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FIBER SHAPE THEORY
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Abstract. In this paper we develop a fiber shape theory for maps
between metric spaces. Our approach is based on the Marde\v{s}i\v{c}-
Segal method and, instead of ANR’s, their fiber preserving analogues
are used. A fiber preserving version of Chapman’s complement
theorem is proved.
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\S $0$ . Introduction.

The purpose of this paper is to develop a fiber shape theory for maps
between metric spaces. There are several approaches to the fiber shape theory
for maps between compact metric spaces ([CM], $[Ka_{1,3}]$ ), which correspond to
those to the shape theory ( $[B_{0}],$ $[Ch_{1}]$ , [MS]). The description of our fiber shape
category is based on the general construction of shape categories in [MS].

In shape theory ([DS], [MS]), the shape of a space is represented by an
ANR-system associated with the space. In our setting, the same role will be
played by a fiber preserving version of ANR’s (cf. [CM]). \S 1 contains the
definition and some examples of such fibered ANR’s.

In \S 2 we will give the description of our fiber shape category. It is proved
that our approach is particularly useful to treat proper maps and many results in
$[Ka_{1.2.3}]$ have natural generalizations in our setting. For example, among proper
maps, hereditary shape equivalences, shape fibrations or the notion of movability
introduced in $[Y_{2}]$ are shown to be fiber shape invariant.

In \S 3, we will prove a fiber preserving version of Chapman’s complement
theorem, which gives the fiber shape classification of proper maps over a sepa-
rable metric base space. The same statement is also found in [CM], where the
base space is restricted to ENR’s.
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Finally, we will list some notations and conventions used throughout this

paper. All spaces are metric spaces and in \S 3 they are assumed to be separable.

ANR’s are ones for the metric spaces ([Hu]). $id_{x}$ denotes the identity map on
the space $X$ and $\pi_{B}$ : $B\times M\rightarrow B$ , $\pi_{M}$ ; $B\times M\rightarrow M$ always denote the projections

onto appropriate factors. Given maps $p:X\rightarrow B$ and $q:Y\rightarrow B$ , a map $f:X\rightarrow Y$ is
said to be fiber preserving $(f. p.)$ if $qf=p$ . Similarly a homotopy $f_{t}$ : $X\rightarrow Y$

$(0\leqq t\leqq 1)$ is $f$ . $p$ . if $qf_{t}=p(0\leqq t\leqq 1)$ . In particular, a map $f:X\rightarrow B\times M$ is $f$ . $p$ . if
$\pi_{B}f=p$ . A map $p:X\rightarrow B$ is proper if $p^{-1}(K)$ is compact for each compact $K\subset B$ .
For a subset $C\subset B,$ $p_{c}$ denotes the restriction $p|_{p-1(C)}$ : $p^{-1}(C)\rightarrow C$. Let $\mathcal{V}$ be an
open cover of a space $Y$. We say that the maps $f,$ $g:X\rightarrow Y$ are $\mathcal{V}$-near,

written $(f, g)\leqq \mathcal{V}$ , if each $x\in X$ admits a $V\in \mathcal{V}$ with $f(x),$ $g(x)\in V$. A homotopy

$F:X\times[0,1]\rightarrow Y$ is a $\mathcal{V}$-homotopy if for each $x\in X$ there exists a $V\in \mathcal{V}$ with
$F(\{x\}\times[0,1])\subset V$.

We refer to [DS] and [MS] for shape theory and related topics, and to

[CM] and $[Ka_{1,3}]$ for fiber shape theory.

\S 1. Absolute neighborhood fiber retracts.

In this section we will define an $f$ . $p$ . version of ANR’s and prove their
elementary properties, which will be used in the next section to define a fiber

shape category.

Let $B$ be a fixed space. A map $p:E\rightarrow B$ is said to be an absolute neigh-

borhood fiber retract (ANFR) over $B$ provided for any map $q:X\rightarrow B$ and any
$f$ . $p$ . closed embedding $i:E\rightarrow X$, there exist a neighborhood $U$ of $i(E)$ in $X$ and

a map $r:U\rightarrow E$ such that $ri=id_{E}$ and $pr=q|_{U}$ . In addition, if $we_{\sim}can$ always take

$U=X$, then we say $p$ is an absolute fiber retract (AFR) over $B$ .
Similarly we may say a map $p:E\rightarrow B$ is an absolute neighborhood fiber

extensor (ANFE) over $B$ provided for any map $q:X\rightarrow B$ and any map $f:A\rightarrow E$

from a closed subset $A$ of $X$ with $pf=q|_{A}$ , there exists an extension $I:U\rightarrow E$

of $f$ to a neighborhood $U$ of $A$ in $X$ with $p\tilde{f}=q|_{U}$ .
We will list some elementary properties of ANFR’s, which are $f$ . $p$ . analogues

of ones of ANR’s ([Hu]).

1.1. PROPOSITION. (i) ([CM]) Let $M$ be an ANR and $U$ be an open set in

$B\times M$. Then the projection $\pi_{B}|_{U}$ : $U\rightarrow B$ is an ANFR. A map $p:E\rightarrow B$ is an

ANFR iff $p$ is an $f.p$ . retract of such a projection $\pi_{B}|_{U}$ .
(ii) A map $p:E\rightarrow B$ is an ANFR iff $p$ is an ANFE.
(iii) Every $f.p$ . neighborhood retract of an ANFR is also an ANFR.
(iv) (The $f.p$ . homotopy extension property) Suppose $q;E\rightarrow B$ is an ANFR,
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$p:X\rightarrow B$ is a map and $A$ is a closed subset of X. Then for any $f.p$ . map
$\phi:X\rightarrow E$ and any $f.p$ . homotopy $\psi_{l}$ : $A\rightarrow E$ such that $\psi_{0}=\phi|_{A}$ and $q\psi_{t}=p|_{A}(0\leqq t\leqq 1)$ ,
there exists an $f.p$ . homotopy $\phi_{t}$ : $X\rightarrow E$ such that $\phi_{0}=\phi$ and $\phi_{l}|_{A}=\psi_{l}(0\leqq t\leqq 1)$ .
Furthermore, if $\psi_{l}$ is a $cU$-homotopy for an open cover $\subset U$ of $E$, then we can take
$\phi_{l}$ a $cU$-homotopy.

PROOF. $(i)-(iii)$ follow from the following observations:
(a) $\pi_{B}$ : $B\times M\rightarrow B$ is an ANFE. (If $M$ is an AR, then $\pi_{B}$ is an AFR.)

(b) Every $f$ . $p$ . neighborhood retract of an ANFE is also an ANFE.
(c) Every map $p:E\rightarrow B$ admits an $f$ . $p$ . closed embedding $i:E\rightarrow B\times M$ for

some ANR $M$.
(iv) follows from the same argument as in [Hu, p. 116].

1.2. COMMENTS AND EXAMPLES. (i) Every fiber of an ANFR (AFR) is an
ANR (AR).

(ii) If an onto map $p:E\rightarrow B$ is an ANFR, then $p$ admits local sections $(i$ . $e.$ ,
for each $b\in B$ and each $e\in p^{-1}(b)$ , there exists a map $s:V\rightarrow E$ from a neighborhood
$V$ of $b$ such that $ps=id_{V}$ and $s(b)=e)$ . In particular, if $E$ is an ANR then so is $B$ .

(iii) If $p:E\rightarrow B$ is a proper ANFR, then $p$ is a Hurewicz fibration. Con-
versely if $p:E\rightarrow B$ is a Hurewicz fibration between ANR’s then $p$ is an ANFR.

