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HOMOGENEOUS TOTALLY REAL SUBMANIFOLDS OF $S^{6}$

By

Katsuya MASHIMO

It is well-known that the 6-dimensional sphere $S^{6}$ admits an almost complex

structure. Among all submanifolds of almost complex manifold, there are two

typical classes of submanifolds: namely the class of holomorphic submanifolds and

the class of totally real submanifolds. By using a recent result of Harvey and

Lawson [5], a cone over a 2-dimensional holomolphic (or a 3-dimensional totally

real) submanifold of $S^{6}$ is a stable minimal submanifold of $R^{7}$ .
On the existence of such submanifolds, a satisfying result on holomorphic sub-

manifolds was obtained by R. Bryant [1], i.e., he proved that every compact Rie-

mann surface can be realized as a holomorphic curve of $S^{6}$ .
On the contrary, we do not have such a satisfying result on the existence of

3-dimensional totally real submanifolds of $S^{6}$ . In this paper we classify 3-dimen-

sional compact totally real submanifolds of $S^{6}$ , which are obtained as orbits of closed

subgroups of $G_{2}$ .

1. Cayley algebra and the exceptional simple Lie group $G_{2}$

In this section we give a brief review on Cayley algebra and the exceptional

simple Lie group $G_{2}$ .
Let $H$ be the skew field of all quaternions. Then the Cayley algebra $Ca$ over

$R$ is $Ca=H+H$ with the following multiplication:

$(q, r)\cdot(s, t)=(qs-\overline{t}r, tq+r\overline{s}),$ $q,$ $r,$ $s,$ $t\in H$

where “–,, means the conjugation in $H$. We define a conjugation in $Ca$ by $\overline{(q,r)}$

$=(\overline{q}, -r),$ $q,$ $r\in H$, and an inner product $\langle, \rangle$ by

$\langle x, y\rangle=(x\cdot\overline{y}+y\cdot\overline{x})/2,$ $x,$ $y\in Ca$ .

Let 1, $i,$ $j,$ $k$ be the standard basis of $H$. Then $e_{0}=(1,0),$ $e_{1}=(i, 0),$ $e_{2}=(j, 0)$ ,

$e_{3}=(k, 0),$ $e_{4}=(0,1),$ $e_{5}=(0, i),$ $e_{6}=(0, j),$ $e_{7}=(0, k)$ form an orthonormal basis of
$Ca$ . We put

$Ca_{0}=\{x\in Ca|x+\overline{x}=0\}=\Sigma_{j=1}^{7}Re_{j}$ .
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Then we have the following multiplication table

(1.1) $e_{i}\cdot e_{j}=$

$i/j$ $|$ 1 2 3 4 5 6 7

$\overline{6745312|}e-ee_{6}^{2}-e_{1}^{6}-e-e_{S}^{7}e_{2}e_{4}^{3}-e-ee_{2}-e_{0}^{7}e-e$

The Cayley algebra $Ca$ is neither commutative nor associative. But we have
the following

LEMMA 1.1. (1) If $x,$ $y\in Ca_{0}$ , then $x\cdot y=-y\cdot x$ .
(2) For any $x,$ $y,$ $z\in Ca$ ,

$\overline{x}\cdot(x\cdot y)=(\overline{x}\cdot x)\cdot y$ ,
$\langle x\cdot y, x\cdot z\rangle=\langle x, x\rangle\langle y, z\rangle$ .

(3) Let $x,$ $y,$ $zCa$ be mutually orthogonal unit vectors. Then

$x\cdot(y\cdot z)=y\cdot(z\cdot x)=z\cdot(x\cdot y)$ .
For the proof, we refer to [4].

It is well-known that the group of all automorphisms of $Ca$ is a compact con-
nected simple Lie group of type $\mathfrak{G}_{2}$ ([4]). So we denote it by $G_{2}$ . Then $G_{2}$ leaves
the vector $e_{0}$ and the subspace $Ca_{0}$ invariant. Furthermore $G_{2}$ leaves the inner
product $\langle, \rangle$ invariant. So we may regard $G_{2}$ as a subgroup of $SO(7)=SO(Ca_{0})$ .

LEMMA 1.2. Let $v_{1},$ $v_{2},$ $v_{3}$ be mutually orthogonal unit vectors in $Ca_{0}$ with $\langle v_{1}$ .
$v_{2},$ $ v_{3}\rangle$ $=0$ . Then there exists a (unique) automorphism $q$ of $Ca$ such that $g(e_{i})=v_{i}$ ,
$i=1,2,3$ .

For the proof of Lemma 1.2, we refer to [5].
Let $G_{ij},$ $1\leqq i\neq j\leqq 7$ be the skew symmetric transformation on $Ca_{0}$ defined by

$G_{ij}(e_{k})=\left\{\begin{array}{l}e_{i}, ifk=j,\\-e_{j}, ifk=i,\\0, otherwise.\end{array}\right.$

Then the Lie algebra $\mathfrak{G}_{2}$ of $G_{2}$ is spanned by the following vectors in the Lie
algebra 60(7) of $SO(7)$ .

$aG_{23}+bG_{45}+cG_{76}$ ,
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$aG_{31}+bG_{46}+cG_{57}$ ,

$aG_{12}+bG_{47}+cG_{65}$ ,

$aG_{51}+bG_{73}+cG_{62}$ ,

$aG_{14}+bG_{72}+cG_{36}$ ,

$aG_{17}+bG_{24}+cG_{53}$ ,

$aG_{61}+bG_{34}+cG_{25}$ , $a+b+c=0,$ $a,$ $b,$ $c\in R$ .

\S 2. Stability of cones over totally real submanifolds

In this section we briefly summalize the results of Harvey and Lawson [5]
and study the cones over 3-dimensional totally real submanifolds of $S^{6}$ .

Let $M$ be an n-dimensional Riemannian manifold and let $G_{p}(M)$ be the bundle
of p-planes of $M$. Then we can regard $G_{p}(M)$ as a subset of the p-th exterior
power $\Lambda^{p}(M)$ of the tangent bundle of $M$ in a natural manner. Then any exterior
p-form on $M$ can be considered as a function on $G_{p}(M)$ . The comass of an exterior
p-form $\phi$ is defined by

$||\phi||^{*}=\sup_{\xi\in G_{p}(M)}\phi(\xi)$ .

Assuming $||\phi||^{*}=1$ , we put

$G(\phi)=\{\xi\in G_{p}(M)|\phi(\xi)=1\}$ .

A p-dimensional, oriented $C^{1}$ -submanifold $S$ of $M$ is called a $\phi$-manifold if the
oriented p-plane $T_{x}(S)$ is contained in $G(\phi)$ for all $x\in S$.

THEOREM 2.1 (Harvey and Lawson, [5]). Let $\phi$ be a closed p-form with $||\phi||^{*}=1$

and $S$ be a compact $\phi$-manifold. Then $Vol(S)\leqq Vol(S’)$ for any compact submanifold
$S$’ of $M$ which is homologous to $S$.

In [5], Harvey and Lawson considered 2 calibrations on $Ca_{0}$ . Let $\phi$ be a trili-
near function on $Ca_{0}$ defined by

$\phi(x, y, z)=\langle x, y\cdot z\rangle,$ $x,$ $y,$ $z\in Ca_{0}$ .

Then by Lemma 1.1 it is easily seen that $\phi$ is a closed 3-form on $Ca_{0}$ . Further-
more $\phi$ has comass one ([5]). We fix an orientation on $Ca_{0}$ such that $e_{1},$ $e_{2},$ $\cdots,$ $e_{7}$

is an oriented basis and let $*be$ the Hodge star operator. Then $*\phi$ is a closed
4-form and also has comass one ([5]). A $\phi$-manifold is called an associative sub-
manifold and a $*\phi$-manifold is called a coassociative submanifold.

Let $S^{6}$ be the unit sphere in $Ca_{0}$ centered at the origin. Then $S^{6}$ has an al-
most complex structure $J$ defined by
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$J_{p}(X)=p\cdot X$, $X\in T_{p}(S^{6})$ .

