PARTIAL COXETER FUNCTORS AND STABLE EQUIVALENCES FOR SELF-INJECTIVE ALGEBRAS

By
Takayoshi Wakamatsu
(Dedicated to Professor Hisao Tominaga on his 60th birthday)

Introduction.

The important notion of reflection functors was introduced into the representation theory of algebras by Bernstein-Gelfand-Ponomarev [8]. Those functors were defined only for hereditary tensor algebras given by quivers and species [12], Then Auslander-Platzeck-Reiten [7] arranged the notion by non-diagramatic treatment so that it is possible to apply the concept for any algebras. Brenner-Butler [10] extended the Auslander-Platzeck-Reiten partial Coxeter functor and defined the tilting theory. Further, Happel-Ringel [15] generalized the Brenner-Butler tilting theory and studied tilted algebras.

We regard the tilting theory as a powerful method of deforming algebras and their module categories. A tilting functor, hower, is nothing but a Morita equivalence, for any self-injective algebra. Hence, it is natural to search for a way of applying the tilting theory to the study of self-injective algebras.

Let A be a basic indecomposable artin algebra. Denote by mod- A (resp. A mod) the category of all finitely generated right (resp. left) A-modules. Let D : $\bmod -A \rightleftarrows A$-mod be the ordinary duality functor. In the following, we shall consider the trivial extension self-injective algebra $R=A \ltimes D A$ defined as follows: R is $A \oplus D A$ as an additive group and its multiplication is given by $(a, q) \cdot\left(a^{\prime}, q^{\prime}\right)=$ ($a \cdot a^{\prime}, a \cdot q^{\prime}+q \cdot a^{\prime}$) for any (a, q), $\left(a^{\prime}, q^{\prime}\right) \in A \oplus D A=R$.

In the paper [19], Tachikawa started in the study of self-injective algebras R, and in [20], he has proved that $\bmod -R$ is equivalent to $\bmod -S(S=B \mid \times D B)$ if A is hereditary tensor algebra and B is given by reflection procedure from A. Here mod $-R$ is the projectively (=injectively) stable category of mod $-R$ in the sense of Auslander.

Let $e \in A$ be a primitive idempotent such that $e A$ is simple non-injective and $\tau^{-1} e A \otimes_{A} D A=0$, where τ^{-1} (resp. τ) denotes the Auslander-Reiten translation $\operatorname{Tr} D$ (resp. $D T r$). By putting $T_{A}=(1-e) A \oplus \tau^{-1} e A$ and $B=\operatorname{End}\left(T_{A}\right)$, the Auslander-Platzeck-Reiten partial Coxeter functor is defined to be the functor $\operatorname{Hom}_{A}(T$, ?):
$\bmod -A \rightarrow \bmod -B$.
In the present paper, we shall generalize the above result of Tachikawa and show the following

Theorem. There is an equivalence $\tilde{F}: \bmod -R \rightarrow \bmod -S$ such that $\widetilde{F}(X) \cong \operatorname{Hom}_{A}$ (T, X) for any A-module X not possessing $e A$ as a direct summand.

As an application of our Theorem, making use of the Assem-Happel's characterization of generalized tilted algebras [1], we shall prove that the trivial extension self-injective algebra R of a generalized tilted algebra A of Dynkin class A_{n} is always stably equivalent to a serial self-injective algebra.

Gabriel-Riedtmann [14] proved that every DJK-algebra of a Brauer quiver is stably equivalent to a serial self-injective algebra. It is easy to check that any $D J K$-algebra of a Brauer quiver of multiplicity 1 is the trivial extension algebra of a generalized tilted algebra of Dynkin class A_{n}. Therefore, our argument can be seen as another proof of the result of Gabriel-Riedtmann in the case of DJKalgebras of multiplicity 1 . Notice that another case of $D J K$-algebras of multiplicity greater than 1 can be reduced to our case.

Throughout this paper, we fix a commutative artin ring K and all algebras are artin K-algebras and modules are finitely generated. D always denotes the ordinary duality functor.

1. Preliminaries

Throughout this paper, we shall freely use the results on tilting theory proved in [7], [9], [10] and [15] and also the facts about modules over the trivial extension self-injective algebras given by [13], [19] and [20]. But it is convenient to remember some of them which will be used frequently. In this section, we shall recall the basic properties of partial Coxeter functors and trivial extension selfinjective algebras and fix the notations.

