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STABLE EQUIVALENCE BETWEEN UNIVERSAL COVERS
OF TRIVIAL EXTENSION SELF-INJECTIVE ALGEBRAS

By

Takayoshi WAKAMATSU

Introduction.

Let A be an indecomposable basic artin algebra and T, a basic tilting
module with B=End(T,). Let us denote by R and S the trivial extension self-
injective algebras Ax DA and Bx DB, respectively. In the papers and [22],
H. Tachikawa and the author have proved that there is a stably equivalent
functor S: mod-R—mod-S and the restriction of S to the tilting torsion class
T={Xemod-A|Ext{(T, X)=0} coincides with that of the tilting functor
Hom (T, ?).

D. Hughes and ]J. Waschbiisch introduced the following doubly infinite
matrix algebra :

. . 0
An-l Mn—l

A, M,
A= An.+l Mn:i-l

0

in which matrices are assumed to have only finitely many entries different from
zero, A,=A and M,=DA for all integers n, all the remaining entries are zero,
and multiplication is induced from the canonical maps AQ4DASDA, DARQLAS
DA and zero maps DARDA—OQ.

The identity maps An,—An+1, Mp—M,,, induce an algebra isomorphism y,
of A. The orbit space A/y, is easily seen to be the trivial extension algebra R.
Similarly, we can consider the orbit space A/(v4)" as a self-injective algebra
and it is denoted by R, for each n=1, 2, ---, co. Notice that R,=R and R.=A.

The aim of this article is to prove the existence of a stably equivalent
functor S,: mod-R,—mod-S, for each n. Here S, is an orbit space B/(vg)™.
The desired functor S, will be defined by slightly modifying the definition of
the functor §=S, in and [22].
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In order to relate the categories mod-A and mod-R, Hughes-Waschbiisch
used the exact functor @: mod-A—mod-R which preserves the indecomposability
and the compositibn length of a module and also almost split sequences and ir-
reducible maps. Similarly to the functor @, we can define the functors @, :
mod-A—mod-R, and @,, , : mod-R,.,—mod-R,. We shall show that the functors

S1=8, 8, 83, -+, S» make the following diagrams commutative :
mod'Rw
\¢m-n ¢n
mod-R,,., - mod-R,
D r
See lsm.,, lsn _
¢m,n
mod-S,,. ., —» mod-S,
J, /Q'VQH/
mod-S..

It should be noted that the functor @ is not dense in general, though in the
case where R is representation-finite or A is hereditary @=@, is dense and
&§=¢, is induced from Se.

Recently, D. Happel has proved that mod-A and mod-B are equivalent
if gl. dim. A<oco. But, since @ is not dense in general even if gl. dim. A<,
our results does not follow from his one. At the end of this paper such an
example will be given.

Throughout this paper, we fix a commutative artin ring K and all algebras
are assumed to be artin K-algebras except R. and S., and modules are finitely
generated over K and morphisms operate on the opposite side of the scalars.
The ordinary duality functor is always denoted by D.

1. Preliminaries

In this section, we shall recall some of basic results on tlltlng theory and
trivial extension algebras for the later use.

Let T, be a tilting module in the sense of Happel-Ringel [16]. Put B=
End(T,), then 3T is again a tilting module with End(3T)=A. Let us put =
{Xemod-A|Ext{(T, X)=0}, F={Xemod-A|Hom (T, X)=0}, %={Yemod-B]|
Y®pT=0} and 9={Y<mod-B|Tor¥(Y, T)=0}. Further, let F=Hom(T, ?),
F'=Exti(T, ?) (resp. G=(2QpT), G’=Tor%(?, T)) be functors from mod-A4 (resp.
mod-B) to mod-B (resp. mod-A). Then there are short exact sequences of
functors
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3
00— GF—> lpoau —> G'F'—> 0,

7

00— F'G’ —> lpoa.s —> FG —> 0,

where ¢ and 7 denote the counit and the unit of the adjunction (F, G), re-
spectively. Hence the restrictions of the functors F and G (resp. F’ and G’)
give a category equivalence 9 =% (resp. F=X). _ ‘

We call a short exact sequence 0—»X,—V,—L,—0 a torsion resolution of
X4 if Veg and Leadd(T,). There is the minimal torsion resolution 0—

[44
X——A—; V(X )——X>T(X 30 for any A-module X and every torsion resolution of X
is of the form
a 0
&) o 1z,
X - VX)PT,

T(X)PT, —> 0.