From the definition, $J$ is preserved by $G_{2}$ . A submanfold $M$ of $S^{6}$ is called a holo-
morphic submanifold (resp. totally real submanifold) if $J(T_{p}(M))=T_{p}(M)$ (resp. $J(T_{p}$

$(M))$ is contained in the normal space $N_{p}(M))$ for any $p\in M$. We denote by $CM$

the cone over $M$.

THEOREM 2.2. Let $M$ be a 2-dimensional submanifold of $S^{6}$ . Then $M$ is a
holomorphic submanifold of $S^{6}$ if and only if $CM-\{0\}$ is an associative submanifold
of $Ca_{0}$ .

The proof of the above Theorem is easy so that we omit it.

THEOREM 2.3. Let $M$ be a 3-dimensional submanifold of $S^{6}$ . Then $M$ is a
totally real submanifold of $S^{6}$ if and only if $Cl1f-\{0\}$ is a coassociative submanifold
of $Ca_{0}$ .

It is well-known that a submanifold $M$ of $S^{v}$ is a minimal submanifold if and
only if $CM-\{0\}$ is a minimal submanifold of $R^{N\rightarrow I}$ . Thus we have the following

COROLLARY 2.4 (Ejiri, [3]). Any 3-dimensional totally real submaifold of $S_{1}^{6}$ is
a minimal submanifold.

Proof of Theorem 2.3. “ if” part. Let $p$ be a point of $M$, and put $p=u_{4}$ .
Let $u_{5},$ $u_{6},$ $u_{7}$ be an orthonormal basis of $T_{p}(M)$ and $u_{1},$ $u_{2},$ $u_{3}$ be an orthonormal
basis of the normal space $N_{p}(M)$ of $M$ at $p$ in $S^{6}$ such that $u_{1},$ $u_{2},$ $\cdots,$ $u_{7}$ is oriented.
Since $*\phi(u_{4}\wedge u_{5}\wedge u_{6}\wedge u_{7})=\phi(u_{1}\wedge u_{2}\wedge u_{3})=\pm 1$ , we get $u_{1}\cdot u_{2}=\pm u_{3},$ $u_{2}\cdot u_{S}=\pm u_{1}$ and
$u_{3}\cdot u_{1}=\pm u_{2}$ . By Lemma 1.1, we get

$\langle J(u_{1}), u_{1}\rangle=\langle u_{4}\cdot u_{1}, u_{1}\rangle=-\langle u_{1}\cdot u_{4}, u_{1}\rangle$

$=-\langle u_{4},\overline{u}_{1}, u\rangle=0$ ,

$\langle J(u_{1}), u_{2}\rangle=\langle u_{4}\cdot u_{1}, u_{2}\rangle=-\langle u_{1}\cdot u_{4}, u_{2}\rangle$

$=-\langle u_{4},\overline{u}_{1}\cdot u_{2}\rangle=0$ ,

$\langle J(u_{1}), u_{3}\rangle=\langle u_{4}\cdot u_{1}, u_{3}\rangle=-\langle u_{1}\cdot u_{4}, u_{3}\rangle$

$=-\langle u_{4},\overline{u}_{1}\cdot u_{3}\rangle=0$ ,

i.e., $J(u_{1})$ is contained in $T_{p}(M)$ . Similarly we see that $J(u_{2})$ and $J(u_{3})$ are contained
in $ T_{p}(M\gamma$ . Since $J$ is non-singular and $\dim N_{p}(\Lambda T_{i}=\dim T_{p}(p\circ$ , we get $J(T_{p}(M))=$

$ N_{p}(M\gamma$ .
“ only if “ part. Let us, $u_{6},$ $u_{7}$ be an orthonormal basis of $T_{p}(A^{j}1)$ . By a simple

calculation, $(\nabla_{u_{5}}J)(u_{6})$ is equal to the tangential part of $u_{6}\cdot u_{6}$ to $S^{6}$ , where $\nabla$ is the
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covariant derivative of $S^{6}$ . Since $M$ is a totally real submanifold, $u_{5}\cdot u_{6}$ is normal
to $p$ . So $(\nabla_{u_{5}}J)(u_{6})=u_{5}\cdot u_{6}$ . In [3], Ejiri proved that $(\nabla_{u_{5}}J)(u_{6})$ is normal to $M$ By
Lemma 1.1 (ii), $u_{5}\cdot u_{6}$ is normal to p. $u_{5}$ and $p\cdot u_{6}$ . Since $N_{p}(M)$ is of dimension
3 and $u_{5}\cdot u_{6},$ $p\cdot u_{7}$ are unit vectors, $u_{5}\cdot u_{6}=\pm p\cdot u_{7}$ . Similarly $u_{6}\cdot u_{7}=\pm p\cdot u_{5}$

and $u_{7}\cdot u_{5}=\pm p\cdot u_{6}$ . Then it is easily seen that $p$ . us, $p\cdot u_{6},$ $p\cdot u_{7}$ form an ortho-
normal basis of $T_{p}(M)$ . Thus by Lemma 1.1 we obtain

$*\phi(p\wedge u_{5}\wedge u_{6}\wedge u_{7})=\pm\phi(p\cdot u_{5}\wedge p\cdot u_{6}\wedge p\cdot u_{7})$

$=\pm<p\cdot u_{5},$ $(p\cdot u_{6})\cdot(p\cdot u_{7})>=\pm 1$ .

Therefore $CM-\{0\}$ is a coassociative submanifold. Q.E.D.

LEMMA 2.5. Let $M,$ $M$ be two totally real submanifolds of constant curvature
1/16 in $S_{1}^{6}$ . Then there exists $g\in G_{2}$ such that $g(M)=M$ .

Proof. In [3], Ejiri proved that the normal connection $\nabla^{\perp}$ of a totally real sub-
manifold $M$ of $S_{1}^{6}$ is

(2.1) $\nabla_{X}^{\perp}JY=X\cdot Y+J(\nabla_{X}Y),$ $X,$ $Y\in TM$.
Furthermore he proved that if $M$ is a space of constant curvature then there
exists a local orthonormal frame field $e_{1},$ $e_{2},$ $e_{3}$ such that

$\alpha(e_{1}, e_{1})=15^{1/2}$ Je1/2,

$\alpha(e_{2}, e_{2})=(-15^{1/2}Je_{1}+10^{1/2}Je\dot{)}/4$ ,

$\alpha(e_{3}, e_{3})=(-5^{1/5}Je_{1}-10^{1/2} Je2)^{}$ 4,

$\alpha(e_{1}, e_{2})=-5^{1/2}$ Je2,

$\alpha(e_{2}, e_{3})=-10^{1/2}$ Je3/4,

$\alpha(e_{1}, e_{3})=-5^{1/2}$ Je3/4,

$\nabla_{e}ie_{i}=0,$ $i=1,2,3$ ,

$\nabla_{e_{1}}e_{2}=-\nabla_{e_{2}}e_{1}=-e_{3}/4$ ,

$\nabla_{e_{2}}e_{3}=-\nabla_{e_{3}}e_{1}=-e_{1}/4$ ,

$\nabla_{e_{3}}e_{1}=-\nabla_{e_{1}}e_{3}=-e_{2}/4$ ,

$J(e_{1}, e_{2})=e_{3},$ $J(e_{2}, e_{3})=e_{1},$ $J(e_{3}, e_{1})=e_{2}$ .

where $\alpha$ is the second fundamental form of $M$

Take a point $p\in M$ and a point $p’\in M$ . Let $e_{1},$ $e_{2},$ $e_{3}$ be an orthonormal frame
of $M$ at $p$ and $e_{1}$ ‘, $e_{2}$ ‘, $e_{3}$ ‘, be an orthonormal frame of $ j\psi$ at $p$

’ with the above
properties. Then by a well-known rigidity theorem there exists a rigid motion
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$\sigma\in 0(7)$ such that $\sigma(p)=p’,$ $\sigma(e_{i})=e_{i}’,$ $i=1,2,3$ . Since $\sigma$ preserves the second funda-
mental form $\alpha,$ $\sigma(Je_{i})=Je_{i}’,$ $i=1,2,3$ . Put $v_{1}=e_{2}\cdot e_{3},$ $v_{2}=-J(e_{3}),$ $v_{3}=e_{3}\cdot e_{1},$ $v_{4}=p$ ,

$v_{5}=e_{1},$ $v_{6}=e_{3}$ and $v_{7}=e_{2}$ . Define $v_{1}’,$
$\cdots,$ $v_{7}$

‘ in a similar manner. Then by Lemma
1.1, it is easily seen that $v_{1},$ $\cdots,$ $v_{7}$ and $v_{1}’,$

$\cdots,$ $v_{7}$

‘ satisfy the same table of multi-
plication (1.1), i.e., $\sigma$ is contained in $G_{2}$ . Q.E.D.