Let A be an artin algebra and $e A$ a simple non-injective module with the property $\tau^{-1} e A \otimes_{A} D A=0$. We assume that A is self-basic and indecomposable. Let us put $T_{A}=(1-e) A \oplus \tau^{-1} e A$ and $B=\operatorname{End}\left(T_{A}\right)$. It is easy to see that the module T_{A} becomes a tilting module, that is, it satisfies the the following three conditions:
(1) proj. dim. $T_{A} \leqq 1$,
(2) $\operatorname{Ext}^{1}\left(T_{A}, T_{A}\right)=0$ and
(3) There is a short exact sequence $0 \rightarrow A_{A} \rightarrow T_{A}^{\prime} \rightarrow T_{A}^{\prime \prime} \rightarrow 0$ with T^{\prime} and $T^{\prime \prime}$ are direct summands of direct sums of copies of T_{A}.

Let $F=\operatorname{Hom}_{A}\left(T\right.$, ?), $F^{\prime}=\operatorname{Ext}^{1}\left(T_{A}\right.$, ?) be the functors from $\bmod -A \bmod -B$ and
$G=\left(? \otimes_{B} T\right), G^{\prime}=\operatorname{Tor}_{1}\left(?,{ }_{B} T\right)$ those from $\bmod -B$ to $\bmod -A$. Let $\mathscr{I}=\left\{X \mid F^{\prime}(X)=0\right\}$, $\mathscr{F}=\{X \mid F(X)=0\}$ be the full subcategories of $\bmod -A$ and $\mathscr{X}=\{Y \mid G(Y)=0\}, \quad \mathcal{Y}=$ $\left\{Y \mid G^{\prime}(Y)=0\right\}$ those of mod-B. Then, by Brenner-Butler [10] or Happel-Ringel [15], the following facts are known.
(a) $(\mathscr{I}, \mathscr{F})$ and $(\mathscr{X}, \mathscr{Y})$ are torsion theories in the categories $\bmod -A$ and modB, respectively.
(b) The left module ${ }_{B} T$ is again a tilting module with $\operatorname{End}\left({ }_{B} T\right)=A$.
(c) \mathscr{I} and \mathscr{I} (resp. \mathscr{F} and \mathscr{X}) are category equivalent under the restrictions of F and G (resp. F^{\prime} and G^{\prime}) which are mutually inverses.

We call our special kind of tilting functor F the partial Coxeter functor with respect to a simple module $e A$, following Auslander-Platzeck-Reiten [7].

Since ${ }_{B} T_{A}$ is balanced, it is proved that ${ }_{A} D A_{A} \cong_{A} D T \otimes_{B} T_{A}$ and ${ }_{B} D B_{B} \cong_{B} T \otimes_{A}$ $D T_{B}$ as bimodules. Sometimes, we shall identify $D A$ (resp. $D B$) with $D T \otimes_{B} T$ (resp. $T \otimes_{A} D T$) by these isomorphisms. We denote by κ the composite: $D B \otimes_{B} T$ $\cong T \otimes_{A} D T \otimes_{B} T \cong T \otimes_{A} D A$.

It is well known [3] that the $A R$-sequence starting from $e A$ is at the same time the minimal projective resolution of $\tau^{-1} e A$:

$$
\begin{equation*}
0 \rightarrow e A \xrightarrow{a} P \xrightarrow{\beta} \tau^{-1} e A \rightarrow 0 \tag{*}
\end{equation*}
$$

From this sequence, by tensoring $D A$, we have the minimal injective resolution of $e A$ (note that $\tau^{-1} e A \otimes_{A} D A=0$):

$$
\begin{equation*}
0 \rightarrow e A \rightarrow e A \otimes_{A} D A \xrightarrow{a \otimes D A} P \otimes_{A} D A \rightarrow 0 \tag{*}
\end{equation*}
$$

Applying the partial Coxeter functor F to the sequence (*), we have the minimal projective resolution of the B-module $F^{\prime}(e A)$:

$$
0 \rightarrow F(P) \xrightarrow{F^{(\beta)}} F\left(\tau^{-1} e A\right) \rightarrow F^{\prime}(e A) \rightarrow 0
$$

Since (*) is an $A R$-sequence, denoting by \hat{e} the primitive idempotent element of B corresponding to the direct summand $\tau^{-1} e A$ of T_{A}, we see that $F(P)=\operatorname{rad} \hat{e} B$ and $F^{\prime}(e A)=\operatorname{top} \hat{e} B$. Further, tensoring $D B$ to the above sequence, we have the minimal injective resolution of the B-module $F^{\prime}(e A)$:

$$
\begin{aligned}
& 0 \rightarrow \quad \tau F^{\prime}(e A) \longrightarrow F(P) \otimes_{B} D B \xrightarrow[\| Z]{\longrightarrow(\beta) \otimes D B} F\left(\tau^{-1} e A\right) \otimes_{B} D B \rightarrow 0 \\
& 0 \rightarrow \operatorname{DHom}_{A}(e A, T) \xrightarrow[\text { DHom }(\alpha, T)]{\longrightarrow} \operatorname{DHom}_{A}(P, T) \xrightarrow[\text { DHom }(\beta, T)]{\longrightarrow} \operatorname{DHom}_{A}\left(\tau^{-1} e A, T\right) \rightarrow 0
\end{aligned}
$$

On the other hand, applying the functor F to the sequence ${ }^{(*)}$), we have

Thus we have the following commutative diagram with exact rows:

Lemma 1.1.