Similarly, a short exact sequence 0— Wjz— Ug— Y—0 is said to be a torsion-free
resolution of Y if U=y and Weadd(DT5). It is easy to see that the sequence
0—-Wp—Up—Yp—0 in the category mod-B is a torsion-free resolution iff the
corresponding sequence 0—zDY—5DU—DW—0 in the category B-mod is a tor-
sion resolution. Therefore, there is the minimal torsion-free resolution 0— W(Y)

Y
—>U(Y)—>Y—0 and every torsion-free resolution is of the form

oy 0
6, lwo) (TY) O)

00— WY)W, UY)DW,

Any module X5 over the trivial extension self-injective algebra R=AX DA
is defined by giving its underlying A-module X, and the A-morphism ¢ : X®,DA P
— X such that ¢-(¢®DA)=0 and any R-morphism f: Xp=(X,, ¢)>Xi=(X4, ¢’)
can be considered as an A-morphism f:X,— X} making the following diagram
commutative :

XRQ4DA -——¢———>X

f@DA| |
X'®Q4DA X'

’

See for details. If the underlying A-module X, is decomposed as a direct

sum XPX, and the morphism ¢ is of the form (;b) 8 P (XD X)RDA-(XP XY,
0

we shall denote Xp=(X,, ¢) by %9\. It should be noted that any indecomposable

1

projective (= injective) R-module has to be of the form fR::f%/% with a primi-
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tive idempotent fe ACR.

Similarly, by the definition, any object X in the category med-R.(R.=A) is
is defined by giving a family of A-modules {X;}:cz (X;>0 for only finite number
of integers i=Z) and a family of A-morphisms {¢;: X;QDA— X} ez satisfying
@i+ (@ QDA)=0 for all i€Z. Any morphism in the category mod-R. from
X=1{X;, ¢:} to X'={X;, ¢i} is a family of A-morphisms {f;: X;—Xi} such that
the following diagrams are commutative for all ;€ Z:

X,®.DA b Xin
f{®DA| | fenn
X:@ADA ¢’ >X1,,'+1.

Similarly to the above also, for any positive integer n, an R,-module X is
defined by giving a family of A-modules X, X;-:-, Xx-, and a family of A-
morphisms ¢, : X(@Q4DA—-X;, -+, Pn-2: Xp-2QaDA—X,-1 and @,_;: Xn-1 QDA
—X, satisfying ¢;.1(¢:QDA)=0 for each /=0, 1, ---, n—1. An R,-morphism
from X={X,, ¢:} to X'={X;, @1} is a family of A-morphisms f={f;: X;— X}
such that ¢i-fi{@DA=f;,,-¢; for each ;. Where we put X,,;.,=X; and ¢;,;..=¢;
(1=:=n, seN), for convenience.

Then the functors @, :mod-R,—mod-R, and @, ,:mod-R,.,—mod-R, are
defined as follows:

O.((X;, N={Ys, dit1y, YVi= & X,

j=i(modn)
and
il X;QDA=¢; for all j=i(mod n).

¢n({fj:Xj—)X§})={gi:j@:Xj_'>EBX_;}; gi:jégfj'

It is easy to verify that the functors @,, @, , are exact and preserve the
projectivity (= injectivity), indecomposability and composition length of a module
and almost split sequences and irreducible maps. Further they make the follow-
ing commutative diagrams:

mod-R.. mod-R..
¢m-n/ “a Qm/ w
and
mod-R ., ————— mod-R, mod-R,,., ———> mod-R, .