\S 3. 3-dimensional closed subgroups of $G_{2}$

Let $\mathfrak{G}$ be a compact simple Lie algebra and $l$ be a maximal abelian subalgebra

of $\mathfrak{G}$ . Let 1 be a complex simple 3-dimensional subalgebra of $\mathfrak{G}^{C}$ . Then there
exists a basis $H,$ $X_{+}$ , X-of 1 such that

(3.1) $[H, X_{+}]=2X_{\perp},$ $[H, X_{-}]=-2X_{-},$ $[X_{\vdash}, X_{-}]=H$ .

We may assume that $H$ is contained in $l^{C}$ , in fact in $(-1)^{1/2}l^{C}$ . Hence $\alpha(H)$ is a
real number for every root $\alpha$ of $\mathfrak{G}^{C}$ with respect to $t^{C}$ . Furthermore $\alpha(H)=0,1$

or 2 if $\alpha$ is a simple root [2, p. 166]. The weighted Dynkin diagram with weight
$\alpha(H)$ added to each vertex $\alpha$ of the Dynkin diagram of $\mathfrak{G}^{C}$ is called the characte-
ristic diagram of 1. Let 1 and 1’ be 3-dimensional simple Lie subalgebras of $\mathfrak{G}^{C}$ .
Then 1 and 1’ are mutually conjugate if and only if 1 and 1’ have the same chara-
cteristic diagrams.

Mal’cev [7] classified the 3-dimensional complex simple subalgebras of $\mathfrak{G}_{2}^{C}$ .
From his classification, $\mathfrak{G}_{2}^{C}$ has 4 types of 3-dimensional simple subalgebras as
follows.

1 $0$ $0$ 1
I $0\Rightarrow 0$ II 090

III
$0\equiv 020$

IV $0\ni 022$

Let 1 be a 3-dimensional simple subalgebra of $\mathfrak{G}_{2}$ . Then the complexification
$1^{}$ of 1 in $\mathfrak{G}_{2}^{C}$ corresponds to one of the above 4 characteristic diagrams. As a
special case of a Theorem of Siebenthal ([8], p. 252), we have the folowing.

LEMMA 3.1. Let 1 and 1’ be 3-dimensional simple subalgebras of $\mathfrak{G}_{2}$ . If $1^{}$ and
2 2

$\mathfrak{l}^{C}$ correspond to the characteristic diagram $0\supseteq 0$ , then 1 and 1’ are conjugate in
$\mathfrak{G}_{2}$ .

Similarly we can prove

LEMMA 3.2. Let 1 and 1’ be 3-dimensional simple subalgebras of $\mathfrak{G}_{2}$ . If $1^{}$ and
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1 $0$ $0$ 1
1 correspond to the characteristic diagram $0\ni 0$ or $0\equiv 0$ , then 1 and 1’ are
conjugate in $\mathfrak{G}_{2}$ .

Now we give here an example of a basis $X_{1},$ $X_{2},$ $X_{3}$ of 1 with $[X_{1}, X_{2}]=2X_{3}$ ,

$[X_{2}, X_{3}]=2X_{1},$ $[X_{3}, X_{1}]=2X_{2}$ . If 1 corresponds to the characteristic diagram I, then

$X_{1}=-G_{45}+G_{76}$ ,

(3.6) $X_{2}=-G_{46}+G_{57}$ ,

$X_{3}=-G_{47}+G_{65}$ .

If 1 corresponds to the characteristic diagram II, then

$X_{1}=-2G_{23}+G_{45}+G_{76}$ ,

(3.7) $X_{2}=-2G_{31}+G_{46}+G_{57}$ ,

$X_{3}=-2G_{12}+G_{47}+G_{65}$ .

If 1 corresponds to the characteristic diagram IV, then

$X_{1}=4G_{32}+2G_{54}-6G_{76}$ ,

(3.8) $X_{2}=6^{1/2}(G_{37}+G_{26}-2G_{15})+10^{1/2}(G_{42}-G_{35})$ ,

$X_{3}=6^{1/2}(G_{63}+G_{27}-2G_{41})+10^{1/2}(G_{25}-G_{34})$ .

LEMMA 3.3. Let 1 be a 3-dimensional simple subalgebra of $\mathfrak{G}_{2}$ . If 1c corre-

sponds to the characteristic diagram $200\ni 0$ , then 1 is spanned by the following basis
$X_{1},$ $X_{2},$ $X_{3}$ for some $\theta$ :

$X_{1}=-2G_{21}-2G_{65}$ ,

(3.9) $X_{2}=-2\cos\theta(G_{32}+G_{76})-2\sin\theta(G_{72}+G_{63})$ ,

$X_{3}=-2\cos\theta(G_{31}+G_{75})-2\sin\theta(G_{53}+G_{71})$ .

Proof. A simple computation shows that $1^{}$ is conjugate to the Lie subalgebra
spanned by

$H=$ $2(-1)^{1/2}(G_{21}+G_{65})$ ,

(3.10) $X_{+}=-2(G_{32}+G_{76})+2(-1)^{1/2}(G_{31}+G_{75})$ ,

$X_{-}=$ $2(G_{32}+G_{76})+2(-1)^{1/2}(G_{31}+G_{75})$ .

Hence it is easily seen that $\sum_{i=1}^{3}Re_{i},$ $Re_{4},$ $\Sigma_{i=5}^{7}Re_{i}$ are invariant irreducible
components of $c_{a_{0}}^{C}$ under the action of the subalgebra spanned by $H,$ $X_{+}$ and $X_{-}$

defined by (3.10). Therefore $Ca_{0}$ has 2 invariant irreducible components $V_{1},$ $V_{2}$
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of dimension 3 and an invariant irreducible component $V_{0}$ of dimension 1 under
the action of $\mathfrak{l}$ . Let $L$ be the Lie subgroup of $G_{2}$ generated by I. Remark that
$L$ is isomorphic to $SO(3)$ and the actions of $L$ on $V_{1}$ and $V_{2}$ are equivalent to the
standard action of $SO(3)$ on $R^{3}$ . Let $v_{4}$ be a unit vector in $V_{0}$ . Take a one para-
meter subgroup $K$ in $L$ . Then there are determined (up to sign) unit vectors $v_{1}$

in $V_{1}$ and $v_{5}$ in $V_{2}$ . Since $v_{1}\cdot v_{4}$ is also a K-fixed vector and is normal to $v_{1}$ and
$v_{4},$ $v_{1}\cdot v_{4}$ is equal to $v_{5}$ or $-v_{5}$ . By a change of sign (if necessary) we have $v_{1}$ .
$v_{4}=v_{5}$ . Let $v_{2}$ be a unit vector in $V_{1}$ which is orthogonal to $v_{1}$ and $K$ be the
isotropy subgroup at $v_{2}$ . Then by a similar argument, we can choose a unit vector
$v_{6}$ in $V_{2}$ such that $v_{2}\cdot v_{4}=v_{6}$ . Put $v_{3}=v_{1}\cdot v_{2}$ and $v_{7}=v_{3}\cdot v_{4}$ . Then by Lemma 1.2,
there exists an automorphism $g$ of $Ca$ such that $g(e_{i})=v_{i}$ for $i=1,2,4$ . Since $g$

is an automorphism of $Ca$ , we have $g(e_{3})=v_{3},$ $g(e_{5})=v_{5},$ $g(e_{6})=v_{6}$ and $g(e_{7})=v_{7}$ . Hence
$v_{1},$ $v_{2},$ $\cdots,$ $v_{7}$ satisfy the same multiplication table (1.1) as $e_{1},$ $e_{2},$ $\cdots,$ $e_{7}$ . Let $v_{3}$ ‘, be
a unit vector in $V_{1}$ which is orthogonal to $v_{1}$ and $v_{2}$ . Then $v_{3}$