(iv) $([Fe_{1}, Y_{2}])$ If $p:E\rightarrow B$ is a proper strongly regular map with ANR
fibers and $\dim B<\infty$ , then $p$ is an ANFR.

(v) Every bundle map with ANR fibers is an ANFR.

PROOF. (i) This follows from 1.1 (i). If $p$ is an AFR, then $p$ is an $f$ . $p$ .
retract of a projection $\pi_{B}$ : $B\chi M\rightarrow B$ , with $M$ an AR. Therefore each fiber $p^{-1}(b)$

is a retract of the AR $M$.
(ii) By 1.1. (i), $p$ is an $f$ . $p$ . retract of some $\pi_{B}|_{U}$ as in 1.1. (i). Since

$\pi_{B}|_{U}$ admits local sections, so does $p$ . The second assertion follows from [Hu,
p. 98, Theorem 8.1].

(iii) Suppose $p$ is an ANFR. Embed $E$ into an ANR $M$ as a closed subset
and consider the $f$ . $p$ . embedding $i:E\rightarrow B\times M,$ $i(e)=(p(e), e)(e\in E)$ . ($i(E)$ is the
graph of $p.$ ) By the definition there exists an $f$ . $p$ . retraction $r:U\rightarrow E$ from some
open neighborhood $U$ of $i(E)$ . Since $p$ is proper, each $b_{0}\in B$ admits neighborhoods
$W$ of $b_{0}$ in $B$ and $V$ of $p^{-1}(b_{0})$ in $M$ such that $W\times V\subset U$ and $p^{-1}(W)\subset V$. Since
$r|_{W\times V}$ is an $f$ . $p$ . retraction from the projection $\pi|_{W}$ : $W\times V\rightarrow W$ to $p_{W},$ $p_{W}$ is a
fibration. By [Du, p. 403], $p$ is a fibration.

Conversely suppose $p:E\rightarrow B$ is a fibration between ANR’s. The ANR $B$

admits a local equiconnecting funchon $\lambda:V\times[0,1]\rightarrow B$ ([Fo]), that is,



264 Tatsuhiko YAGASAKI

(a) $V$ is an open neighborhood of the diagonal $\Delta(B)=\{(b, b);b\in B\}$ in $B\times B$ .
(b) $\lambda(b, b^{\prime}, O)=b^{\prime},$ $\lambda(b, b^{\prime}, 1)=b((b, b^{\prime})\in V)$ and $\lambda(b, b, t)=b(b\in B, 0\leqq t\leqq 1)$ .

Let $U=(id_{B}\times p)^{-1}(V)$ . Since $p$ is a regular fibration ([Du, p. 397]), there

exists a homotopy $H:U\times[0,1]\rightarrow E$ such that $pH(b, e, t)=\lambda(b, p(e),$ $t$ )
$,$

$H(b, e, 0)$

$=e((b, e)\in U)$ and $H(p(e), e, t)=e(e\in E, 0\leqq t\leqq 1)$ . Then $H_{1}$ : $U\rightarrow E$ is an $f$ . $p$ .
retraction and by 1.1. (i) $p$ is an ANFR.

(iv) See [ $Y_{2}$ , Theorem 1.4] and also [ $Fe_{1}$ , Theorem 1].

(v) This follows from the next proposition.

1.3. PROPOSITION. Let $p:E\rightarrow B$ be an onto map.
(i) If $p:E\rightarrow B$ is an ANFR and $C\subset B$ is a subset, then $p_{c}$ is an ANFR

over $C$.
(ii) If $B=B_{1}\cup B_{2},$ $B_{i}\subset B$ closed and $p_{B_{i}}$ is an ANFR over $B_{i}(i=1,2)$ , then

$p$ is an ANFR.
(iii) If each $b\in B$ admits a neighborhood $U$ for which $p_{U}$ is an ANFR over

$U$ then $p$ is an ANFR.

PROOF. (i) If $p$ is an $f$ . $p$ . retract of the projection $\pi_{B}|_{U}$ as in 1.1. (i),

then $p_{C}$ is an $f$ . $p$ . retract of $\pi_{C}|_{UoC\times M}$ . Therefore (i) follows from 1.1. (i).

(ii) We may assume that $E$ is a closed subset in $B\times M,$ $M$ is a ANR, and

that $p=\pi_{B}|_{E}$ . Since $p_{B_{1}}$ is an ANFR, there exist an open neighborhood $U_{1}$ of
$E|_{B_{1}}=E\cap B_{1}\times M$ in $B_{1}\times M$ and an $f$ . $p$ . retraction $s:U_{1}\rightarrow E|_{B_{1}}$ . Similarly $E|_{B_{2}}$

is an $f$ . $p$ . retract of an open neighborhood $U_{2}$ in $B_{2}\times M$. Since $M$ is an ANR,

replacing $U_{2}$ by a smaller one, we have an $f$ . $p$ . deformation retraction

$\phi:U_{2}\times[0,1]\rightarrow U_{1}|_{B_{1^{\cap}}B_{2}}\cup(B_{2}-B_{1})\times M$

such that $\phi_{0}=id,$ $\phi_{1}(U_{2})\subset E$ and $\phi_{\iota}|_{E1}B_{2}=id(0\leqq t\leqq 1)$ . Since $p|_{U_{1}}$ is an ANFR,

by 1.1 (iv) we can extend $\phi_{1}$ to an $f$ . $p$ . map $\phi_{1}$ : $U=U_{1}|_{B-B_{2}}\cup U_{2}\rightarrow U_{1}|_{B-B_{2}}\cup E$

such that $\phi_{1}|_{E}=id$ . Define an $f$ . $p$ . retraction $r:U\rightarrow E$ by

$r(b, \uparrow n)=\left\{\begin{array}{l}s\phi_{1}(b,m)\\\phi_{1}(b,?n)\end{array}\right.$ $(b\in B_{2})(b\in B_{1})$

.
By 1.1. (i), $p$ is an ANFR.

(iii) This follows from (i), (ii) and [Mi, Theorem 5.5].

A map $p:X\rightarrow B$ is said to be movable $([Y_{2}])$ provided for some ANFR
$q:E\rightarrow B$ and some $f$ . $p$ . closed embedding $i:X\rightarrow E$ , the following holds:

For each neighborhood $U$ of $i(X)$ in $E$ there exists a neighborhood $V$ of
$i(X)$ in $U$ such that for each neighborhood $W$ of $i(X)$ in $V$ there exists an
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$f$ . $p$ . deformation $\phi_{t}$ : $V\rightarrow U$ such that $\phi_{0}=id,$ $\phi_{1}(V)\subset W$ and $q\phi_{l}=q|_{V}$ for
$0\leqq t\leqq 1$ .

In addition, if we can take $\phi_{l}$ so that $\phi_{l}|_{Z}=id_{Z}(0\leqq t\leqq 1)$ for some neighborhood
$Z$ of $i(X)$ , we say the map $p$ is strongly movable.

For the definition of shape fibrations, see $[MR_{1.2}]$ , [Ma] and also 2.6 (iii).

1.4. PROPOSITION. Let $p:E\rightarrow B$ be an ANFR. Then
(i) $p$ is strongly movable.
(ii) If $p$ is proper and $B$ is separable then $p$ is a shape fibration.

PROOF. (i) This is obvious from the definition.
(ii) This follows from (i) and [ $Y_{2}$ , Theorem 1.1].

1.5. PROPOSITION. (cf. [Hu, p. 43, Theorem 7.1]) A proper onto map
$p:E\rightarrow B$ is an AFR iff $p$ is an ANFR and each fiber of $p$ is contractible.