Here mod-* denotes the projectively (= injectively) stable category of mod-*
in the sense of M. Auslander, for each self-injective algebra *.
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2. The functors S,:mod-R,—mod-S, and Q,: mod-S,—mod-R,

In this section, we shall define the functor S,:mod-R,—mod-S, first and

then, by making use of this functor S,, the functor Q, will be defined as the
composite mod-S,—>S,-mod—> R,mod—>mod-R,. Notice that, since R, and

S, are self-injective, the duality functor D:mod-R,ZR,-mod, mod-S,=S,-mod
induces the duality functor mod-R,ZR,-mod, mod-S,=S,-mod (we denote this
functor also by D). The functor S,:S,-mod—R,-mod can be defined similarly
to S, :mod-R,—mod-S,. '

For an R,-module X={X;, ¢;}, we shall define S;-modules A(X) and 3(X)
and S,-monomorphism u(X): A(X)—8(X) and the module S,(X) is defined as its
cokernel Cok u#(X). In order to define those S,-modules and S,-morphism, the
following lemma is necessary

LEMMA 2.1. ,DA,=.DT®sT4 and sDBs=sTR4DTs.

PRrROOF. Since 5T, is a balanced bimodule, we have 4DA = 4D Hom (3T, pT)4
=~ ,DTRpT,4 and zgDBp=zD Hom (T, TA)p=sTXR4DT5.

In the following, we can identify DA (resp. DB) with DTQT (resp. TQDT).
Further, from the lemma, it follows that 4,DAQRDTp=,4DTXRsT,4 and zTR DA,
=~DBX 5T, and we shall identify these bimodules respectively.

Now let us put AX)={X.QDT, —¢;QDT: X, QDTRQDB=X,QDAQKDT—
X, ®DT} and BX)={RV(Xu)BFVXNSDB, (] 0 ) F(V(Xea)

FW(X;41)®DB
QRDBDF(V(X)QQDBXDB—F(V(X,1:))DF( V(X,-+1))®DB}. Then it is not hard to
see that A(X) and B(X) become S,-modules. We shall define the map u(X)
by the following :

u(X)l:( F(aXiq-l"-.qSi).ﬂXi@DT ):
(v, @DT) - ax, QDT

MX)i=XiQDT —> F(V(Xi+1))DF(V(X)QDB= B(X);.
To see that the above map u(X) is an S,-morphism, it is enough to show the
commutativity of the following diagram:
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f F(—g, w
® /ﬂF(Xi@DA)—_(——gl’F(Xm) Flax,,,)
Nx, QDT
/ X, QDT F(V(X, ) | ®DB
| @x®DT o — F(V(X))®DB
—¢:QQDT V(X)QDT VV,(“A'Z.)®DT J y
F(—gir) |
F(X; s, ®DA) ——— F(X;.) I‘<a~"i+2)
77:"i+1®Dy
* X,,@DT F(ng»

W,
x4, QDT —~ F(V(X::.))QDB
@y, & V(Xi)@DT "{H,@)DT

LEMMA 2.2. The above diagram is commutative.

ProoF. From the naturality of the ¢ and 7, we have the following equali-

ties :
SV(Xi+1)®DT : F(axiﬂ' '—¢i)®DB : 77X,;®DT®DB

=(ax;4," —PIRDT - x,004Q DT 9 x 0,y QDB
:(axiﬂ‘ —¢i)®DT . (5X1;®DT®T' 77xi®DT®T)®DT
=(@x;4,  —PIQQDT *1x,eprens
=ax;,, QDT - (—¢.QDT),
Flax,,,—®i+1) Nx400r° —P QDT
=F(ax;y, —Pi+1) F(—9:QDA) 9 x,0p400r
=F(@xy,) F(@ir1 9 QDA) 7 x,0048pr=0.
The desired commutativity follows from the above equalities.
Since ax,QDT is an injection and ey x,,@DT is a bijection, u(X); is also

an injection for each i;. Therefore, u(X) is an S,-monomorphism. Thus we can
define the S,-module S,(X) as the cokernel Cok u(X) of this S,-monomorphism

u(X).
From the definition of &S,, the following lemma is easily checked.

LEMMA 2.3. For any projective R,-module P, the S-module S,(P) is also
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projective.

The remaining part of this section is devoted to the proof of the following
proposition.

PROPOSITION 2.4. The correspondence S, can be seen as a stable functor from
mod-R, to mod-S,.