‘ is of the form

$v_{3}’=(\cos\theta)v_{3}+(\sin\theta)v_{7}$ .
Take a suitable basis $X_{1},$ $X_{2},$ $X_{3}$ of 1. Then the restrictions of $X_{1},$ $X_{2}$ and $X_{3}$ to
$V_{1}$ are represented by the following matrices with respect to the basis $v_{1},$ $v_{2}$ and

$v_{3}’$ :

$X_{1}=(020$ $-200$ $000$ $X_{2}=(000$ $200$ $-200$ $X_{3}=(020$ $000$ $-200$

Put $v_{7}’=v_{4}\cdot v_{3}=-(\sin\theta)v_{3}+(\cos\theta)v_{7}$ . Then $v_{5},$ $v_{6}$ and $v_{7}’$ , form an orthonormal basis
of $V_{2}$ . Since $X_{1}$ is contained in $\mathfrak{G}_{2}$ ,

$X_{1}(v_{5})=X_{1}(v_{1}\cdot v_{4})=X_{1}(v_{1})\cdot v_{4}+v_{1}\cdot X_{1}(v_{4})$

$=v_{1}\cdot X_{1}(v_{4})=-2v_{6}$ .

By similar calculations, we get the representations of $X_{1},$ $X_{2}$ and $X_{3}$ restricted to
$V_{2}$ with respect to $v_{5},$ $v_{6}$ and $v_{7}’$ . They are of the same form as $X_{1},$ $X_{2}$ and $X_{3}$

as above. Express $X_{1},$ $X_{2}$ and $X_{3}$ with respect to $v_{1},$ $\cdots,$ $v_{7}$ . Then we see that 1
is conjugate to the subalgbra spanned by the following basis

$X_{1}=-2G_{21}-2G_{65}$ ,

$X_{2}=-2\cos\theta(G_{32}+G_{76})-2\sin\theta(G_{72}+G_{6S})$ ,

$X_{3}=-2\cos\theta(G_{31}+G_{75})-2\sin\theta(G_{53}+G_{71})$ . Q.E.D.
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\S 4. Homogeneous totally real submanifolds of $S^{6}$

In this section we classify 3-dimensional compact homogeneous totally real
submanifolds of $S^{6}$ , which are obtained as orbits of closed subgroups of $G_{2}$ .

First we study one by one the 4 types of subgroups which are generated by
subalgebras listed in \S 3. In some cases it is convenient for us to find all orbits
which are 3-dimensional minimal submanifolds of $S_{1}^{6}$ , since a 3-dimensional totally
real submanifold of $S_{1}^{6}$ is a minimal submanifold by Corollary 2.4.

CASE I. $Re_{1},$ $Re_{2},$ $Re_{3}$ and $\Sigma_{j=4}^{7}Re_{j}$ are irreducible invariant subspaces so
that each orbit is a small sphere or a great sphere. Therefore the orbit we are
looking for is a trivial one.

CASE II. This case was studied by Harvey and Lawson [5].

THEOREM 4.1. Let $L$ be the subgroup of $G_{2}$ generated by the subalgebra spanned
by $X_{1},$ $X_{2}$ and $X_{3}$ defined by (3.7). Then there exists exactly one orbit which is a
3-dimensional totally real submanifold of $S^{6}$ . It is the orbit through $(5^{1/2}/3)e_{1}+(2/3)$

$e_{5}$ , which we denote by $M_{1}$ .

CASE III. For this case we have the following

THEOREM 4.2. Let $L_{\theta}$ be the subgroup of $G_{2}$ generated by the subalgebra
spanned by $X_{1},$ $X_{2}$ and $X_{3}$ defined by (3.5). Then there exists exactly one orbit
under $L_{\theta}$ which is a 3-dimensional totally real submanifold of $S^{6}$ . It is the orbit
through $(2^{1/2}/2)(e_{2}+e_{5})$ , which we denote by $M_{2}$ .

PROOF. In this case, $L_{\theta}$ is isomorphic to $SO(3)$ and the action of $L_{\theta}$ on $Ca_{0}$ is
equivalent to the direct sum of the adjoint action of $SO(3)$ on \S 0$(3, C)$ and the
trivial action of $SO(3)$ on $R$ . Therefore by calculating the volume of each orbit
([6]), we can easily see that the only orbit through $p=(2^{1/2}/2)(e_{2}+e_{5})$ is a $3$-dimen-
sional minimal submanifold of $S^{6}$ under the action of $L_{\theta}$ on $Ca_{0}$ . The tangent
space of the orbit at $p$ is spanned by

$X_{1}(p)=$ $2^{1/2}(e_{1}-e_{6})$ ,

$X_{2}(p)=-2^{1/2}(\cos\theta)e_{3}-2^{1/2}(\sin\theta)e_{7}$ ,

$X_{3}(p)=$ $2^{1/2}(\sin\theta)e_{3}-2^{1/2}(\cos\theta)e_{7}$ .

Consulting the multiplication table (1.1), we get

$J(X_{1}(p))=p\cdot X_{1}(p)=2e_{4}$ ,

$J(X_{2}(p))=p\cdot X_{2}(p)=-\cos\theta(e_{1}+e_{6})+\sin\theta(-e_{2}+e_{5})$ ,
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$J(X_{s}(p))=p\cdot X_{3}(p)=\cos\theta(-e_{2}+e_{5})+\sin\theta(e_{1}+e_{6})$ .

Therefore the orbit is a totally real submanifold. Q.E.D.

CASE IV. For this case we have the following

THEOREM 4.3. Let $L$ be the subgroup of $G_{2}$ generated by the Lie subalgebra

spanned by $X_{1},$ $X_{2}$ and $X_{l}$ defined by (3.8). Then, under the action of $L$ on $Ca_{0}$ ,

there exist exactly 2-types of orbits in $S^{6}$ which are 3-dimensional totally real sub-

manifold of $S^{6}$ up to the action of $G_{2}$ . They are
(1) the orbit through $e_{2}$ , which we denote by $M_{3}$ .
(2) the orbit through $e_{6}$ , which we denote by $M_{4}$ .

It is easily seen that $M_{3}$ is of constant curvature 1/16. The proof of this
Theorem will be given in \S 6.

Let $M$ be a compact 3-dimensional totally real submanifold of $S^{6}$ , which is
obtained as an orbit of a closed subgroup $L$ of $G_{2}$ . It is well-known that the di-
mension of $L$ is smaller than or equal to 6 ([101). If $\dim L=6$ , then $M$ is a space
of constant curvature and, by a Theorem of Ejiri, the curvature of $M$ is 1/16 ([3]).

And by Theorem 2.5 it (if exists) is congruent to $M_{3}$ of Theorem 4.3. It is
known that if $\dim L\leqq 5$ , then $\dim L\leqq 4$ ([10]). If $\dim L=4$ , then the Lie algebra
1 of $L$ must be isomorphic to $u(2)$ , since $L$ is compact. By a direct calculation we
see that it is isomorphic to the Lie subalgebra of $\mathfrak{G}_{2}$ which is spanned by

$X_{1}=-2G_{23}+G_{45}+G_{76}$ ,

$X_{2}=-2G_{31}+G_{46}+G_{57}$ ,

$X_{s}=-2G_{12}+G_{47}+G_{65}$ ,

$J=a(G_{45}-G_{76})+b(G_{46}-G_{67})+b(G_{47}-G_{65}),$ $a,$ $b,$ $c\in R$ .

Let $G_{s}$ be the Lie subgroup of $L$ whose Lie algebra is $RX_{1}+RX_{2}+RX,$ . Then
it is easily seen that $L(p)=G.(p)$ for any $p\in S_{1}^{6}$ . Thus we have the following

THEOREM 4.4. Let $M$ be a 3-dimensional totally real submanifold of $S_{1}^{6}$ which
is obtained as an orbit of a closed subgroup of $G_{2}$ . Then $M$ is congruent to one of
the $M_{1},$ $M_{2},$ $M_{3}$ or $M_{4}$ , unless it is a great sphere.