PROOF. By 1.2 (i), every fiber of an AFR is contractible.
Conversely suppose $p$ is an ANFR and $p^{-1}(b)\cong*$ for each $b\in B$ . Embed $E$

into an AR $M$ as a closed subset and define an $f$ . $p$ . closed embedding $ i:E\rightarrow$

$B\times M$ by $i(e)=(p(e), e)$ . Let $r;U\rightarrow E$ be an $f$ . $p$ . retraction from a neighborhood
$U$ of $i(E)$ in $B\times M$ given by the assumption.

First we will show that $p$ is shrinkable ([Do]), that is, there exists a map
$f:B\rightarrow E$ and an $f$ . $p$ . homotopy $\phi:E\times[0,1]\rightarrow E$ such that $pf=id_{B},$ $\phi_{0}=id_{E}$ and
$\phi_{1}=fp$ . To see this, by [Do, 3.2] it suffices to show that each $b\in B$ admits a
neighborhood $V$ in $B$ such that $p_{V}$ is shrinkable over $V$. Let $b\in B$ . Since $p$ is
proper and $p^{-1}(b)\cong*$ ( $hence$ cell-like), there exist neighborhoods $V$ of $b$ in $B$ and
$W_{1}\subset W_{0}$ of $p^{-1}(b)$ in $M$ such that $V\times W_{0}\subset U,$ $p^{-1}(V)\subset W_{1}$ and $W_{1}\simeq*$ in $W_{0}$ by

a contraction $\psi$ : $W_{1}\times[0,1]\rightarrow W_{0}$ . Let $\psi_{1}(W_{1})=\{m_{1}\}$ . Then the desired section
$f^{V}$ : $V\rightarrow p^{-1}(V)$ and the $f$ . $p$ . homotopy $\phi^{V}$ : $p^{-1}(V)\times[0,1]\rightarrow p^{-1}(V)$ are defined by

$f^{V}(b)=r(b, m_{1})$ and $\phi^{V}(e, t)=r(p(e), \psi(e, t))$ . This completes the proof of the
shrinkability of $p$ .

Now let $f$ and $\phi$ be as above. Since $i^{-1}$ is $f$ . $p$ . homotopic to $\phi_{1}i^{-1}$ : $i(E)\rightarrow E$

and $\phi_{1}i^{-1}$ admits an extension $\tilde{\phi}_{1}$ : $B\times M\rightarrow E$ defined by $\tilde{\phi}_{1}(b, m)=f(b)$ , by 1.1 (iv)

we have an $f$ . $p$ . retraction $r;B\times M\rightarrow E$ ( $i$ . $e.$ , an extension of $i^{-1}$ ). Since $\pi_{B}$ is
an AFR, so is $p$ .

\S 2. Fiber shape category.

The purpose of this section is to describe a fiber shape category. Our con-
struction is based on [MS, Ch I, \S \S 1, 2], to which we refer for definitions of
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basic terms (pro-category, expansion, etc.).

Fix a space B. $\mathcal{F}\mathcal{H}_{B}$ will denote the usual fiber homotopy category over
$B$ , whose objects are maps from metric spaces to $B$ . By $\mathcal{F}A_{B}$ we denote the
full subcategory of $\mathcal{F}\mathcal{H}_{B}$ consisting of maps which are fiber homotopy dominated
by some ANFR’s over $B$ . Below $[^{*}]$ denotes a fiber homotopy class of an
appropriate $f$ . $p$ . map.

2.1. PROPOSITION. Every map $p:X\rightarrow B$ admits an $\mathcal{F}A_{B}$-expansion -: $p\rightarrow\underline{p}$ in
$pro- \mathcal{F}\mathcal{H}_{B}$ .

PROOF. Take an ANFR $q:E\rightarrow B$ and an $f$ . $p$ . closed embedding $i:X\rightarrow E$

and let $\{U_{\lambda}\}_{\lambda\in\Lambda}$ be an open neighborhood base of $i(X)$ in $E$. For each
$\lambda\in\Lambda$ , let $i_{\lambda}=i:X\rightarrow U_{\lambda},$ $p_{\lambda}=q|_{U_{\lambda}}$ : $U_{\lambda}\rightarrow B$ and for each $\lambda\leqq\lambda^{\prime}$ (defined by $U_{\lambda}\supset U_{\lambda^{\prime}}$ )

let $i_{\lambda\lambda^{\prime}}$ : $U_{\lambda^{l}}\subset U_{\lambda}$ be the inclusion. By the same argument as in [MS, p. 50,
Theorem 4], it is easily verified that $\underline{i}=\{[i_{\lambda}]\}$ : $p\rightarrow\underline{p}=\{p_{\lambda}, [i_{\lambda\lambda^{i}}], \Lambda\}$ satisfies
the condition required in [MS, p. 20, Theorem 1].

By [MS, Ch I, \S 2] we obtain a shape category $sh(\mathcal{F}\mathcal{H}_{B}, \mathcal{F}A_{B})$ , which we
will denote by $Sh_{B}$ and call the fiber shape category over $B$ . Let $S;\mathcal{F}\mathcal{H}_{B}\rightarrow Sh_{B}$

be the associated shape functor. The next proposition justifies the definition.
Assume $B$ is a compactum (a compact metric space) and let $Sh_{B}^{c}$ denote the

full subcategory of $Sh_{B}$ consisting of all maps from compacta to B. $M_{B}$ will
denote the fiber shape category over $B$ defined in $[Ka_{1.3}]$ .

2.2. PROPOSITION. (cf. [MS, Appendix 2]) There exists an isomorphism
$\Omega:M_{B}\rightarrow Sh_{B}^{c}$ which commutes with the shape functors.

PROOF. The proof is just an $f$ . $p$ . analogue of [MS, p. 332, Theorem 1].

For the sake of completeness, we will give the definition of the functor $\Omega$ .
Let $Q$ denote the Hilbert cube, $[0,1]^{\infty}$ . By $\pi_{1},$ $\pi_{2}$ : $Q\times Q\rightarrow Q$ , we denote the

projections onto the first and second factor resp. Let $d$ be a fixed metric on $Q$ .
Fix an embedding $B\subset Q$ .

Let $p:X\rightarrow B$ and $q:Y\rightarrow B$ be maps from compacta and $\underline{\phi}$ : $p\rightarrow q$ be a morphism
in $M_{B}$ . The corresponding morphism $\Omega(\underline{\phi}):p\rightarrow q$ in $Sh_{B}^{c}$ is defined as follows.

Take $f$ . $p$ . embeddings $i$ of $X$ and $j$ of $Y$ into $Q\times Q$ ( $i$ . $e.,$ $\pi_{1}i=p$ and $\pi_{1}j=q$ ).

Since $\pi_{1}$ can be regarded as an extension of both $p$ and $q$ , by the deflnition of
$M_{B},$

$\underline{\phi}$ is represented by a fiber fundamental sequence $\phi_{n}$ : $Q\times Q\rightarrow Q\times Q(n\geqq 1)$

$([Ka_{1,3}])$ . By the definition of a fiber fundamental sequence, $\{\phi_{n}\}$ satisfies the
following:
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$(^{*})$ For each neighborhood $V$ of $j(Y)$ in $Q\times Q$ and each $\epsilon>0$ there exist a
neighborhood $U$ of $i(X)$ in $Q\times Q$ and $n_{0}\geqq 1$ such that for each $n\geqq n_{0}$

there exists a homotopy $F:U\times[0,1]\rightarrow V$ such that $F_{0}=\phi_{n_{0}},$ $F_{1}=\phi_{n}$ and
$d(\pi_{1}F(y, x, t), y)<\epsilon((y, x)\in U,$ $0\leqq t\leqq 1$ ).