It is necessary to define the S,-morphism S,(f) for any R,-morphism f=
{fi: X={X,, ¢:;} ={X], ¢i}=X’, at first. In order to define such a morphism,
it is sufficient to define S,-morphisms A(f) : AX)—A(X’) and B(f): 8(X)— B(X’)
such that w(X") - A(f)=38(f) u(X). ‘

Let us put A(f) and 8(f) as follows:

Af)i=f QDT : AX);=X:QDT —> XiQDT=MX");,

F(f¥o) ) )
0 F(UHRDB/
B(X)=F(V(X.))BF V(X)RQDB —> F(V(X{:)BF(V(X))QDB=38(X");,

Q(f)z':(

where f¥ is defined by the following commutative diagram

Ax; Bx,
0 Xi V(Xy) —— T(X)) — 0
fe) il )
0 —> X; > V(X;) ——> T(Xi) —> 0.
ax; L’

The fact that JA(f) and B(f) are S,-morphisms is clear.

LEMMA 2.5. The above morphisms A(f) and B(f) satisfy w(X')- A(f)=B(f)
~u(X).

ProOOF. We have to verify the following two equalities :

(a) EV(X'i)@DT'F(f’f)@DB'(5V<Xi)®DT)_1‘axi®DT=01X',-®DT'fi®DT
and

(b) F(f;.'k+1'aX1;+1' —¢i)‘ 7]X1;®DT:F(aX%+1' —¢§)' 77X’,;®DT'fi®DT-
The above two equalities (a) and (b) follow from the naturality of ¢ and » and
the following three equalities : fir @i=¢,-fi{QDA, ffax,=axi-fiand ff-ax; .
=axy fis

Therefore we have defined the S,-morphism S(f) by the following commuta-
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tive diagram:

u(X)
0— X)) —— B(X) —> Sp(X) — 0
AN | ()| | sa00)

00— AX") B(X') —> S(X') —> 0.

w(X

By the definition, A(f) is uniquely determined by f but #(f) is not and so
Sa(f) is not uniquely determined by f. However, in the stable category mod-S,,
we can prove the singleness of the morphism S,(f). To show this fact, we
shall prove that S,(f) factors through projective S,-modules if f=0.

Since f;=0, there is a morphism d;: T(X,)— V(X}) and f¥=0;-Bx, Let P(X)
be a projective S,-module defined by

P(X)i=F(T(X;1))DF(T(X)QDB
and

0 0
(‘_P(X)i®DB—>EP(X)i+1)=( ):

Frxgeepe 0
F(T(Xu:)QDBBF(T(X)QDBRDB —> F(T(X1:))DF(T(X:41))QDB.

It is possible to define S,-morphisms B(X) from #(X) to #(X) and A from P(X)
to 8(X’) so that 8(f)=A-B(X) by putting :

B(X)i=F(Bx;.,)DF(Bx;;®DB:

4 FV(Xu))DF(V(X)QDB —> F(T( X ))PF(T(X)QDB
an
A;=F(0;+,))BF(0,)RDB:

F(T(Xi:)OF(T(X)QDB — F(V(Xi+.))OF (V(X)Q®DB.

It is easy to see that B(X)-u(X)=0 and S,(f) factors through projective S,-
module @(X):

00— JA(X) —ug(l)Q(X) —_— S X)——>0
px | A
P(X)
A
00— J(X") W B(X') —> S, (X)—>0.

Therefore, we have defined the functor nod-R,—mod-S, and this functor
induces the desired stable functor °S,: mod-R,—mod-S, by This

completes the proof of [Proposition 2.4l
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From the definition of the functors @,, @, , and S,, the commutativity of
the diagram in Introduction is now obvious.

3. The functor Q, :mod-S,—mod-R,
D S
The functor Q, has defined as the composite mod-S,—>S,-mod—> R ,-mod

D
—>mod-R,. In this section, we shall show the construction of this functor in

an explicit way, for the later use.

In the definition of the functor S, we expressed R,- and S,-modules as
the tensor forms: {X;, ¢;: X;®QDA— X} and {Y;, ¢;: Y, QDB—Y,,}. But for
the definition of the functor Q,, it is convenient to express the modules as the
hom-forms: {X;, ¢:: X;—Hom (DA, X,.,)} and {Y;, ¢;: Yi—=Homs(DB, Y1)},
where &; (resp. &) is the adjoint of ¢, (resp. ¢;) which corresponds to ¢; (rep.
¢;) by the canonical isomorphism Hom,(X;Q4DA, X;.)=Hom (X;, Hom DA,
Xi+1) (resp. Homp(Y,QpDB, Vi) =Homp(Y;, Homg(DB, Yi+1)).