\S 5. Orbits in a sphere

In this section we prepare some Lemmata to prove Theorem 4.3.
Let $G$ be a Lie subgroup of $SO(N+1)$ . Then $G$ acts on the unit sphere $S_{1}^{N}$ in

$R^{N+1}$ centered at the origin in a natural manner. Take a point $p$ in $S_{1}^{N}$ and let
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$M$ be the orbit of the action of $G$ through $p$ .
Let $\mathfrak{G}$ be the Lie algebra of $G$ . We denote by $A^{*}$ the vector field on $S_{1}^{N}$ in-

duced by $A\in \mathfrak{G}$ . Then, by regarding $A$ as a skew symmetric transfomation on
$R^{N+1}$ , we have

$A_{1p}^{*}=A(p)$ , $A\in \mathfrak{G}$ , $p\epsilon S_{1}^{N}$ .

Therefore the tangent space of $M$ at $p$ is

$T_{p}(M)=\{A(p)|A\in \mathfrak{G}\}$ .
Let $N_{p}(M)$ be the normal space of $M$ in $S_{1}^{N}$ at $p$ . Regard the tangent space $T_{p}(M)$

and the normal space $N_{p}(M)$ as subspaces of $R^{N+1}$ . Then $R^{N+1}$ is decomposed
into the direct sum

(5.1) $R^{N+1}=Rp+T_{p}(M)+N_{p}(MJ$ .

For a vector $X$ in $R^{N+1}$ , we denote by $X^{T}(resp. X^{N})$ the $T_{p}(M)-(resp. N_{p}(M)-)$

component of $X$ with respect to the decomposition (5.1).

LEMMA 5.1. Let $G$ be a Lie subgroup of $SO(N+1)$ . Let $\alpha$ be the second funda-
mental form of the orbit $M=G(p)$ . Then

(5.2) $\alpha(A^{*}, B^{*})_{1p}=(A(B(p)))^{N}$ ,

(5.3) $\nabla_{B^{*}}A_{1p}^{*}=(A(B(p)))^{T}$ , $A,$ $B\in \mathfrak{G}$ .

where $\nabla$ is the Riemannian connection of $M$

Proof. Let $D$ be the Riemannian connection of $R^{N_{\tau}1}$ . Then

$D_{B^{*}}A_{1p}^{*}=d/dt_{|t=0}A_{|\exp(lB)(p)}^{*}$

$=d/dt_{|t=0}A(\exp tB)(p)$

$=A(B(p))$ .
Since $\alpha(A^{*}, B^{*})_{1p}=(D_{B^{*}}A_{1p}^{*})^{N}$ and $\nabla_{B^{*}}A_{1p}^{*}=(D_{B^{*}}A_{1p}^{*})^{T}$ , we get (5.2) and (5.3).

Q.E.D.

LEMMA 5.2. Let $G$ be a Lie subgroup of $SO(N+1)$ and fix an orbit $M=G(p)$ .
Let $S$ be the complete connected totally geodesic submanifold of $S_{1}^{N}$ such that $T_{p}(S)$

$=N_{p}(M)$ . Then each G-orbit in $S_{1}^{N}$ contains at least one point of $S$.

PROOF. Take an arbitrary orbit $M’=G(p’)$ . Then there exists a point $p_{1}$ in
$M$ and a point $p_{2}$ in $M$’ such that the distance between $M$ and $M$’ is attained by
$p_{1}$ and $p_{2}$ . Let $\tau$ be the shortest geodesic joining $p_{1}$ and $p_{2}$ . Take an element
$\sigma\in G$ such that $\sigma(p_{1})=p$ . Since $\sigma$ is an isometry of $S_{1}^{N}$ , $\sigma(\tau)$ is also a geodesic and
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is normal to $M$ at $p$ . Therefore $\sigma(\tau)$ is contained in $S$ and $\sigma(p_{2})$ is contained in
$S\cap M$ Q.E.D.

Now we consider the case that $G$ is isomorphic to $SU(2)$ or $SO(3)$ . Let $B$ be
the Killing form of @11(2). Then the basis $X_{1},$ $X_{2}$ and $X_{3}$ with $[X_{1}, X_{2}]=2X_{3},$ $[X_{2}$ ,
$X_{3}]=2X_{1}$ and $[X_{3}, X_{1}]=2X_{2}$ is orthonormal with respect to $-B/8$ . Let $g_{0}$ be the
Riamannian metric on $G$ which is the bi-invariant extension of $-B/8$ .

LEMMA 5.3 (Sugahara, [9]). Let $g$ be an inner product on $5\mathfrak{u}(2)$ . Then there
exists an element $\sigma$ in $G$ such that
(i) $X_{i}=Ad(\sigma)(X_{i}),$ $i=1,2,3$ , are mutually orthogonal with respect to $g$ .
(ii) $g=\lambda_{1}\omega_{1^{2}}+\lambda_{2}\omega_{2^{2}}+\lambda_{3}\omega_{3^{2}}$ , where $\lambda_{i}$ are positive constants and $\omega_{l}(\cdot)=g_{0}(X_{i}, \cdot )$ , $i=$

$1,2,3$ .

REMARK 5.4. (i) Put $\sigma=\exp(\pi X_{i}/4)$ . Then $Ad(\sigma)(X_{1})=X_{1},$ $Ad(\sigma)(X_{2})=X_{3}$

and $Ad(\sigma)(X_{3})=-X_{2}$ so that $\lambda_{2}$ and $\lambda_{3}$ of Lemma 5.3 can be permuted. Similarly $\lambda_{1}$

and $\lambda_{2}$ (resp. $\lambda_{1}$ and $\lambda_{3}$ ) are permuted by $Ad(\exp(\pi X_{3}/4))(resp. Ad(exp(\pi X_{2}/4)))$ .
(ii) $(G, g)$ is a space of constant curvature $k$ if and only if $\lambda_{1}=\lambda_{2}=\lambda_{3}=1/k$ , i.e.,
$q=(1/k)g_{0}$ .

LEMMA 5.5 (Sugahara, [9]). Let $X_{1}’,$ $X_{2}$
’ and $X_{3}$

’ be as in Lemma 5.3. Then
the one parameter subgroups $\tau_{x_{i}}(t)=\exp tX_{i}’,$ $i=1,2,3$ , are geodesics of $(G, g)$ .

Let (V, $\rho$) be an orthogonal representation of $G$ and $\langle, \rangle$ be a G-invariant
inner product on $V$. Let $M=G(p)$ be an orbit in the unit sphere $S_{1}$ through $p$ .

LEMMA 5.6. If $\dim M=3$ , then there exists an element $\sigma$ in $G$ such that

$\langle\rho(X_{i})(\sigma(p)), \rho(X_{j})(\sigma(p))\rangle=0$ for $i\neq j$ .
Proof. Define a map $f:G\rightarrow S_{1}$ by

(5.4) $f(\sigma)=\rho(\sigma)(p)$ , $\sigma\in G$ .
Then $f_{*}(X_{i})=\rho(X_{i})(p)$ . Let $g$ be the metric on $G$ induced by $f$ . Then $g$ is a left
invariant metric. Consider the inner product $g_{|e}$ on the tangent space $T_{e}(G)$ at
the unit element $e$ . Then by Lemma 5.3 there exists an element $\sigma$ in $G$ such
that $Ad(\sigma^{-1})(X_{i}),$ $i=1,2,3$ , are mutually orthogonal with respect $g_{|e}$ . Let R. and
$L_{\sigma}$ be the right and left translations by $\sigma$ respectively. Then we have

(5.5) $f_{*}(dR_{\sigma}(X))=d/dt_{|l=0}f(\exp(tX)\sigma(p))=\rho(X)(\sigma(p))$ , X\mbox{\boldmath $\epsilon$}@U(2), $p\in S_{1}$ .
Since $Ad(\sigma^{-1})(X_{i})$ and $Ad(\sigma^{-1})(X_{j})$ are orthogonal if $i\neq j$ , it follows from (5.5) that

$0=g(Ad(\sigma^{-1})(X_{i}), Ad(\sigma^{-1})(X_{f}))$
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$=g(dL_{\sigma^{-1}}(dR_{\sigma}(X_{i})), dL_{\sigma^{-1}}(dR_{\sigma}(X_{j})))$

$=g(dR_{\sigma}(X_{t}))$ , $dR_{\sigma}(X_{j}))$

$=\langle f_{*}(dR_{\sigma}(X_{i})), f_{*}(dR_{\sigma}(X_{j}))\rangle$

$=\langle\rho(X_{i})(\sigma(p)), \rho(X_{j})(\sigma(p))\rangle$ . Q.E.D.