By the above diagram, we see that top $\hat{e} B=F^{\prime}(e A) \cong F\left(\tau^{-1} e A\right) \otimes_{B} D B \cong \hat{e} D B$, i. e., $B \hat{e}$ is simple projective. Moreover, we have the following isomorphism :

$$
\begin{aligned}
D B \otimes_{B} \tau^{-1} B \hat{e} & \cong D B \otimes_{B} D \tau F^{\prime}(e A) \\
& \cong \operatorname{DHom}_{B}\left(D \tau F^{\prime}(e A), B\right) \\
& \cong \operatorname{DHom}_{B}\left(T \otimes_{A} A e, B\right) \\
& \cong \operatorname{DHom}_{B}(T e, B) \cong \operatorname{DHom}_{A}(T, e A)=0
\end{aligned}
$$

Therefore, $\operatorname{Hom}_{B}(T,-): B-\bmod \rightarrow A$-mod is again a partial Coxeter functor. We shall use this $A-B$-symmetry to define the desired functors.

For a given bimodule ${ }_{B} U_{A}$, there is always an adjoint pair of functors Hom_{A} $(U,-)$ and $\left(-\otimes_{B} U\right)$. Denote by $\eta^{U}: 1_{\text {mod }-B \rightarrow} \rightarrow \operatorname{Hom}_{A}\left(U,\left(-\bigotimes_{B} U\right)\right.$) (resp. $\varepsilon^{U}: \operatorname{Hom}_{A}$ $(U,-) \otimes_{B} U \rightarrow 1_{\text {mod }-A}$) the unit (resp. the counit) of this adjunction.

In the later part of the paper, the natural transformation $\eta_{(-\rightarrow \otimes D T}^{T} \cdot \varepsilon_{(-)}^{T} \otimes D T$: $F(-) \otimes_{B} D B \rightarrow F\left(-\otimes_{A} D A\right)$ will appear frequently. We shall denote by θ this natural transformation. It should be noted that θ_{P} is an isomorphism for any projective A-module P not possessing $e A$ as a direct summand.

Denote by $T(A)$ (resp. $T(B)$) the trivial extension self-injective algebra $A \mid \times D A$ (resp. $B \mid \times D B$). See Introduction for definition. Since there is an algebra epimorphism $T(A) \rightarrow A \rightarrow 0$, each A-module can be seen as a $T(A)$-module. We call such $T(A)$-modules being of 1st kind and others 2nd kind, following Tachikawa [19].

On the other hand, since A is a subalgebra of $T(A)$, any $T(A)$-module can be seen as an A-module and we call it the underlying A-module. Hence, a $T(A)$ module $X_{r(A)}$ is given by its underlying A-module X_{A} with its multiplication by $D A: X \otimes_{A} D A \xrightarrow{\phi} X$. Note that $(X \cdot D A) \cdot D A=0$, i. e., $\phi \cdot(\phi \otimes D A)=0$. We shall indicate this structure of $X_{T(A)}$ by the pair $\left(X_{A}, \phi\right)$. For a $T(A)$-morphism from $X_{T(A)}=$ $\left(X_{A}, \phi\right)$ to $X_{T(A)}^{\prime}=\left(X_{A}^{\prime}, \phi^{\prime}\right)$, it can be seen as an A-morphism between underlying A modules such that the following diagram commutes:

Since the torsion theory (\mathscr{I}, \mathscr{F}) is splitting, each A-module X_{A} can be decomposed as $X=L \oplus V$ with $L_{A} \in \mathscr{F}$ and $V_{A} \in \mathscr{I}$. Further, $D A$ is in \mathscr{I} and so is $X \otimes_{A} D A$, thus $\operatorname{Hom}_{A}\left(X \otimes_{A} D A, L\right)=0$. Therefore, any $T(A)$-module has to be of the form $X_{T(A)}=\left(L \oplus V,\left(\begin{array}{ll}0 & 0 \\ \lambda & \phi\end{array}\right)\right)$ with $L_{A} \in \mathscr{F}$ and $V_{A} \in \mathscr{I}$.