In the following we shall sometimes abbroviate Hom (?, ?) by [?, ?].

For an S,-module Y={Y,, ¢}, let us put

c(Y)={[DT, Y], [DT, —¢:]1: [DT, Y] — [DT, [DB, Y]
=[DA, [DT, Y. 11}
and

0 0
@(Y)={[DA, GUY )IBGWUY s-1), ( )2
[DA, GUXYd] 0

[DA, GUY NIBGW(Y i-0) —> [DA, [DA, GUY 141)]]
DSLDA, G(U(Yi)):l}

and define the map p(Y): D(Y)—C(Y) as follows:
p(Y):=([DT, TY,;’(WU(Y,-))—I, EEDT,Y,;]'G(_S[;i'rYi_I):
DY), =[DA, GUY )IJDGUY s-1)) —> [DT, Y ]=C(Y );.

Then ¢(Y) and 9(Y) become R,-modules and p(Y) is an R,-morphism. The
mhdule Q,(Y) coincides with the kernel Ker p(Y) of the above morphism p(Y).

’

For an S,-morphism g={g;: Y, —VYi}: Y={Y;, ¢:}—-Y'={Y3, ¢i}, we put
clg): c(Y)—c(Y’) and D(g): DY )—D(Y’) as follows:
c(g):;=[DT, g:1: [DT,Y.]— [DT, Y],
[DA, G(g?)] 0
0 G(gi"-l))
[DA, GUY )NIBGCWUY ;1)) —> [DA, GUY )IBCGU Y i-1),

-@(g)z'=(



308 Takayoshi WAKAMATSU

where g% is defined by the following commutative diagram :

6Yi Tyy
0— WY,) —— U, >Y,—>0
l gr* l g% l gi
0 — WY} —— UXYYD > Y, —0.
O, s

Then C(g) and 9D(g) become R,-morphisms and satisfy C(g):p(Y)=p(Y")-D(g).
The R,-morphism Q,(g):0,(Y)—Q,(Y’) is defined by the following commuta-
tive diagram:

p(Y)

0 —> QuY) —> DY) —> C(¥) —>0
low | D@ |e@

00— 0, (Y")—> DY) > C(Y')—> 0.

/

Similarly to the functor S,, O, can be considered as a functor mod-S,—
mod-R, and it induces mod-S,—mod-R..

4. The proof of the isomorphism Q,-S,=1nod.z,

We begin with the survey of the torsion-free resolution of the component of
S.(X), in order to investigate the module Q,S.(X).
Let us denote the morphism cok u(X) by 6(X):

0(X)i=(x4 32): FV( X ))BF(V(X))QDB —> Sy(X);.
P E
Let Pé——o> V(X;)—0 be the projective cover, then we have the following com-

mutative diagram with exact rows:

at = lp:i
0—> pi—2 s pi P TPy o
PR
0—> X, V(XD T(X) —> 0
Axy Bx;

Since proj. dim. T,=1, P! has to be projective. Applying (?®,DT) to the above
diagram, we have the following commutative diagram :
a‘QDT . BQQDT
0 — PIQDT PiQDT T(X)QDT —> 0
| p@DT | pi@DT [l
0— X, QDT —— V(X,)®DT T(X)QRXDT — 0.

aXi®D X3
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Here we used the fact that Tor{(7T(X,), DT)=DExt\(T(X,), T)=0. Hence we
know Ker p!QDT)z=Ker (piRDT)s by the Snake Lemma.
Consider the following diagram of B-modules :

¢ FV(Xi)

F(PIQDA)
Pi®DT lx
0—> AX), B(X), Sal(X)y —> 0,
u(X)i 0(X)1

where { and X are defined as follows:
(F(axi' '—"¢i)' 77Xi®DT'Pf®DT)
(77P3®DT)_1'ai®DT ,

. 1F(V(Xi+1)> 0

—( 0 (aV(X,;)®DT>_1'pg®DT'(7]P3®DT)_1).
From the fact that Ker (piQDT)g=Ker piQDT)s, it follows that KerX=Ker
((e;r(Xi>®DT)‘1-pé(X)DT-(vypg@T)“)EKer(pg@DT)zKer(pf(X)DT). Therefore we
have Cok{=S,(X); and we have a torsion-free resolution of S,(X),.