Define $\tilde{\psi}_{n}$ : $Q\times Q\rightarrow Q\times Q$ by $\tilde{\psi}_{n}(y, x)=(y, \pi_{2}\phi_{n}(y, x))$ and let $\psi_{n}=\tilde{\psi}_{n}|_{B\times Q}$ .
Then $\{\tilde{\psi}_{n}\}$ is also a fiber fundamental sequence which is fiber homotopic to
$\{\phi_{n}\}$ , and $\{\psi_{n}\}$ satisfies the following:

$(^{**})$ For each neighborhood $V$ of $j(Y)$ in $B\times Q$ there exist a neighborhood
$U$ of $i(X)$ in $B\times Q$ and $n_{0}\geqq 1$ such that for each $n\geqq n_{0},$ $\psi_{n},$ $\psi_{n_{0}}$ : $U\rightarrow V$

are fiber homotopic ($w$ . $r$. t. $\pi_{1}|_{V}$).

Therefore for any decreasing open neighborhood base $\{V_{n}\}_{n\geqq 1}$ of $j(Y)$ in
$B\times Q$ a there exist a decreasing openn eighborhood base $\{U_{n}\}_{n\geq 1}$ of $i(X)$ in $B\times Q^{1}$

and a strictly increasing sequence $\{m_{n}\}_{n\geq 1}$ of positive integers such that for each
$n\geqq 1$ and each $m\geqq m_{n}$ , maps $\psi_{m},$ $\psi_{m_{n}}$ : $U_{n}\rightarrow V_{n}$ are fiber homotopic.

By 2.1, $\{\pi_{1}|_{U_{n}}\}$ and $\{\pi_{1}|_{V_{n}}\}$ induce $\mathcal{F}_{\cup}t_{B}$-expansion of $p$ and $q$ resp. Define
$\Omega(\underline{\phi})$ as the morphism in $Sh_{B}$ represented by a level morphism $\{[\psi_{m_{n}}]\}:\{\pi_{1}|_{U_{n}}\}$

$\rightarrow\{\pi_{1}|_{V_{n}}\}$ in $pro- \mathcal{F}\mathcal{H}_{B}$ . One can proceed in the same way as in [DS, Ch 3, \S 4]
or [MS, Appendix 2] to show that $\Omega$ is well defined and is an isomorphism of
categories.

The next proposition follows from [MS, p. 27, Theorem 4, Corollary 2] and
implies that for ANFR’s the fiber shape theory coincides with the fiber homotopy
theory. $[, ]_{*}$ will denote the set of morphisms in the appropriate category.

2.3. PROPOSITION. Let $p:X\rightarrow B$ and $q:Y\rightarrow B$ be maps.
(i) If $q$ is an ANFR then the function

$S:[p, q]_{\mathcal{F}\mathcal{H}_{B}}\rightarrow[p, q]_{S\hslash_{B}}$

is bijective.
(ii) If both $p$ and $q$ are ANFR’s then an $f.p$ . map $f:X\rightarrow Y$ is a fiber homo-

topy equivalence iff $S[f]$ is an isomorphism in $Sh_{B}$ .

We will call any isomorphism in $Sh_{B}$ a fiber shape equivalence and say that
two maps $p$ and $q$ to $B$ are fiber shape equivalent if there exists an isomorphism

of $p$ to $q$ in $Sh_{B}$ . Next we will list some properties of maps which are fiber
shape invariant.

2.4. PROPOSITION. $([Ka_{1}])$ A proper onto map $p:X\rightarrow B$ is a hereditary shape
equivalence iff $p$ is fiber shape equivalent to $id_{B}$ .
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PROOF. Take an ANFR $q:E\rightarrow B$ and an $f$ . $p$ . closed embedding $i:X\rightarrow E$

and define $\underline{p}=\{p_{\lambda}, [i_{\lambda\lambda^{\prime}}], \Lambda\}$ as in 2.1. By [ $A_{2}$ , Theorem 4.5], $p$ is a hereditary

shape equivalence iff for each neighborhood $U$ of $i(X)$ in $E$ there exists a
neighborhood $V$ of $i(X)$ in $U$, a map $g:B\rightarrow U$ and an $f$ . $p$ . homotopy $\phi:V\times[0,1]$

$\rightarrow U$ such that $qg=id_{B},$ $\phi_{0}=id_{V}$ and $\phi_{1}(V)=g(B)$ .
The latter condition can be translated as follows:

$(^{*})$ For each $\lambda\in\Lambda$ there exists $\lambda^{\prime}\geqq\lambda$ such that $[i_{\lambda\lambda^{\prime}}]$ is factored through
$id_{B}$ ( $i$ . $e.,$ $[i_{\lambda\lambda^{\prime}}]=[g_{\lambda}][p_{\lambda^{\prime}}]$ for some $f$ . $p$ . map $g_{\lambda}$ : $B\rightarrow U_{\lambda}$ ).

0bserving that any map $q:Y\rightarrow B$ admits a unique morphism to $id_{B}$ in $\mathcal{F}\mathcal{H}_{B}$

$(i. e., [q])$ , the above $(^{*})$ is equivalent to the assertion that $\underline{p}$ is isomorphic to
$id_{B}$ in $pro- \mathcal{F}\mathcal{H}_{B}$ (cf. [MS, p. 116, Theorem 7]), which implies the conclusion.

2.5. PROPOSITION. Let $p:X\rightarrow B$ and $q:Y\rightarrow B$ be two proper maps.
(i) If there exists a morphism from $p$ to $q$ in $Sh_{B}$ and $p$ is approximately

invertible, then so is $q$ .
(ii) If there exists an epimorphism from $p$ to $q$ in $Sh_{B}$ and $p$ is a hereditary

shape equivalence, then so is $q$ .
(iii) $([Ka_{2}])$ If $p$ weakly dominates $q$ and $p$ is a shape fibration (or $p$ has

the approximate section extension property (ASEP)), then so is $q$ .

PROOF. (ii) By 2.4 there exists an epimorphism $\phi:id_{B}\rightarrow q$ . As noted in
the proof of 2.4, every map $r:Z\rightarrow B$ admits a unique morphism to $id_{B}$ in $\mathcal{F}\mathcal{H}_{B}$

and hence in $Sh_{B}$ (see 2.3 $(i)$). Therefore $S[q]\phi=1_{id_{B}}$ . Since $\phi$ is an epimor-
phism and $\phi S[q]\phi=\phi,$ $\phi S[q]=1_{q}$ . Hence $\phi$ is an isomorphism and by 2.4, $q$ is
a hereditary shape equivalence.

For the proof of (i) and (iii), we need a lemma.

2.6. LEMMA. (I) Let $p:X\rightarrow B$ be a proper map, $\tilde{p}:E\rightarrow B$ be an ANFR
and $i:X\rightarrow E$ be an $f.p$ . closed embedding.

(i) $([A_{1}])$ $p$ is approximately invertible iff each neighborhood $U$ of $i(X)$ in
$E$ admits $a\uparrow naps:B\rightarrow U$ with $\tilde{p}s=id_{B}$ .

(ii) ( $[Y_{1}$ , Proposition 1.3]) $p$ has the ASEP iff for each neighborhood $U$ of
$i(X)$ in $E$ , there exists a neighborhood $U_{1}$ of $i(X)$ in $U$ such that any map
$s:C\rightarrow U_{1}$ from a closed subset of $B$ to $U_{1}$ with $\tilde{p}s=id_{C}$ admits an extension
$\tilde{s}:B\rightarrow U$ with $ps=id_{B}$ .