In the above argument, we considered that the operation $X \times D A \rightarrow X$ of a $T(A)$-module $X_{T(A)}$ is given by $X \otimes_{A} D A \rightarrow X$. But by the adjunction isomorphism $\operatorname{Hom}_{A}\left(X \otimes_{A} D A, X\right) \cong \operatorname{Hom}_{A}\left(X, \operatorname{Hom}_{A}(D A, X)\right)$, we may consider that the operation is given by $X \rightarrow \operatorname{Hom}_{A}(D A, X)$. We shall say $X_{T(A)}=\left(X_{A}, \phi\right)$ to be T-form (resp. H-form) if $\phi \in \operatorname{Hom}_{A}\left(X \otimes_{A} D A, X\right)\left(\right.$ resp. $\phi \in \operatorname{Hom}_{A}\left(X, \operatorname{Hom}_{A}(D A, X)\right)$). In this paper, we shall study modules only by T-forms.

For any object of \mathscr{F}, as L_{A} is a direct sum of copies of $e A$, we can define the sequence:

$$
0 \rightarrow L \xrightarrow{\alpha_{L}} P(L) \xrightarrow{\beta_{L}} T(L) \rightarrow 0
$$

by taking the direct sum of the sequence (*). We shall use this sequence frequently.

By the A - B-symmetry, in the category of left B-modules, we may consider the sequence similarly above. Applying the duality functor D to this sequence, we have the following sequence in the category of right B-modules mod- B :

$$
0 \rightarrow \mathrm{~W}(K) \xrightarrow{\delta_{K}} I(K) \xrightarrow{\gamma_{K}} K \rightarrow 0,
$$

where K is an object in \mathscr{X}, i. e., K_{B} is a direct sum of copies of $\hat{e} D B=\operatorname{Ext}_{A}^{1}(T, e A)$ $=F^{\prime}(e A)$ and $I(K)$ is a direct sum of copies of $F\left(P \otimes_{A} D A\right)=F(P) \otimes_{B} D B, \gamma_{K}$ is isomorphic to $\oplus F(\beta) \otimes D B$ and δ_{K} is isomorphic to $\oplus F(\alpha \otimes D A)$. These sequences also appear frequently.

Note that any module of the category $\bmod -B$ has to be of the form $W \oplus K$ with $W \in \mathscr{Y}$ and $K \in \mathscr{X}$, since the torsion theory (\mathscr{X}, \mathscr{Y}) is also splitting.

2. Stable functor $\boldsymbol{F}: \underline{\bmod -T(A) \rightarrow \bmod -T(B)}$

At first, we shall constract the correspondence $\tilde{F}: \bmod ^{e}-T(A) \rightarrow \bmod ^{e}-T(B)$ which will be used to define the stable functor $\tilde{F}: \bmod -T(A) \rightarrow \bmod -T(B)$, where $\bmod ^{e}-T(A)$ and $\bmod ^{e}-T(B)$ are the full subcategories of $\bmod -T(A)$ and $\bmod -T(B)$ whose classes of objects consisting of modules not possessing as direct summands $e T(A)$ and $\hat{e} T(B)$, respectivery.

Lemma 2.1. Let $X_{T(A)}=\left(L \oplus V,\left(\begin{array}{ll}0 & 0 \\ \lambda & \phi\end{array}\right)\right)$ be a $T(A)$-module with $V \in T$ and $L \in \mathscr{F}$. If $X_{T(A)} \in \bmod ^{e}-T(A)$ then there is a morphism $\hat{\lambda}$ such that the following diagram commutes:

Proof. Denote by $\nu_{i}: e A \rightarrow L$ the i-th injection of $L=\oplus_{i} e A$. If λ does not factor through $\alpha_{L} \otimes D A, \lambda \cdot \nu_{i} \otimes D A$ is a monomorphism for some i, hence there is a $T(A)$-monomorphism :

$$
\left(\begin{array}{cc}
\nu_{i} & 0 \\
0 & \lambda \cdot \nu_{i} \otimes D A
\end{array}\right): e T(A)=e A \oplus e A \otimes_{A} D A \rightarrow X=L \oplus V .
$$

However, this is a contradiction since $e T(A)_{T(A)}$ is injective and $X_{T(A)}$ has not $e T(A)$ as a direct summand.