LEMMA 4.1. The following exact sequence is a torsion-free resolution of
'Sn(X>i:

0 — PIQDT —C> FV(Xi:0)BF (P{QDA) —> Sa(X); —> 0.

It is clear that PiRXDTe<add(DTp) and F(F(X;1)BF(PIRDAcy. We
shall denote coker by 8;,=(x;, 9. '

To define the modules S,(X) and Q,(Y), we have used the minimal torsion
and torsion-free resolutions. But by the remark on torsion and torsion-free re-
solutions in section one, we may use any such resolutions since we consider
modules in the stable categories.

Now, using the torsion-free resolutions given by Lemma 4.1, let us calculate
the module Q,S,(X).

The routine verification shows the following lemma.

LEMMA 4.2. The map p(S,(X)) is expressed as follows :

(b) DS(X)i=[DA, GF(V(Xi )IB[DA, GF(P{QDA)]
DCFV(X)DBGF(Pi'@QDA)
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(©) P(SAX)N:=([DT, xs*(Prvxss) ), LDT, 5’:"(775'(?3@94))"1],
SEDT.Sn(X),;]'F(—'QZi—l'xi—l)y SCDT,Sn(X)iJ'F(_SZi—l'5’1:—1)) ’

where we identify [DA,?] (resp. [DB,?]) with [DT,[T,?]] (resp. [T,[DT,?]])
and $;: Sn(X)i—[DB, Su(X)is,] denotes the i-th structure map of the Sy-module
So(X) in the hom-form.

The remaining part of this section is devoted to prove that Ker p(S,(X)) is
isomorphic to X as an object in the stable category mod-R,. In fact, we shall
show Ker p(Sn(X))=X@P for the projective (= injective) R,-module P defined

as follows:
0 0
P—:{PSGBP.% IQDA, .
1piQpa 0

LEMMA 4.3. |Ker p(S.(X)|=|X|+|P|, where |*| denotes the K-composition
length of a module *.

ProoF. By Lemma 4.1, we have
|Ker p(Sa(X))il=|[DA, V(Xis)]I+ 1 P§l+ V(X))
+ P QDA|—[DT, Sa(X):ll,
since &y : FG(V)=V for a torsion A-module V and zy: U=GF(U) for a torsion-

free B-module U by Brenner-Butler’s theorem. On the other hand, from the

exact sequence
0 —> PIQDT —> F(V(X::1)DF (P{QDA) —> Sa(X); —> 0

we have the exact sequence
0 —> [DT, Pi®QDT] — [DT, F(V(X:x))IOLDT, F(PIQDA)]
— [DT, Sx(X)] —>0
and [DT, F(PiQDA)1=[DA, P’QDA]=P}, [DT, PiQDT]1=[DT, D[P}, T]]=
[[P:‘T], T]=Pi, as well. Therefore, it follows |[DT, S.(X):J|=|[DA, V{Xi1)]]

+|Pi|—|Pi]. Hence we have |Ker p(S.(X)):|=IV(X)|+|Pi~'Q@DAI+|Pil.
Further, from the exact commutative diagram :

0—> Pt—> P} —T(X)—>0

| | \\

A\ v

0— X;, — V(X)) — T(X,) —0,
we know | Pi| —|Pil=|T(Xy)|=|V(X)|—1Xil, i.e., | V(X)|+|Pi=]|Pil+1X:l.
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Finally, we have | Ker p(Sa(X))i| =|PE*QDA|+ | Pé + 1 X;|=|X;|+|P;] and
this means that |Ker p(S,(X))|=|X|+|P| as desired.