Hereafter we may assume
(5.6) $\langle\rho(X_{i})(p), \rho(X_{j})(p)\rangle=0,$ $i\neq j$ ,

if the orbit $M=G(p)$ is of dimension 3.

LEMMA 5.7. Let $M=G(p)$ be a 3-dimensional orbit. Then $f:G\rightarrow S_{1}$ defined
by (5.4) is a minimal immersim if and only if

$\Sigma_{i=1}^{3}X_{i}(X_{i}(p))/\lambda_{i}=-3p$ ,

where $\lambda_{i}=\langle X_{i}(p), X_{i}(p)\rangle,$ $i=1,2,3$ .

PROOF. Since (5.6) holds at the initial point $p,$ $X_{i}’=X_{i}/\lambda_{i^{1/2}}$ is an orthonormal
frame of $T_{e}(G)$ . By the G-equivalence of the immersion $f$, we have only to verify
$\Sigma_{i=1}^{3}\alpha(X_{i}’, X_{i}’)_{|e}=0$ . Since $T\chi_{i^{\prime}}(t)=\exp tX_{i}$

’ are geodesics of $(G, g)$ , by (5.2) we
get

(5.8) $\nabla_{x_{i}}*X_{i^{*}|e}=(X_{i}(X_{i}(p))^{T}=0$ .
By (5.3) $f$ is a minimal immersion if and only if $\Sigma_{i=1}^{3}\alpha(X_{i}’, X_{i}’)=0$ . Therefore
$\sum_{i=1}^{3}X_{i}’(X_{i}’(p))$ is proportional to $p$ if and only if $f$ is a minimal immersion.

Now we assume that $\sum_{i=1}^{3}X_{i}’(X_{i}’(p))=cp$ for some constant $c$ . Then

$ c=\langle\Sigma_{i=1}^{3}X_{i}(X_{i}(p))/\lambda_{i}, p\rangle$

$=-\Sigma_{i=1}^{3}\langle X_{i}(p), x_{i}(p)\rangle/\lambda_{i}$

$=-3$ . Q.E.D.

\S 6. Proof of Theorem 4.3

Let $L$ be the Lie subgroup of $G_{2}$ generated by the Lie subalgebra defined by
(3.8) and let $p=\Sigma_{j\Leftarrow 1}^{7}x_{j}e_{j}$ be a point on $S_{1}^{6}$ . Then the tangent space of $L(p)$ is
spanned by

$X_{1}(p)=-4x_{3}e_{2}+4x_{2}e_{3}-2x_{5}e_{4}+2x_{4}e_{5}-6x_{7}e_{6}+6x_{6}e_{7}$ ,

$X_{2}(p)=-2\cdot 6^{1/2}x_{5}e_{1}+(6^{1/2}x_{6}-10^{1/2}x_{4})e_{2}+(6^{1/2}x_{7}-10^{1/2}x_{5})e_{3}$

$+10^{1/2}x_{2}e_{4}+(2\cdot 6^{1/2}x_{1}+10^{1/2}x_{3})e_{5}-6^{1/2}x_{2}e_{6}$ $6^{1/2}x_{3}e_{7}$ ,
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$X_{3}(p)=2\cdot 6^{1/2}x_{4}e_{1}+(6^{1/2}x_{7}+10^{1/2}x_{5})e_{2}-(6^{1/2}x_{6}+10^{\iota/2}x_{4})e_{3}$

$+(10^{1/2}x_{3}-2\cdot 6^{1/2}x_{1})e_{4}-10^{\iota/2}x_{2}e_{5}+6^{1/2}x_{3}e_{6}-6^{1/2}x_{2}e_{7}$ .
We may assume that (5.6) holds at $p$ , i.e.,

(6.1) $5(x_{3}x_{6}-x_{2}x_{7})+15^{1/2}(x_{2}x_{5}-x_{3}x_{4})-2x_{1}x_{4}=0$ ,

(6.1) $5(x_{2}x_{6}+x_{3}x_{7})+15^{\iota/2}(x_{2}x_{4}+x_{3}x_{5})-2x_{1}x_{5}=0$ ,

(6.1) $15^{1/2}(2x_{1}x_{2}+x_{4}x_{7}-x_{5}x_{6})+6x_{4}x_{5}=0$ .

Then by Lemma 5.5, the orbit $L(p)$ is a minimal submanifold of $S_{1}^{6}$ if and only
if

(6.2) $-24(1/\lambda_{2}+1/\lambda_{3})x_{1}-4\cdot 15^{\iota/2}(1/\lambda_{2}-1/\lambda_{3})x_{3}$ $=-3x_{1}$ ,

(6.2) $-16(1/\lambda_{1}\dashv 1/\lambda_{2}+1/\lambda_{3})x_{2}$ $=-3x_{2}$ ,

(6.2) $-16(1/\lambda_{1}+1/\lambda_{2}+1/\lambda_{3})x_{3}-4\cdot 15^{1/2}(1/\lambda_{2}-1/\lambda_{3})x_{1}=-3x_{3}$ ,

(6.2) $-(4/\lambda_{1}+10/\lambda_{2}+34/\lambda_{3})x_{4}+2\cdot 15^{1/5}(1/\lambda_{2}-1/\lambda_{3})x_{7}=-3x_{4}$ ,

(6.2) $-(4/\lambda_{1}+34/\lambda_{2}+10/\lambda_{3})x_{5}+2\cdot 15^{1/2}(1/\lambda_{2}-1/\lambda_{3})x_{7}=-3x_{5}$ ,

(6.2) $-(36/\lambda_{1}+6/\lambda_{2}+6/\lambda_{3})x_{6}+2\cdot 15^{1/2}(1/\lambda_{2}-1/\lambda_{3})x_{4}=-3x_{6}$ ,

(6.2) $-(36/\lambda_{1}+6/\lambda_{2}+6/\lambda_{3})x_{7}+2\cdot 15^{1/2}(1/\lambda_{2}-1/\lambda_{3})x_{5}=-3x_{7}$ ,

where

(6.3) $\lambda_{1}=16(x_{2^{2}}+x_{3^{2}})+4(x_{4^{2}}+x_{5^{2}})+36(x_{6^{2}}+x_{7^{2}})$ ,

(6.3) $\lambda_{2}=24x_{1^{2}}+16(x_{2^{2}}+x_{3^{2}})+1Ox_{4^{2}}+34x_{5^{2}}+6(x_{\epsilon^{2}}+x_{7^{2}})$

$+4\cdot 15^{1/2}(2x_{1}x_{3}-x_{4}x_{6}-x_{5}x_{7})$ ,

(6.3) $\lambda_{3}=24x_{1^{2}}+16(x_{2^{2}}+x_{3^{2}})+34x_{4^{2}}+10x_{5^{2}}+6(x_{6^{2}}+x_{7^{2}})$

$-4\cdot 15^{1/2}(2x_{1}x_{3}-x_{4}x_{6}-x_{5}x_{7})$ .

LEMMA 6.1. If $x_{1},$ $x_{2},$ $\cdots,$ $x_{7},$
$\Sigma_{i\Leftarrow 1}^{7}x_{i^{2}}=1$ , satisfy (6.1) and (6.2) then $(\lambda_{1}, \lambda_{2}, \lambda_{3})$

is (16, 16, 16), (36, 6, 6) or $(20+4\cdot 15^{1/2},8,20-4\cdot 15^{1/2})$ up to permutation.