Using the extended morphism $\hat{\lambda}$, we shall construct a $T(B)$-module $\tilde{F}(X)$ as follows:

$$
\begin{aligned}
& \tilde{F}(X)=\left(F(P(L)) \oplus F(V) \oplus F(T(L)) \otimes_{B} D B,\left(\begin{array}{lll}
0 & 0 & 0 \\
\lambda^{*} & \phi^{*} & 0 \\
F\left(\beta_{L}\right) \otimes_{)} D B & 0 & 0
\end{array}\right)\right), \\
& \lambda^{*}=\left(F(P(L)) \otimes_{B} D B \xrightarrow{\theta^{\theta}(L)} F\left(P(L) \otimes_{A} D A\right) \xrightarrow{F(\lambda)} F(V)\right) \text { and } \\
& \phi^{*}=\left(F(V) \otimes_{B} \xrightarrow{\theta_{V}} F\left(V \oplus_{A} D A\right) \xrightarrow{F(\phi)} F(V)\right) .
\end{aligned}
$$

Lemma 2.2. $\quad \tilde{F}(X)$ is a $T(B)$-module.
Proof. It is sufficient to verify that $\phi^{*} \cdot \lambda^{*} \otimes D B=0$ and $\phi^{*} \cdot \phi^{*} \otimes D B=0$. For the first equality, consider the following commutative diagram:

$$
\begin{aligned}
& F(P(L)) \otimes_{B} D B \otimes_{B} D B \xrightarrow{\theta_{P(L)} \otimes_{D B}} F\left(P(L) \otimes_{A} D A\right) \otimes_{B} D B \xrightarrow{F(\lambda) \otimes D B} F(V) \otimes_{B} D B
\end{aligned}
$$

By the definition, $\phi^{*} \cdot \lambda^{*} \otimes D B=F(\phi) \cdot \theta_{V} \cdot F(\hat{\lambda}) \otimes D B \cdot \theta_{P(L)} \otimes D B=F(\phi) \cdot F(\hat{\lambda} \otimes D A) \cdot \theta_{P(L) \otimes D A}$. $\theta_{P(L)} \otimes D B=0$ since $\phi \cdot \hat{\lambda} \otimes D A=0$. The second equality can be proved similarly.

Lemma 2.3. $\tilde{F}(X)_{T(B)} \in \bmod ^{e}-T(B)$.

Proof. If $\hat{e} T(B)$ is a direct summand of $\tilde{F}(X)$ as a $T(B)$-module then so is as a B-module, therefore $\hat{e} B \otimes_{B} D B=F\left(\tau^{-1} e A\right) \otimes_{B} D B$ is a summand of $F(T(L)) \otimes_{B} D B$ by Krull-Remar-Schmidt theorem. Thus there is an A-morphism f such that $F\left(\beta_{L}\right) \otimes D B \cdot \lambda^{*} \cdot F(f) \otimes D B$ coincides with this injection map. This is a contradiction since $\operatorname{Hom}_{A}\left(\tau^{-1} e A, P\right)=0$.

Thus we have defined the correspondence $\tilde{F}: \bmod ^{e}-T(A) \rightarrow \bmod ^{e}-T(B)$ as announced at the beginning of this section. In the following, we shall show it is possible to make \tilde{F} a stable functor: $\bmod -T(A) \rightarrow \bmod -T(B)$.

Let $X_{i}=\left(L_{i} \oplus V_{i},\left(\begin{array}{cc}0 & 0 \\ \lambda_{i} & \phi_{i}\end{array}\right)\right)(i=1,2)$ be $T(A)$-modules in $\bmod ^{e}-T(A)$ and $\theta=\left(\begin{array}{ll}g & 0 \\ h & f\end{array}\right)$: $X_{1} \rightarrow X_{2}$ a $T(A)$-morphism. Since $0 \rightarrow e A \xrightarrow{\alpha} P \xrightarrow{\beta} \tau^{-1} e A \rightarrow 0$ is an $A R$-sequence, we can define A-morphism $g^{\prime}, g^{\prime \prime}$ and h^{\prime} by the following commutative diagrams:

Here, g^{\prime}, and $g^{\prime \prime}$ are uniquely determined by g since $\operatorname{Hom}_{A}\left(\tau^{-1} e A, A\right)=0$ but h^{\prime} is not by h.

For a given $T(A)$-morphism $\theta=\left(\begin{array}{ll}g & 0 \\ h & f\end{array}\right)$, fixing the representative h^{\prime} of h, we shall define the $T(B)$-morphism:

$$
\widetilde{F}(\theta)=\left(\begin{array}{ccc}
F\left(g^{\prime}\right) & 0 & 0 \\
F\left(h^{\prime}\right) & F(f) & 0 \\
0 & 0 & F\left(g^{\prime}\right) \otimes D B
\end{array}\right): \widetilde{F}\left(X_{1}\right) \rightarrow \widetilde{F}\left(X_{2}\right)
$$

Lemma 2.4. $\tilde{F}(\theta)$ is a $T(B)$-morphism.
Proof. We have to verify the following three properties:

$$
\begin{equation*}
\phi_{2}^{*} \cdot F(f) \otimes D B=F(f) \cdot \phi_{1}^{*} \tag{i}
\end{equation*}
$$