(II) Let $p:X\rightarrow B$ be a proper map, $\tilde{p}:M\rightarrow L$ an ANFR between ANR’s and
$i:X\rightarrow M,$ $j:B\rightarrow L$ be closed embeddings such that $\tilde{p}i=jp$ .

(iii) $p$ is a shape fibration iff the follouing holds:
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$(^{*})$ For each neighborhood $U^{\prime}$ of $i(X)$ in $M$ there exist neighborhoods $U_{1}^{\prime}$ of
$i(X)$ in $U^{\prime}$ and $W$ of $B$ in $L$ such that for any maps $h:Z\rightarrow U_{1}^{\prime}$ and
$H:Z\times[0,1]\rightarrow W$ with $\tilde{p}h=H_{0}$ , there exists a map $H^{\prime}:Z\times[0,1]\rightarrow U^{\prime}$

with $H_{0}^{\prime}=h$ and $\tilde{p}H^{\prime}=H$.

PROOF OF 2.6. (iii) By [Ma] and [ $MR_{1}$ , Proposition 2] $p$ is a shape fibra-
tion iff the following holds:

$(^{**})$ For each neighborhood $U$ “ of $i(X)$ in $M$ and each open cover $cU$ of $L$

there exist neighborhoods $U_{1}^{\prime}$ of $i(X)$ in $U^{\prime\prime}$ and $W$ of $B$ in $L$ such that
for any maps $h:Z\rightarrow U_{1}^{\prime}$ and $H:Z\times[0,1]\rightarrow W$ with $\tilde{p}h=H_{0}$ there exists
a map $H^{\prime\prime}$ : $Z\times[0,1]\rightarrow U^{\parallel}$ such that $H_{0}^{\prime\prime}=h$ and $(\tilde{p}H^{\prime\prime}, H)\leqq V$ .

We must show $(^{**})\rightarrow(*)$ . First consider the special case that $q$ is the pro-
jection $\pi_{L}$ : $L\times M\rightarrow L$ , where $M$ and $L$ are ANR’s containing $X$ and $B$ as a
closed subset resp. Let $U^{\prime}$ be given. Since $p$ is proper, if we choose $U$ “ so
small and $cU$ so fine, then we can adjust the map $H^{\prime\prime}$ : $Z\chi[0,1]\rightarrow U^{\prime\prime}$ given by
$(^{**})$ to the desired $H^{\prime}$ : $Z\times[0,1]\rightarrow U^{\prime}$ by defining

$H^{\prime}(z, t)=(H(z, t),$ $\pi {}_{M}H^{\prime\prime}(z, t))$ .
We have shown that for any ANR $L$ and some ANFR $q:M\rightarrow L$ between ANR’s,

the shape fibration $p$ satisfies $(*)$ . It remains to show that if $p$ satisfies $(*)$ for
some ANFR $\tilde{p}:M\rightarrow L$ , then so does $p$ for any such ANFR over $L$ . This follows
from the proof of 2.5 (iii) (see below), considering the identity fiber shape
morphism on $p$ .

(i) and (ii) are also known in the special case that $q$ is the projection $\pi_{B}$ : $B\times M$

$\rightarrow B$ , with $M$ an ANR. The general case follows from the proof of 2.5.

We return to the proof of 2.5.
$\tilde{p}$

$\tilde{q}$
$i$

(i) Take ANFR’s $E\rightarrow B\leftarrow F$ and $f$ . $p$ . closed embeddings $X\rightarrow E$ and
$j$

$Y\rightarrow F$ ( $i$ . $e.,\tilde{p}i=p$ and $\tilde{q}j=q$ ). The existence of a morphism from $p$ to $q$

implies that for each neighborhood $V$ of $j(Y)$ in $F$ there exist a neighborhood
$U$ of $i(X)$ in $E$ and an $f$ . $p$ . map $f:L^{T}\rightarrow V(i. e.,\tilde{q}f=\tilde{p}|_{U})$ . Then for a section
$s:B\rightarrow U,$ $fs$ gives the section required in 2.6 (i).

$j$ $j$

(iii) Take maps $X\rightarrow M$ and $Y\rightarrow N$, where $\tilde{p},\tilde{q}$ are ANFR’s between
$ p\downarrow$ $\downarrow\tilde{p}$ $ q\downarrow$ $\downarrow\tilde{q}$

$B\subset L$ $B\subset L$

ANR’s, $L$ contains $B$ as a closed subset and $i,$ $j$ are $f$ . $p$ . closed embeddings.
$\tilde{p}$

$\tilde{q}$

Let $M|_{B}=\tilde{p}^{-1}(B)$ and $N|_{B}=\tilde{q}^{-1}(B)$ . By 1.3. (i) the restrictions $M|_{B}\rightarrow B\leftarrow N|_{B}$
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are also ANFR’s.
The weak domination condition implies the following (see $[Dy_{1}$ , \S 2]):
(a) For each open neighborhood $V$ of $j(Y)$ in $N|_{B}$ there exist a neighbor-

hood $U$ of $i(X)$ in $M|_{B}$ and an $f$ . $p$ . map $f:U\rightarrow V$ such that for any neighborhood
$U_{1}$ of $i(X)$ in $U$ there exist a neighborhood $V_{1}$ of $j(Y)$ in $V$ and an $f$ . $p$ . map

$g:V_{1}\rightarrow U_{1}$ such that $fg:V_{1}\rightarrow V$ is $f$ . $p$ . homotopic to the inclusion $V_{1}\subset V$.
Suppose $p$ is a shape fibration. To see that $q$ is a shape fibration, let $V^{\prime}$

be any open neighborhood of $j(Y)$ in $N$. We must find neighborhoods $V_{1}^{\prime}$ of
$j(Y)$ in $V^{\prime}$ and $W$ of $B$ in $L$ as in 2.6 (iii) for $V^{\prime}$ . By (a) and 1.1. (ii) we have:

(b) a neighborhood $U^{\prime}$ of $i(X)$ in $M$ and an $f$ . $p$ . map $f^{\prime}$ : $U^{\prime}\rightarrow V^{\prime}$ ,

(c) neighborhoods $U_{1}^{\prime}$ of $i(X)$ in $U^{\prime}$ and $W$ of $B$ in $L$ as in 2.6 (iii) for $U^{\prime}$ ,

(d) a neighborhood $V_{1}^{\prime}$ of $j(Y)$ in $V^{\prime}$ and an $f$ . $p$ . map $g^{\prime}$ : $V_{1}^{\prime}\rightarrow U_{1}^{\prime}$ such
that $f^{\prime}g^{\prime}$ : $V_{1}^{\prime}\rightarrow V^{\prime}$ is $f$ . $p$ . homotopic to the inclusion $V_{1}^{\prime}\subset V^{\prime}$ .

To see that $V_{1}^{\prime}$ and $W$ satisfy the required condition, let $h$ : $Z\rightarrow V_{1}^{\prime}$ and
$H:Z\times[0,1]\rightarrow W$ be maps with $H_{0}=\tilde{q}h$ . By (c) we have a map $G:Z\times[0,1]\rightarrow U^{\prime}$

with $\tilde{p}G=H$ and $G_{0}=g^{\prime}h$ . Define $H^{\prime}=f^{\prime}G$ . Then $\tilde{q}H^{\prime}=H$ and $H_{0}^{\prime}=f^{\prime}g^{\prime}h$ is
$f$ . $p$ . homotopic to $h$ . Using 1.1 (iv), $H^{\prime}$ can be adjusted so that $H_{0}^{\prime}=h$ .