PROOF. By adding $(6.3)_{1},$ $(6.3)_{2}$ , and $(6.3)_{3}$ , we get

(6.4) $\lambda_{1}+\lambda_{2}+\lambda_{3}=48(x_{\iota^{2}}+\cdots+x_{7^{2}})=48$ .

If $x_{2}\neq 0$ , then we get $1/\lambda_{1}+1/\lambda_{2}+1/\lambda_{3}=3/16$ from $(6.2)_{2}$ . Thus we have

$16=(\lambda_{1}+\lambda_{2}+\lambda_{3})/16\geqq(\lambda_{1}\lambda_{2}\lambda_{3})^{1/2}$

$\geqq 3/(1/\lambda_{1}+1/\lambda_{2}+1/\lambda_{3})=16$ .
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The equalities hold if and only if $\lambda_{1}=\lambda_{2}=\lambda_{3}=16$ . Hereafter we assume $x_{2}=0$ .

CASE 1. $\lambda_{i}=\lambda_{j}$ for some $i,$ $j,$ $1\leqq i\neq j\leqq 3$ .
By Remark 5.2, we may assume $\lambda_{2}=\lambda_{3}$ without loss of generality.
If $x_{1}\neq 0$ , then we get $\lambda_{1}=\lambda_{2}=\lambda_{3}=16$ by $(6.2)_{1}$ , and (6.4). If $x_{3}\neq 0$ , we get $\lambda_{1}=$

$\lambda_{2}=\lambda_{3}=16$ by an argument similar to the case of $x_{2}\neq 0$ . If $x_{4}\neq 0$ or $x_{5}\neq 0$ , we get
$(\lambda_{1}, \lambda_{2}, \lambda_{3})=(16,16,16)$ or (4, 22, 22). If $(\lambda_{1}, \lambda_{2}, \lambda_{3})=(4,22,22)$ , then $x_{1}=x_{2}=x_{3}=x_{6}$

$=x_{7}=0$ by $(6.2)_{1},$ $(6.2)_{2},$ $(6.2)_{3},$ $(6.2)_{6}$ and $(6.2)_{7}$ so that $X_{4}\cdot x_{5}=0$ by $(6.1)_{3}$ . But
from $(6.3)_{2}$ and $(6.3)_{3}$ , we get $x_{4^{2}}=x_{5^{2}}$ . This is a contradiction. Thus we have
$(\lambda_{1}, \lambda_{2}, \lambda_{3})\neq(4,22,22)$ . If $x_{6}\neq 0$ or $x_{7}\neq 0$ , then we get $(\lambda_{1}, \lambda_{2}, \lambda_{3})=(16,16,16)$ or
(36, 6, 6).

CASE 2. $\lambda_{1},$ $\lambda_{2}$ and $\lambda_{3}$ are mutually different.
In this case we may assume $\lambda_{1}>\lambda_{2}>\lambda_{3}$ by Remark 5.2.
If $x_{1}=0$ (resp. $x_{3}=0$), then $x_{3}=0$ by $(6.2)_{1}$ (resp. $x_{1}=0$ by $(6.2)_{3}$).

If $x_{4}=0$ (resp. $x_{6}=0$), then $x_{6}=0$ by $(6.2)_{4}$ (resp. $x_{4}=0$ by $(6.2)_{6}$).

If $x_{6}=0$ (resp. $x_{7}=0$), then $x_{7}=0$ by $(6.2)_{5}$ ($resp$ . $x_{5}=0$ by $(6.2)_{7}$).

By $(6.2)_{6}$ and $(6.2)_{7}$ , we get

$x_{4}x_{7}-x_{5}x_{6}=0$ .
By $(6.2)_{4}$ and $(6.2)_{5}$ , we get

2. $15^{1/2}(1/\lambda_{2}-1/\lambda_{3})(x_{5}x_{6}-x_{4}x_{7})-24(1/\lambda_{3}-1/\lambda_{2})x_{4}x_{5}=0$ .

Thus we have $x_{4}x_{5}=0$ . Finally we have the following five subcases.

Subcase 2.1. $x_{2}=x_{5}=x_{7}=0,$ $x_{1}x_{3}x_{4}x_{6}\neq 0$ .

Subcase 2.2. $x_{2}=x_{4}=x_{5}=x_{6}=x_{7}=0,$ $x_{1}x_{3}\neq 0$ .

Subcase 2.3. $x_{1}=x_{2}=x_{3}=x_{4}=x_{6}=0,$ $x_{5}x_{7}\neq 0$ .

Subcase 2.4. $x_{2}=x_{4}=x_{6}=0,$ $x_{1}x_{3}x_{5}x_{7}\neq 0$ .

Subcase 2.5. $x_{1}=x_{2}=x_{3}=x_{5}=x_{7}=0,$ $x_{4}x_{6}\neq 0$ .

SUBCASE 2.1. Put $\mu i=1/\lambda_{i},$ $i=1,2,3$ . Since $(6.2)_{1}$ and $(6.2)_{3}(resp$ . $(6.2)_{4}$ and
(6.2) $)$ have a non-trivial solution $(x_{1}, x_{3})(resp. (x_{4}, x_{6}))$ , we get

(6.5) $0=(1/3)\det[_{4\cdot 15^{1}(\mu-\mu_{3})}^{3-24(\mu_{2^{2}}+_{2}\mu_{3})}$ $4\cdot 15^{1/2}(\mu-\mu)3-16(\mu_{1}+^{2}\mu_{2}+^{3}\mu_{3})$

$=3-S(2\mu_{1}+5\mu_{2}+5\mu_{3})+128(\mu_{2}+\mu_{3})(\mu_{1}+\mu_{2}+\mu_{3})-80(\mu_{2}-\mu_{3})^{2}$ ,

(6.5) $0=(1/3)\det[_{2^{-}15^{1/2}(\mu-\mu_{3})}^{3.(4\mu_{1}+1_{2}0\mu_{2}+34\mu_{3})}$ $2\cdot 15^{1/2}(\mu-\mu_{3})3-(36\mu_{1}+^{2}6\mu_{2}+6\mu_{3})$
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$=3-8(5\mu_{1}+2\mu_{2}+5\mu_{S})+4(2\mu_{1}+17\mu_{2}+5\mu_{3})(6\mu_{1}+\mu_{2}+\mu_{3})-20(\mu_{2}-\mu_{3})^{2}$ .
By subtracting $(6.5)_{2}$ from $(6.5)_{1}$ , we get

$0=(\mu_{1}-\mu_{2})(1-2\mu_{1}-2\mu_{2}-12\mu_{3})$ .

Since $\mu_{1}>\mu_{2}$ , we get

(6.6) $\mu_{1}+\mu_{2}=1/2-6\mu_{3}$ .
By adding $(6.5)_{1}$ and $(6.5)_{2}$ , we get

(6.7) $0=3-2S(\mu_{1}+\mu_{2})-40\mu_{3}+24(\mu_{1}+\mu_{2})^{2}+4S\mu_{3^{2}}+S0\mu_{1}\mu_{2}+272(\mu_{1}+\mu_{2})\mu_{3}$ .

By substituting (6.6) into (6.7), we get

$0=-(1-12\mu_{3})^{2}+16\mu_{1}\mu_{2}$ .

From (6.4) and (6.6), we obtain

$\mu_{1}\mu_{2}=\mu_{3}(1-12\mu_{3})/2(48\mu_{3}-1)$ .
Therefore we get

$0=-(1-12\mu_{3})^{2}+8\mu_{3}(1-12\mu_{3})/(4S\mu_{3}-1)$ .
As solutions of the above equation, we get $\lambda_{3}=1/\mu_{3}=12,16,36$ . If $\mu_{3}=1/12$ , we
get $\mu_{1}=\mu_{2}=0$ from (6.6). Thus $\lambda_{3}\neq 12$ . For $\lambda_{3}=16,36$ we get $(\lambda_{1}, \lambda_{2}, \lambda_{3})=(16,16$ ,

16), (36, 6, 6) by (6.6) and (6.8) respectively. Therefore Subcase 2.1 cannot occur.

SUBCASE 2.2. By $(6.2)_{1},$ $(6.3)_{2}$ and $(6.3)_{3}$ , we get

$16x_{\iota^{4}}-18x_{1^{2}}+5=0$ .

