , if $\{e_{1}, e_{2}, e_{3}\}$ is an orthonormal basis for $\mathfrak{g}$

with $e_{1}\in \mathfrak{l}$ , then from (2.1), (2.2) it follows that for some constant $A$

$[e_{1}, e_{2}]=Ae_{3}$ , $[e_{1}, e_{3}]=-Ae_{2}$ .
So, putting $[e_{2}, e_{3}]=ce_{1}+ae_{2}+be_{3}$ and taking account of the nonunimodularity

we have
$a^{2}+b^{2}\neq 0$ , $0=[e_{1}, [e_{2}, e_{3}]]=-bAe_{2}+aAe_{8}$ ,
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which implies that $A=0$ and $e_{1}$ belongs to the center of $\mathfrak{g}$ . Consequently, $e_{1}$ is
parallel and $c=0$ . Hence the bracket relation between $e_{1},$ $e_{2}$ and $e_{3}$ is given by

(3.1) with $s=A=B=0$ . Therefore the preceeding argument applies also in this

case. Actually we have $G=S\times R$ (direct product), and this is also a riemannian
product and $S$ is of negative constant Gaussian curvature. Now the proof is
completed.

The author would like to express his thanks to the referee for his kind

suggestion.
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