Using 2.6 (ii), the same argument shows that the ASEP is preserved by any
weak domination.

Finally, we will be concerned with inverse limits (cf. [MS, Ch I, \S 5]).
Let $p:X\rightarrow B$ be a map between compacta. Suppose that $X$ is the inverse limit
of an inverse sequence $\underline{X}=\{X_{i}, f_{ij}\}$ of compacta, together with the projections
$f_{i}$ : $X\rightarrow X_{i}(i\geqq 1)(f_{ij}f_{j}=f_{i}, i\leqq j)$ and that $p$ is induced from a level map $\underline{p}=$

$\{p_{i} : X_{i}\rightarrow B\}$ , that is, $p_{i}f_{ij}=p_{j}$ and $p_{i}f_{i}=p(j\geqq i\geqq 1)$ . The following proposition
shows that the level map $\underline{p}$ reflects the fiber shape of the inverse limit $p$ .

2.7. PROPOSITION. (cf. [MS, p. 65, Theorem 9]) Under the above notations,
the induced morphism $\underline{f}=\{[f_{i}]\}$ : $p\rightarrow\underline{p}=\{p_{i}, [f_{ij}]\}$ in $pro- \mathcal{F}\mathcal{H}_{B}$ is an $\mathcal{F}\mathcal{H}_{B}$-expan-
sion of $p$ .

PROOF. Let $q:E\rightarrow B$ be an ANFR. We must show the followings ([MS,

p. 20, Theorem 1]):
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(i) For each $f$ . $p$ . map $g:X\rightarrow E$ there exist $i\geqq 1$ and an $f$ . $p$ . map $g_{i}$ : $X_{i}\rightarrow E$

such that $g_{i}f_{i}$ is $f$ . $p$ . homotopic to $g$ .
(ii) for each $i\geqq 1$ and any $f$ . $p$ . maps $g_{0},$ $g_{1}$ : $X_{i}\rightarrow E$ such that $g_{0}f_{i}$ and $g_{1}f_{i}$

are $f$ . $p$ . homotopic, there exists $j\geqq i$ such that $g_{0}f_{ij}$ and $g_{1}f_{ij}$ are $f$ . $p$ . homotopic.
The simplest way to verify (i) and (ii) may be an $f$ . $p$ . analogue of [DS,

Ch 4, \S 1]. Let $\tilde{X}$ be a compactum defined as follows: ’I’he underlying set of
$\tilde{X}$ is the disjoint union of $\{X_{i}\}_{i\geq 1}$ and $X$. The topology of $\tilde{X}$ is given by the
open basis consisting of all subsets of the form $U_{i}$ or $f_{i}^{-1}(U_{i})\cup(\cup\{f_{ij^{1}}^{-}(U_{i}):j\geqq i\})$ ,

where $i\geqq 1$ and $U_{i}$ is an open set of $X_{i}$ . Note that each neighborhood $U$ of $X$

in $\tilde{X}$ contains almost all $X_{i}$ (finitely many exceptions). Define $\tilde{p}:\tilde{X}\rightarrow B$ by
$\tilde{p}|_{X}=p$ and $\tilde{p}|_{X_{i}}=p_{i}(i\geqq 1)$ .

Now (i) and (ii) are verified as follows.
(i) By the $f$ . $p$ . neighborhood extension property, $g$ admits an extension

$\tilde{g}:U\rightarrow E$ to a neighborhood $U$ of $X$ in $\tilde{X}$ with $q\tilde{g}=\tilde{p}|_{U}$ . If we choose $i\geqq 1$

sufficiently large, then $X_{i}\subset U$ and $\tilde{g}f_{i},$ $g$ are so close that they are $f$ . $p$ . homo-
topic (recall l.1 $(i)$ ). Define $g_{i}=\tilde{g}|x_{i}$ .

(ii) Let $X^{\prime}=X\times[0,1]\cup(\cup\{X_{j} : j\geqq i\}\times\{0,1\})\subset\tilde{X}\times[0,1]$ and define a map
$G:X^{\prime}\rightarrow E$ by $G|_{Xx[0,1]}=anf$ . $p$ . homotopy from $g_{0}f_{i}$ to $g_{1}f_{i}$ and $G|_{X_{j}\times Ik1}=g_{k}f_{ij}$

$(j\geqq i, k=0,1)$ .
Then $G$ extends to a map $\tilde{G}$ : $V\rightarrow E$ from a neighborhood $V$ of $X^{\prime}$ in

$\tilde{x}\times[0,1]$ with $q\tilde{G}(x, t)=\tilde{p}(x)((x, t)\in V)$ . Take $j\geqq i$ with $x_{j}\times[0,1]\subset V$. Then
$\tilde{G}|_{X_{j}\times[0.1]}$ is an $f$ . $p$ . homotopy from $g_{0}f_{ij}$ to $g_{1}f_{ij}$ .

\S 3. Complements of maps.

In this section we will prove Chapman’s complement theorem in the fiber
shape theory and give some applications.

All spaces below are assumed to be separable. $Q=[0,1]^{\infty}$ (the Hilbert cube).

A closed set $X$ of $B\times Q$ is a sliced Z-set $([Fe_{2}])$ if for each open cover $cU$ of
$B\times Q$ there exists an $f$ . $p$ . map $f:B\times Q\rightarrow B\times Q-X$ with $(f, id_{B\times Q})\leqq qj$ , where
$f$ . $p$ . means that $\pi_{B}f=\pi_{B}$ .

3.1. COMPLEMENT THEOREM. Let $X$ and $Y$ be sliced Z-sets in $B\times Q$ . Then
the projections $\pi_{B}|_{X}$ and $\pi_{B}|_{Y}$ are fiber shape equivalent iff there exists an $f.p$ .
homeomorphism

$h:B\times Q-X\rightarrow B\times Q-Y$.

Using the description of the fiber shape theory given in \S 2 and some well
known results of Q-manifold bundles, the proof of 3.1 is an $f$ . $p$ . analogue of
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the one in [DS, Ch 3, \S 5]). First we will recall some results on Q-manifold

bundles. Note that every proper map $p:X\rightarrow B$ admits an $f$ . $p$ . closed embedding
$i:X\rightarrow B\times Q$ since $X$ is separable.

3.2. LEMMA. ( $[Fe_{2}]$ , [Sa]) Let $p:X\rightarrow B$ be a proper map.
(i) Every $f.p$ . map $f:X\rightarrow B\times Q$ can be approximated arbitrarily closely by

a sliced Z-embedding ( $i$ . $e.$ , an $f.p$ . embedding whose image is a sliced Z-set) which
is $f.p$ . homotopic to $f$ by a small homotopy.

(ii) If maps $f,$ $g:X\rightarrow B\times Q$ are sliced Z-embeddings and $f.p$ . homotopic in an
open subset $U$ of $B\times Q$ , then there exists an $f.p$ . ambient isotopy $f_{t}$ : $B\times Q\rightarrow B\times Q$

$(0\leqq t\leqq 1)$ such that $f_{0}=id,$ $f_{1}f=g$ and $f_{t}|_{B\times Q- U}=id(0\leqq t\leqq 1)$ .

The next lemma is an $f$ . $p$ . analogue of the main part of the proof of the
Complement theorem.