By the above lemma, in order to prove the isomorphism Ker (S X)) = XPP,
it suffices to show the existence of an R,-monomorphism (e(X), f(X)): XPP—
DS,(X) such that the composition P(Sa(X))(e(X), f(X)) is a zero map. To
define such morphisms e(X) and f(X), it is necessary to introduce a notation:
For a bimodule e,Mg, over algebras E, [and E,, we can always consider the
adjoint pair of functors Homg, (M, ?): mod-E,—mod-E, and (?Qg,M): mod-E,—
mod-E,. We shall denote the unit and counit of this adjunction by 7™ : lmod.x,
—Homg,(M, ?Qg, M) and & : Homg, (M, ?)Qr,M—1moa.r,, respectively. Then it
is noted that »p=»7 and e=e".

Now let us put e(X): X—9S,(X) and f(X): P>DS,(X) as follows:

4 I:DAr (EV(X1;+1))-1'aXi+1'¢i]' ng‘:

0
e(X);=
(eyxp)trayx,
0
and
4 0 0
(DT, 77ET,P§®D.4]:| 0
f(X)tZ
(evexp)™t-pé 0
. 0 (epi-1epa)~"

In the following, we shall show that e(X) and f(X) are R,-homomorphisms and
D(Sa(X))e(X)=0=p(S,(X))-f(X). To do so, it is necessary to provide the fol-
lowing lemma.

LEMMA 4.4. The following diagrams are commutative for any A-module X
and B-morphism g: ZQDB—Y.
(DT, 7?F(X)]
[DT, F(X)] -——— [DT, FGF(X)]
(a)

[DA, X] ——— [DA, GF(X)]
[DA, ex]

7%
X —— > [DA, XQDA]

| |
[DT, XDT] ———> [DT, F(XRQXRDA)]

» Vxepr
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[DT, g]
(DT, Z®DB] ——> [DT,Y]
773{}) T T &pr,vi
() G(Z) GF((DT, YD
G| |
G([DB, ZQDB]) —— G(DB, Y]
G([DB, g

Proor. Rutine verification.
LEMMA 4.5. The map e(X) is an R,-morphism.

PROOF. At first, we have to verify the equality
881"4"(V<Xi+1))‘([DA, EV(XiH)]@DA)—l'[DA, ax’,;+1‘¢i]®DA‘7]%®DA
:(SV(X5+1))—1'a‘Yi+1'¢i-
By the naturality of ¢4 and the relation e34gp4- % QDA=1x, we have ax,,,
=P, p (DA, ax,,, $:JQDA- 7% QDA. Hence it is sufficient to show
(EvcxiH))_l'Slxzfxiﬂ):‘sgﬁ(wxiﬂ))‘([DA, 5V(X¢+1)]®DA)_1, ie., EV(XHl)'EIG)?'(V(XiH))
=ePlx,sp [DA, evixypIQDA. But this follows again from the naturality of eP4.

The another necessary condition ([DA, eyx;ip]) ' "[DA, ax,,p Pis1] %54,
-¢,=0 is obvious.

LEMMA 4.6. The map f(X) is an R,-morphism, as well.

PrROOF. We have to verify the equality
<5P3®DA>_1:77g§“(P8®DA) -[DT, 77F(P3®DA)]®DA . 7],[.121-
Since eggA@DA-ngg@DA:lpg@M and ¢P4 is a natural transformation, we have
(5P§®DA)"1:58§‘@3®DA) «(LDA, SP};@DA]@DA)—I : 7]£§®DA .
Hence we have the desired result since ([DA, sP(i,@DA])“:[DT, np(pgwm]@DA
by (a).
For the proof of p(X)-(e(X), f(X))=0, we note that the i-th structure map
¢i: Su(X)Q@DB—Sa(X)is1 satisfies ¢;-y,QDB=0 and Virr=¢: - x,QDB and its
adjoint ¢; is the same with the composition: [DB, G178 xy 0 SalX)i—

[DB, $,(X);®QDB]—[DB, S,(X)i+;]. Then it is easy to prove the following
lemma, by definition.

LEMMA 4.7. The following hold.



Stable Equivalence Between Universal Covers 313

(a) G(Szi—l'xi—l):G([DB; yi]'ﬁ?fm}(m)
(b) G(sl—’i—1‘37i—1):0

LEMMA 4.8. p(X)-e(X)=0.