(ii) $\quad F\left(\beta_{L_{2}}\right) \otimes D B \cdot F\left(g^{\prime}\right) \otimes D B=F\left(g^{\prime \prime}\right) \otimes D B \cdot F\left(\beta_{L_{1}}\right) \otimes D B$ and

$$
\begin{equation*}
\lambda_{2}^{*} \cdot F\left(g^{\prime}\right) \otimes D B+\phi_{2}^{*} \cdot F\left(h^{\prime}\right) \otimes D B=F(f) \cdot \lambda_{1}^{*} \tag{iii}
\end{equation*}
$$

(i) and (ii) are easily verified. We shall show (iii) only. Since $\theta_{P\left(L_{2}\right)} \cdot F\left(g^{\prime}\right) \otimes D B=$ $F\left(g^{\prime} \otimes D A\right) \cdot \theta_{P\left(L_{1}\right)}$ and $\theta_{V_{1}} \cdot F\left(h^{\prime}\right)=F\left(h^{\prime} \otimes D A\right) \cdot \theta_{P\left(L_{1}\right)}$, we have following equalities:

$$
\begin{aligned}
& F(\hat{\lambda}) \cdot \theta_{P\left(L_{2}\right)} \cdot F\left(g^{\prime}\right) \otimes D B=F\left(\hat{\lambda}_{2}\right) \cdot F\left(g^{\prime} \otimes D A\right) \cdot \theta_{P\left(L_{1}\right)} \quad \text { and } \\
& F\left(\phi_{2}\right) \cdot \theta_{V_{2}} \cdot F\left(h^{\prime}\right)=F\left(\phi_{2}\right) \cdot F\left(h^{\prime} \otimes D A\right) \cdot \theta_{P\left(L_{1}\right)},
\end{aligned}
$$

thus it is enough to show $F\left(\hat{\lambda}_{2}\right) \cdot F\left(g^{\prime} \otimes D A\right)+F\left(\phi_{2}\right) \cdot F\left(h^{\prime} \otimes D A\right)=F(f) \cdot F\left(\hat{\lambda}_{1}\right)$. From the equalities $f \cdot \lambda_{1}=\lambda_{2} \cdot g \otimes D A+\phi_{2} \cdot h \otimes D A, \lambda_{2}=\hat{\lambda}_{2} \cdot \alpha_{L_{2}}$ and $h \otimes D A=h^{\prime} \otimes D A \cdot \alpha_{L_{1}} \otimes D A$,
we have $f \cdot \hat{\lambda}_{1} \cdot \alpha_{L_{1}} \otimes D A=\left(\hat{\lambda}_{2} \cdot g^{\prime} \otimes D A+\phi_{2} \cdot h^{\prime} \otimes D A\right) \cdot \alpha_{L_{1}} \otimes D A$ and $f \cdot \hat{\lambda}_{1}=\hat{\lambda}_{2} \cdot g^{\prime} \otimes D A+$ $\phi_{2} \cdot h^{\prime} \otimes D A$ since $\alpha_{L_{1}} \otimes D A$ is an epimorphism. Hence we obtain the desired equality.

Lemma 2.5. $\tilde{F}(\theta)$ is uniquely determined in the stable category $\bmod -T(B)$ for a morphism θ.

Proof. Let $h^{\prime} \cdot \alpha_{L_{1}}=h=h^{\prime \prime} \cdot \alpha_{L_{1}}$ and $h^{\prime}-h^{\prime \prime}=z \cdot \beta_{L_{1}}$:

Let $\widetilde{F}(\theta)^{\prime}$ be the morphism constructed from θ and $h^{\prime \prime}$. Then $\widetilde{F}(\theta)-\tilde{F}(\theta)^{\prime}$ factors through projective: $F\left(X_{1}\right) \xrightarrow{\chi} Q \xrightarrow{\zeta} F\left(X_{2}\right)$, where χ, ζ and Q are defined as follows:

$$
\begin{aligned}
& Q=\left(F(T(L)) \oplus F\left(T\left(L_{1}\right)\right) \otimes_{B} D B,\left(\begin{array}{cc}
0 & 0 \\
1_{F\left(T\left(L_{1}\right)\right) \otimes D B} & 0
\end{array}\right)\right) \text { and } \\
& \chi=\left(\begin{array}{ccc}
F\left(\beta_{L_{1}}\right) & 0 & 0 \\
0 & 0 & 1_{F\left(T\left(L_{1}\right)\right) \otimes D B}
\end{array}\right), \quad \zeta=\left(\begin{array}{cc}
0 & 0 \\
F(z) & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

We have shown the main property of the correspondence \tilde{F}.
It is easy to see that \tilde{F} maps any projective module in $\bmod ^{e}-T(A)$ to projective $T(B)$-module and it induces a stable functor: $\bmod -T(A) \rightarrow \bmod -T(B)$. In fact, if θ factors through $e T(A)$ then $\widetilde{F}(\theta)$ factors through $F(P) \otimes_{B} T(B)$.