Let $U$ be an open set in $B\times Q$ and let $X$ and $Y$ be sliced Z-sets in $B\times Q$

contained in $U$. Suppose there exists an isomorphism $\underline{\phi}$ : $\pi_{B}|_{X}\rightarrow\pi_{B}|_{Y}$ in $Sh_{B}$

such that $S[i(Y, U)]\underline{\phi}=S[i(X, U)]$ , where $i(X, U)$ denotes the inclusion $X\subset U$

and $S[i(X, U)]$ is the morphism in $Sh_{B}$ induced from $[i(X, U)];\pi_{B}|_{X}\rightarrow\pi_{B}|_{U}$ .
$S[i(Y, U)]$ is defined similarly. In this case we say that $\pi_{B}|_{X}$ and $\pi_{B}|_{Y}$ are
fiber shape equivalent in $U$.

3.3. LEMMA. (cf. [DS, 3.5.6, Claim 1]) Under the above notations, for each

neighborhood $V$ of $Y$ in $U$ there exists a neighborhood $U_{0}$ of $X$ in $U$ such that

for each neighborhood $U_{1}$ of $X$ in $U_{0}$ there exists an $f.p$ . ambient isotopy
$h_{t}$ : $B\times Q\rightarrow B\chi Q$ such that $h_{0}=id,$ $h_{1}(U_{0})\subset V,$ $h_{1}(U_{1})\supset Y,$ $h_{l}|_{BxQ- U}=id(0\leqq t\leqq 1)$

and $\pi_{B}|_{h_{1}(X)},$ $\pi_{B}|_{Y}$ are fiber shape equivalent in $h_{1}(U_{1})$ .

PROOF. Since $\pi_{B}|_{V}$ is an ANFR, by 2.3 (i), there exists an $f$ . $p$ . map
$f:X\rightarrow V$ such that $S[f]=S[i(Y, V)]\underline{\phi}$ . By 3.2 (i) we may assume $f$ is a
sliced Z-embedding. Since $S[i(V, U)]S[f]=S[i(X, U)]$ , by 2.3 (i) $i(V, U)f$ is
$f$ . $p$ . homotopic to $i(X, U)$ . By 3.2 (ii) there exists an $f$ . $p$ . ambient isotopy
$f_{l}$ : $B\times Q\rightarrow B\times Q$ such that $f_{0}=id_{B\times Q},$ $f_{1}|_{X}=f$ and $f_{t}|_{BxQ-U}=id(0\leqq t\leqq 1)$ . Take
a neighborhood $U_{0}$ of $X$ such that $f_{1}(U_{0})\subset V$.

Let $U_{1}$ be any neighborhood of $X$ in $U_{0}$ . Applying the same argument to
the fiber shape equivalence $S[f](\underline{\phi})^{-1}$ : $\pi_{B}|_{Y}\rightarrow\pi_{B}|_{f(X)}$ in $V$ and the neighborhood
$f_{1}(U_{0})$ of $f(X)$ , we obtain an $f$ . $p$ . ambient isotopy $g_{t}$ : $B\times Q\rightarrow B\times Q$ such that
$g_{0}=id_{B\times Q},$ $g_{1}(Y)\subset f_{1}(U_{1})$ and $g_{l}|_{BxQ- V}=id(0\leqq t\leqq 1)$ . Define $h_{t}=g_{t}^{-1}f_{t}(0\leqq t\leqq 1)$ .

PROOF OF 3.1. Suppose there exists an isomorphism $\underline{\phi}$ : $\pi_{B}|_{X}\rightarrow\pi_{B}|_{Y}$ in $Sh_{B}$ .
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Note that $S[i(Y, B\times Q)]\underline{\phi}=S[i(X, B\times Q)]$ , since $\pi_{B}$ is isomorphic to $id_{B}$ in $Sh_{B}$ .
Applying 3.3 inductively, we can find:

(i) open neighborhoods $U_{i}(i\geqq 1)$ of $X$ and $V_{i}(i\geqq 1)$ of $Y$ in $B\times Q$ such
that $U_{i+1}\subset U_{i}\subset N(X, 1/i)$ (the $1/i$-neighborhood of $X$ in $B\times Q$ ) and $ V_{i+1}\subset V_{i}\subset$

$N(Y, 1/i)(i\geqq 1)$ ,
(ii) $f$ . $p$ . homeomorphisms $h_{i}$ : $B\times Q\rightarrow B\times Q(\iota\geqq 1)$ such that $V_{i}\supset h_{i}\cdots h_{1}(U_{i})$

$\supset V_{i+1}$ and $h_{i+1}|_{B\times Q-h_{i}\cdots h_{1}(U_{i})}=id(i\geqq 1)$ .
The desired $f$ . $p$ . homeomorphism $h:B\chi Q-X\rightarrow B\times Q-Y$ is defined by

$h|_{B\times Q- U_{i}}=h_{i}\cdots h_{1}|_{B\times Q-U_{i}}(i\geqq 1)$ .
Conversely suppose there exists an $f$ . $p$ . homeomorphism $h$ as above. Let

$\{U_{\lambda}\}_{\lambda\in\Lambda}$ be an open neighborhood base of $X$ in $B\times Q$ . Define $V_{\lambda}=h(U_{\lambda}-X)\cup Y$

$(\lambda\in\Lambda)$ . Then $V_{\lambda}$ is open in $B\times Q$ . To see this, let $(b, q)\in V_{\lambda}$ . Since $\{b\}\times Q-V_{\lambda}$

$=h(\{b\}\times Q-U_{\lambda})$ is compact, there exist open neighborhoods $U$ of $q$ and $V$ of
$\pi_{Q}(\{b\}\times Q-V_{\lambda})$ in $Q$ such that $ U\cap V=\phi$ . Note that $\pi_{B}|_{B\times Q-V_{\lambda}}$ is a closed map
since $\pi_{B}|_{B\times Q-U_{\lambda}}$ is a closed map and $\pi_{B}|_{B\times Q-V_{\lambda}}=\pi_{B}|_{B\times Q-U_{\lambda}}(h^{-1})|_{B\times Q-V_{\lambda}}$ . There-
fore there exists a neighborhood $W$ of $b$ in $B$ such that $W\times Q-V_{\lambda}\subset B\times V$.
Then $W\times U$ is a neighborhood of $(b, q)$ in $B\chi Q$ contained in $V_{\lambda}$ . Therefore
$V_{\lambda}$ is open and $\{V_{\lambda}\}$ is an open neighborhood base of $Y$ in $B\times Q$ .

To see that $\pi_{B}|_{X}$ and $\pi_{B}|_{Y}$ are isomorphic in $Sh_{B}$ , by 2.1, it suffices to
show that the ANFR-neighborhood systems $\{\pi_{B}|_{U_{\lambda}}, [i_{\lambda\lambda^{\prime}}]\}$ and $\{\pi_{B}|_{V_{\lambda}}, [j_{\lambda\lambda^{\prime}}]\}$

are isomorphic in $pro- \mathcal{F}\mathcal{H}_{B}$ . Note that $i_{\lambda}$ : $U_{\lambda}-X\subset U_{\lambda}$ is a fiber homotopy
equivalence. In fact, since $X$ is a sliced Z-set, by $[Fe_{2}, \S 4]$ there exists an
$f$ . $p$ . homotopy $f_{t}$ : $B\times Q\rightarrow B\times Q(0\leqq t\leqq 1)$ such that $f_{0}=id,$ $f_{l}(B\times Q)\subset B\times Q-X$

$(0<t\leqq 1)$ and $f_{t}(U_{\lambda})\subset U_{\lambda}(0\leqq t\leqq 1)$ . Then $f_{1}$ : $U_{\lambda}\rightarrow U_{\lambda}-X$ is a fiber homotopy
inverse of $i_{\lambda}$ since $f_{t}$ : $U_{\lambda}-X\rightarrow U_{\lambda}-X:id\simeq f_{1}i_{\lambda}$ and $f_{l}$ : $U_{\lambda}\rightarrow U_{\lambda}$ : $id\simeq i_{\lambda}f_{1}$ . Simi-
larly the inclusion $j_{\lambda}$ : $V_{\lambda}-Y\subset V_{\lambda}$ is a fiber homotopy equivalence. Therefore
we have isomorphisms

$\{\pi_{B}|_{U_{\lambda}}\}^{\{}\leftarrow[i_{\approx^{\lambda}}]\}\{\pi_{B}|_{U_{\lambda}- X}\}\{[h]\}\rightarrow\approx\{\pi_{B}|_{V_{\lambda^{-Y}}}\}^{\{}\rightarrow\{\pi_{B}|_{V_{\lambda}}\}[j]\}\approx^{\lambda}$ .