PROOF. By (a), it is sufficient to prove the commutativity of the
following diagram:

7% [DA, ¢:] [DA, ax;,,]
X:;—>[DA, X,QDA]—> [DA, X;,]——>[DT, F(V(Xi:1))]
ax; [ | DT, %]
V(Xy) [DT, SA(Xy)]
Ev(xy TZ 't_, ecpr, s,(X )il
GF(V(X,))—> G([DB, F(V(X;))@DB]) ———> G(LDB, S,(X):]).
G(’??’(BV(Xi))) G([DB, y:])

We know 9%A=[DT, nxeorl-n%;: Xi—[DT, X, QDT]-[DT, F(X;QDA)]=
[DA, X;QDA] by (b) and GEDT,Sn(X)i]'G([DBr yi]"/]??wxi)):[DT» Yl
‘9BFwxy DY (c). Further, by the definition of the map @&, it
holds that

yi‘G(swxi))'l'axi®DT=xi'F(aXi+l'¢i)'77xi®DT-

Hence we have
(DT, x]-[DA, ax,., 61 7%
=[DT, x Flax,,, 951 1%
=[DT, x;-Flax,,, ®) Nx,e0r] 1%;
=[DT, yi'(sV(Xi)®DT>_I'aX,;®DT]'ﬂg’z
=[DT, yi(evxp®@DT)*1-9Plxy - ax,
=[DT, yi]'ﬂg%"(V(Xi))'(5V(X,;)>-l'aX.,;

=5EDT,Sn(X)iJ'G<[DB> yf:]‘ﬂg?wxi)))'(swxn)'l'CYX,--
LEMMA 4.9. p(X)-f(X)=0.

PROOF. By (a), it is enough to prove the commutativity of the
diagram:
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DA
7P} [DT, 5]
P{—>[DA, Pi®DA]=[DT, F(P{dDA)] ——> [DT, $,(X);]

pi

V(X)) DT, S 3
Ey(xy TZ
GF(V(Xy)) ———> G([DB, F(V(X))QDB]) ———> G([DB, $x(X):])
G(ﬂ??wxi))) G(LDB, y.])

By [Lemma 4.4 (b) and (c), we know ng‘—[DT, 1)p0®DT] 77P,T and 98%w x ;=
&or, rovexepslr GNP x,y). Hence we have

(DT, 5:1-9g¢=[DT, ﬁt‘ﬁpé@of]'ﬂgg
=LDT, yi(eyxp@DT)- ps@DT]-7f
=[DT, y:i-(evxp@DT) '] 9¥lx ;- DS
=[DT, y:1-98Fwxp  (evixy) ' pé
=[DT, yd-ewor.ewvxopsr GNP x ;) (vix ) b
=ewr, sp x5 GF([DT, 3.0)-GR¥ x ) (evexp) ™ pé
=¢rpr, 5,31 G([DB, ¥ 1-78% x ) (evexp) ™t pé

Since (e(X), f(X)) is obviously an R,-monomorphism, we have proved Q,S,(X)
= XPP as R,-modules. It is easy to prove that the monomorphism e(X): X—
DS,(X) has naturality on X. By the duality, we can prove the similar result
on §,0,.

Thus we have

THEOREM 4.10. Q,87.=1mod-r, a4 SnQn=1med.s,, i.¢., the stable categories
mod-R, and mod-S, are always equivalent.

REMARK. D. Happel has proved that mod-A and mod-B are equivalent
if gl. dim. A<co. And, in the case where @=@,: mod-A—mod-R is dense,
the stable functor S, is induced from S. for each n#co. But, in general, @ is
not dense even if gl. dim. A<oo, can not be induced from S..

ExAMPLE 4.11. Let A be the bound quiver algebra of
o
/ \
\ / 3 with  8-a=0.
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Then soc (e, A)=top (e,ARQDA) and there is a non-zero map f from ¢, AQDA to
esA such that Im(f)=soc(e,A) and Ker(f)=rad(¢,AQXDA). Hence we can define
an indecomposable R-module X=(¢,A, f). As is easily seen, for any R-module
X’, X can not be isomorphic to @(X’). Thus @ :mod-A—mod-R is not dense,

even though g.l dim. A=2<oco.
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