By the symmetry of the partial Coxeter functor, we can define a stable functor $\tilde{F}^{\prime}: T(B)-\bmod \rightarrow T(A)$-mod. Using this functor \tilde{F}^{\prime}, we define the stable functor G : $\bmod -T(B) \rightarrow \underline{\bmod -T(A)}$ as the composite $D \cdot \tilde{F}^{\prime} \cdot D$. In the next section, we shall show the equivalence $\tilde{G} \cdot \tilde{F} \simeq 1_{\text {mod }-T(A)}$.

3. Proof of Theorem

In order to compute $\tilde{G} \cdot \tilde{F}$, it is convenient to give $\tilde{G}(Y)$ concretely for a $T(B)$ module $Y_{T(B)}$ in $\bmod ^{e}-T(B)$.

Let $Y_{T(B)}=\left(W \oplus K,\left(\begin{array}{ll}\psi & 0 \\ \mu & 0\end{array}\right)\right)$ be a $T(B)$-module with $W \in \mathscr{Y}$ and $K \in \mathscr{X}$. If $Y_{T(B)}$ is in $\bmod ^{e}-T(B)$, then there is a morphism $\hat{\mu}$ such that $\mu=\gamma_{K} \cdot \hat{\mu}$. Using this morphism $\hat{\mu}, \tilde{G}(Y)$ is defined as follows:

$$
\tilde{G}(Y)=\left(\operatorname{Hom}_{A}\left(D A, W(K) \otimes_{B} T\right) \oplus I(K) \otimes_{B} T \oplus W \otimes_{B} T,\left(\begin{array}{ccc}
0 & 0 & 0 \\
\delta_{K} \otimes T \cdot \varepsilon_{W(L) \otimes T}^{D A} & 0 & \mu^{*} \\
0 & 0 & \psi^{*}
\end{array}\right) .\right.
$$

$\mu^{*}=\hat{\mu} \otimes T$ and $\psi^{*}=\phi \otimes T$.
It is easy to see that $K=F(T(L)), W=F(P(L)) \oplus F(V)$ and $\psi=\left(\begin{array}{cc}0 & 0 \\ \lambda^{*} & \phi^{*}\end{array}\right), \mu=$ $\left(F\left(\beta_{L}\right) \otimes D B, 0\right)$ if we put $Y=\tilde{F}(X)$. From here, the following Lemma is proved directly.

Lemma 3.1. For a given $T(A)$-module $X=\left(L \oplus V,\left(\begin{array}{ll}0 & 0 \\ \lambda & \phi\end{array}\right)\right)$ with $V \in \mathscr{I}$ and $L \in \mathscr{F}$. If $X_{T(A)}$ has no direct summand isomorphic to $e T(A)$, then $\tilde{G} \cdot \tilde{F}(X)_{T(A)}$ is of the form $\left(L \oplus P(L) \oplus P(L) \otimes_{A} D A \oplus V,\left(\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \alpha_{L} \otimes D A & 1_{P(L)} \otimes D & \hat{\lambda} & 0 \\ 0 & 0 & 0\end{array}\right)\right.$.

Now we shall show $\tilde{G} \cdot \tilde{F}(X)_{T(A)} \cong P(L) \otimes_{A} T(A) \oplus X$, by making use of the form in the above Lemma.

Let us define two $T(A)$-morphisms χ and ζ.

$$
\begin{aligned}
& \chi: P(L) \otimes_{A} T(A)=\left(P(L) \oplus P(L) \otimes_{A} D A,\left(\begin{array}{cc}
0 & 0 \\
1_{P(L) \otimes D A} & 0
\end{array}\right)\right) \\
& \xrightarrow{\left(\begin{array}{cc}
0 & 0 \\
{ }^{1} P_{P}(L) & 0 \\
0 & \\
0 & { }^{1}\left(P^{2}(L) \otimes D A\right.
\end{array}\right)} \\
& \zeta: \tilde{G} \cdot \widetilde{F}(X)=L \oplus P(L) \oplus P(L) \otimes_{A} D A \oplus V \xrightarrow{\left(\begin{array}{cccc}
-1_{L} & 0 & 0 & 0 \\
0 & 0 & -2 & 1_{L}
\end{array}\right)} X=L \oplus V .
\end{aligned}
$$