This completes the proof of 3.1.

By the construction of $\mathcal{F}_{c}A_{B}$-expansions in 2.1, one can easily show that the
notion of movability defined in $[Y_{2}]$ (see the definition before 1.4) coincides with
the one in the shape category $Sh_{B}$ ([MS, Ch II, \S 6]). Therefore the movability of
maps is preserved by any weak domination. Once we have obtained the Com-
plement theorem 3.1, by the same argument as in [ $Dy_{2}$, Lemma 2], we can
show that the strong movability is also a fiber shape invariant.
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3.4. COROLLARY. If proper maps $p:X\rightarrow B$ and $q:Y\rightarrow B$ are fiber shape
equivalent and $p$ is strongly movable then so is $q$ .

Finally we will characterize hereditary shape equivalences and approximate
fibrations by their complements. Below $p:X\rightarrow B$ will denote a proper onto map.

3.5. COROLLARY. Let $i:X\rightarrow B\times Q$ be a sliced Z-embedding. Then the map
$p$ is a hereditary shape equivalence iff the projection $\pi_{B}$ : $B\times Q-i(X)\rightarrow B$ is $f.p$ .
homeomorphic to the projection $B\times Q\times[0,1$ ) $\rightarrow B$ .

PROOF. Consider the sliced Z-embedding $B\approx B\times\{q\}\subset B\times Q$ , where $q\in Q$ is
fixed. Note that $Q-\{q\}\approx Q\times[0,1$ ) $([Ch_{2},12.2])$ . Then 3.5 follows from 2.4
and 3.1.

The map $p$ is said to be locally shape trivial provided each $b\in B$ admits a
closed neighborhood $V$ for which $p_{V}$ is fiber shape equivalent to the projection
$\pi_{V}$ : $V\times p^{-1}(b)\rightarrow V$. The space $B$ is said to be semi-locally contractible if each
$b\in B$ admits a neighborhood $V$ which contracts in $B$ .

3.6. PROPOSITION. Suppose $B$ is locally compact and semi-locally contractible
and that each fiber of $p$ is an FANR. Then the following assertions are equiva-
lent:

(i) $p$ is a shape fibration
(ii) $p$ is locally shape trivial
(iii) $p$ is strongly movable.

Moreover if $B$ is finite dimensional, then $(i)-(iii)$ is equivalent to the following:
(iv) $p$ is completely movable.

PROOF. $(i)\rightarrow(ii)$ . Let $b\in B$ and let $K$ be a compact neighborhood which
contracts in $B$ . By the same argument as in [ $Ka_{2}$ , Proposition 1.3] (cf. [Sp, $p$ .
102, Theorem 14]) it is seen that $p_{K}$ is fiber shape equivalent to the projection
$K\times p^{-1}(b)\rightarrow K$.

$(ii)\rightarrow(iii)$ . Let $b\in B$ and let $V$ be a neighborhood of $b$ for which $p_{V}$ is fiber
shape equivalent to $\pi_{V}$ ; $V\times p^{-1}(b)\rightarrow V$. Since $p^{-1}(b)$ is an FANR, by [ $Y_{2}$ , Exam-
ple 3.4, (3)], $\pi_{V}$ is strongly movable. Then by 3.4, so is $p_{V}$ . By [ $Y_{2}$ , Proposi-

tion 3.5], $p$ is strongly movable.
$(iii)\rightarrow(i)$ . This follows from [ $Y_{2}$ , Theorem 1.1].

As for $(iii)\leftrightarrow(iv)$ under the assumption $\dim B<\infty$ , see [ $Y_{2}$ , Remark 5.3,
Theorem 1.3].
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3.7. COROLLARY. Suppose $B$ is locally compact and locally contractible. If
$p$ is a local shape fibration ( $i$ . $e.$ , each $b\in B$ admits a (closed) neighborhood $V$ for
which $p_{V}$ is a shape fibration) and each fiber of $p$ is an FANR, then $p$ is a shape

fibration.

PROOF. Let $b\in B$ . Take compact neighborhoods $K\subset L$ of $b$ such that $p_{L}$

is a shape fibration and $K\simeq*inL$ . As in the proof of 3.6 $(i)\rightarrow(ii),$ $p_{K}$ is fiber
shape equivalent to the projection $\pi_{K}$ : $K\times p^{-1}(b)\rightarrow K$. Therefore $p$ is locally

shape trivial and then by 3.6 $p$ is a shape fibration.

3.8. COROLLARY. Let $i:X\rightarrow B\times Q$ be a sliced Z-embedding.
(i) $p$ is locally shape trivial iff the projection $\pi_{B}$ : $B\times Q-i(X)\rightarrow B$ is a bundle

map.
(ii) Suppose $B$ is a locally compact ANR and each fiber of $p$ is an FANR.

Then $p$ is a shape fibration iff $\pi_{B}$ : $B\times Q-i(X)\rightarrow B$ is a bundle map.
(iii) Suppose $B$ and $X$ are locally compact ANR’s. Then $p$ is an approximate

fibration iff $\pi_{B}$ : $B\times Q-i(X)\rightarrow B$ is a bundle map.

PROOF. (i) Let $b\in B$ and $V$ be a neighborhood of $b$ in $B$ . We may assume
$p^{-1}(b)$ is Z-embedded into $Q$ . If $p_{V}$ is fiber shape equivalent to $\pi_{V}$ ; $V\times p^{-1}(b)\rightarrow V$,

then by 3.1, $\pi_{B}^{-1}(V)=V\times Q-i(p^{-1}(V))$ is $f$ . $p$ . homeomorphic to $V\times(Q-p^{-1}(b))$ .
This implies $\pi_{B}$ is trivial over $V$.

Conversely if $\pi_{B}^{-1}(V)$ is $f$ . $p$ . homeomorphic to a product $V\times F$, then since
$F\approx Q-p^{-1}(b)$ , by 3.1 $p_{V}$ is fiber shape equivalent to $\pi_{V}$ .

(ii) $ThiS_{A}^{\backslash }$follows from (i) and 3.6.
(iii) By [ $Ka_{2}$ , Theorem 1.4], $p$ is an approximate fibration iff $p$ is locally

shape trivial. Then (iii) follows from (i).

3.9. REMARK. (i) In 3.6, in general, (iv) does not imply (i), since the
Taylor map ([T]) is not a shape fibration ( $[MR_{1}$ , Example 6]).

(ii) In 3.6, if each fiber of $p$ is cell-like, then by [ $Y_{2}$ , Theorem 1.2], the
conditions $(i)-(iii)$ are equivalent to the condition that $p$ is a hereditary shape

equivalence (cf. $[Ka_{2}$ , Theorem 2.5]).

(iii) In 3.7 we cannot omit the assumption that each fiber of $p$ is an
FANR (even if each fiber is movable). See [Ru, Example 1].
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