As solutions of the above equation we get $x_{1^{2}}=5/8,1/2$ . If $x_{1^{2}}=5/8$ , then $(\lambda_{1},$ $\lambda_{2}$ ,
$\lambda_{\$})=(6,36,6),$ $(6,6,36)$ . Thus $x_{1^{2}}\neq 5/8$ . If $x_{1^{2}}=1/2,$ $(\lambda_{1}, \lambda_{2}, \lambda_{3})=(8,20+4\cdot 15^{1/2}$ ,

20-4 $\cdot 15^{\iota/2}$ ).

SUBCASE 2.3. Let $p=x_{5}e_{5}+x_{7}e_{7}$ be a solution of (6.1) and (6.2). Then from
Remark 5.2, $\exp(\pi X_{2}/4)(p)$ is also a solution and $\lambda\prime s$ for $\exp(\pi X_{2}/4)(p)$ coincide (up

to permutation) with $\lambda\prime s$ for $p$.
It is easily seen that $V_{1}=Re_{1}+Re_{3}+Re_{5}+Re_{7}$ is invariant under $\exp(\pi X_{3}/4)$ .

We can see that the restriction $\exp(\pi X_{s}/4)|V_{1}$ is $[**$ $0^{*}000$ with respect to $e_{1},$ $e_{3}$ ,

$e_{5},$ $e_{7}$ . Thus Subcase 2.3 is reduced to the Subcase 2.2.

SUBCASE 2.4. Let (XI, $0,$ $X_{3},0,$ $x_{6},0,$ $x_{7}$), $x_{1}x_{3}x_{5}x_{7}\neq 0$ , be a solution of (6.1)

and (6.2) with $(\lambda_{1}, \lambda_{2}, \lambda_{3})=(a, b, c)$ . Then $(-x_{1},0, x_{\theta}, -x_{5},0, x_{7},0)$ is also a solu-
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tion of (6.1) and (6.2) with $(\lambda_{1}, \lambda_{2}, \lambda_{3})=(a, c, b)$ . Thus Subcase 2.4 is reduced to
Subcase 2.1.

SUBCASE 2.5. By an argument similar to Subcase 2.3, Subcase 2.5 is reduced
to Subcase 2.2. Q.E.D.

Now we prove the existence and uniqueness (up to the action of $G_{2}$ ) of orbits
in $S_{1}^{6}$ which are minimal submanifolds of $S_{1}^{6}$ and $(\lambda_{1}, \lambda_{2}, \lambda_{3})$ of Lemma 6.1 is (16,
16, 16), (36, 6, 6) or $(4, 20-4 \cdot 15^{1/2},20+4\cdot 15^{1/2})$ . First we prove the following

LEMMA 6.2. There exists an orbit which is a totally real submanifold of $S_{1}^{6}$

and $(\lambda_{1}, \lambda_{2}, \lambda_{S})$ of Lemma 6.1 is (16, 16, 16). Such an orbit is unique up to the
action of $G_{2}$ .

PROOF. Put $(x_{1}, x_{2}, \cdots, x_{7})=(0,1,0, \cdots, 0)$ . Then we can easily verify that
$(x_{1}, \cdots, x_{7})$ is a solution of (6.1) and (6.2) with $\lambda_{1}=\lambda_{2}=\lambda_{3}=16$ .

Apply the Lemma 5.2 to the orbit $M_{4}=L(e_{6})$ . Then each orbit contains at
least one point of $S=\{x_{1}e_{1}+x_{4}e_{4}+x_{5}e_{5}+x_{6}e_{6}|x_{1^{2}}+x_{4^{2}}+x_{5^{2}}+x_{6^{2}}=1\}$ .

Assume that an orbit $M$ through $p=x_{1}e_{1}+x_{4}e_{4}+x_{5}e_{5}+x_{6}e_{6}$ is a minimal sub-
manifold of $S_{1}^{6}$ with $\lambda_{1}=\lambda_{2}=\lambda_{3}=16$ . Then, since the induced metric on $L$ is bi-in-
variant, (5.6) must hold at any point on the orbit. Therefore we get

$x_{1}x_{4}=x_{1}x_{5}=-15^{\iota/2}x_{5}x_{6}+6x_{4}x_{5}=0$ .

Under the above conditions, we solve the equation $\lambda_{1}=\lambda_{2}=\lambda_{3}=16$ . Then we have
$(x_{1}, x_{4}, X_{5}, x_{6})=\pm(0,10^{1/2}/4,0, \pm 6^{1/2}/2),$ $\pm(5^{1/2}/3,0,0, \pm 2/3)$ or $\pm(0,10^{1/2}/4$ ,
$\pm 6^{1/2}/4,$ $\pm 30^{1/2}/8$). It is easily verified that an orbit through each of the above
points is a totally real submanifold of $S_{1}^{6}$ and of constant curvature 1/16. Thus
by Lemma 2.5, they are congruent under the action of $G_{2}$ . Q.E.D.

LEMMA 6.3. There exists a unique orbit which is a totally real submanifold of
$S_{1}^{6}$ and $(\lambda_{1}, \lambda_{2}, \lambda_{\$})$ of Lemma 6.1 is (36, 6, 6) up to permutation.

PROOF. By Remark 5.2, we may assume that $\lambda_{1}=36,$ $\lambda_{2}=\lambda_{3}=6$ . Since $\lambda_{1}=36$ ,

(6.3) and (6.4) yield

$0=36(x_{1^{2}}+\cdots+x_{7^{2}})-16(x_{2^{2}}+x_{s^{2}})-4(x_{4^{2}}+x_{5^{2}})-36(x_{6^{2}}+x_{7^{2}})$

$=36x_{1^{2}}+20(x_{2^{2}}+x_{3^{2}})+32(x_{4^{2}}+x_{5^{2}})$

so that $x_{i}=0,$ $i=1,$ $\cdots,$
$5$ . It is easily verified that $(x_{1}, \cdots, x_{5}, X_{6}, x_{7})=(0,$ $\cdots,$

$0$ ,

$\cos\theta,$ $\sin\theta$ ) is a solution of (6.1) and (6.2) with $\lambda_{1}=36,$ $\lambda_{2}=\lambda_{3}=6$ . By a simple
computation, we get $\exp(\theta X_{3}/6)(e_{6})=(\cos\theta)e_{6}+(\sin\theta)e_{7}$ . Hence these points are
contained in exactly one orbit. Furthermore we can easily see that this orbit is
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a totally real submanifold of $S_{1}^{6}$ . Q.E.D.

LEMMA 6.5. There exists a minimal submanifold of $S_{1}^{6}$ such that $(\lambda_{1}, \lambda_{2}, \lambda_{3})$ of
Lemma 6.1 is equal to $(8, 20+4\cdot 15^{1/2},20-4\cdot 15^{\iota/2})$ . But it is not a totally real
submanifold.

PROOF. It is easily verified that an orbit through each of the points $\pm(2^{1/2}/2$ ,
$0,$ $\pm 2^{1/2}/2,0,$ $\cdots,$

$0$) is a minimal submanifold of $S_{1}^{6}$ . In the way of proving Lemma
6.1, we proved that any orbit in $S_{1}^{6}$ which is a minimal submanifold such that $(\lambda_{1}$ ,

$\lambda_{2},$ $\lambda_{3}$ ) is equal to $(8, 20+4\cdot 15^{1/2},20-4\cdot 15^{1/2})$ is congruent to one of the orbits
through $\pm(2^{1/2}/2,0, \pm 2^{1/2}/2,0, \cdots, 0)$ under the action of $G_{2}$ . But by direct cal-
culations, they are not totally real submanifolds of $S_{1}^{6}$ . Q.E.D.

Added in proof. Recently Dr. Tasaki proved the following; Let 1 and 1’ be
semisimple Lie subalgebras of a compact semisimple Lie algebra $\mathfrak{g}$ . If $1^{}$ and $1^{\prime C}$

are conjugate in $\mathfrak{g}^{C}$ , then 1 and 1’ are conkugate in $\mathfrak{g}$ . Thus subalgebras in Lemma
3.9, are conjugate in $\mathfrak{g}_{2}$ .
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