Then it is easy to verify that χ is a $T(A)$-monomorphism and ζ is a $T(A)$-epimorphism and $\zeta \cdot \chi=0$. Further, the sum of lengths of $P(L) \otimes_{A} T(A)$ and X is just that of $\tilde{G} \cdot \widetilde{F}(X)$. Hence we know that the sequence $0 \rightarrow P(L) \otimes_{A} T(A) \xrightarrow{x} \tilde{G} \cdot \tilde{F}(X) \stackrel{\zeta}{\rightarrow} X \rightarrow 0$ is exact. Since $P(L) \otimes_{A} T(A)_{T(A)}$ is injective, the above sequence splits. Therefore, $\tilde{G} \cdot \widetilde{F}(X)$ is isomorphic to the direct sum of X and $P(L) \otimes{ }_{A} T(A)$. It is easy to prove that the isomorphism $\tilde{G} \cdot \widetilde{F}(X) \cong X$ in the category $\bmod -T(A)$ has naturality on X. This completes the proof of Theorem. $\widetilde{F} \cdot \tilde{G} \cong 1_{\text {mod-T(B) }}$ is given by the symmetry of partial Coxeter functor.

4. An Application

As an application of our Theorem, we shall prove that any DJK-algebra of a Brauer quiver of multiplicity 1 is stably equivalent to a serial self-injective algebra as announced before.

It is easy to show that any DJK-algebra of a Brauer quiver of multiplicity 1 is a self-injective trivial extension of some algebra A. By the characterization of generalized tilted algebras of Dynkin class A_{n} which is given by Assem and Happel [1], we know that the algebra A has to be a generalized tilted algebra of Dynkin
class A_{n}. Hence, A is the algebra of a connected finite full subquiver of the following infinite tree:

Clearly, there is a joint whose branches have no joints except at most one branch. Here, a vertex is said to be a joint if it has at least three neighbours. Consider such a joint e_{*} as follows:

The starting point e_{1} of a branch B_{1} corresponds to a simple projective module $e_{1} A$. Thus, A is of the form:

$$
\left(\begin{array}{cc}
e_{1} A e_{1} & 0 \\
\left(1-e_{1}\right) A e_{1} & \left(1-e_{1}\right) A\left(1-e_{1}\right)
\end{array}\right)=e_{1} A e_{1} \times\left(1-e_{1}\right) A\left(1-e_{1}\right) \times\left(1-e_{1}\right) A e_{1} .
$$

Le us put

$$
A^{\prime}=e_{1} A e_{1} \times\left(1-e_{1}\right) A\left(1-A_{1}\right) \left\lvert\, \times D\left(\left(1-e_{1}\right) A e_{1}\right)=\left(\begin{array}{cc}
e_{1} A e_{1} & D\left(\left(1-e_{1}\right) A e_{1}\right) \\
0 & \left(1-e_{1}\right) A\left(1-e_{1}\right)
\end{array}\right) .\right.
$$

Then $T(A)$ and $T\left(A^{\prime}\right)$ are isomorphic to each other as algebras. The quiver of the algebra A^{\prime} is as follows:

The length of the branch B_{1}^{\prime} (resp. B_{2}^{\prime}) is shorter (resp. longer) than that of B_{1} (resp. B_{2}) just 1.

We can continue this process and have an algebra $A^{\prime \prime}$ of the following quiver :

Then we apply the reflection processes (these correspond to partial Coxeter functors defined at the vertices h_{t}, h_{t-1}, \cdots) to the algebra $A^{\prime \prime}$ and finally, we have an algebra B of the following quiver:

Further, we apply the inverse processes of $A \mapsto A^{\prime}$ to the algebra B, then we have an algebra B^{\prime} of the following quiver:

At last, we apply the reflection processes to B^{\prime}, then it becomes an algebra $A_{(1)}$ for which the number of joints in the quiver is smaller than that of the original algebra A :

Hence, iterating the processes $A \mapsto A_{(1)} \mapsto A_{(2)} \mapsto A_{(3)} \cdots$, we have a hereditary algebra of the quiver:

$$
\circ \rightarrow \circ \rightarrow 0 \rightarrow 0 \quad \cdots \cdot \ldots . . .
$$

By our Theorem, it is easy to see that $T(A)$ is stably equivalent to the trivial extension algebra of the final hereditary algebra. On the other hand, the trivial extension algebra of the above hereditary algebra is clearly serial. Thus every DJK-algebra of a Brauer quiver of multiplicity 1 is stably equivalent to a serial self-injective algebra.

References

[1] Assem I. and Happel, D. Generalized tilted algebras of type A_{n}, Comm. Algebra, 9 (1981), 2101-2125.
[2] Assem, I. Happel D. and O. Roldán, Representation-finite trivial extension algebras, preprint.
[3] Auslander M. and Reiten, I. Representation theory of artin algebras III, Comm. AIgebra, 3 (1975), 269-310.
[4] Auslander M. and Reiten, I. Representation theory of artin algebras IV, Comm. Algebra, 5 (1977), 443-518.
[5] Auslander M. and Reiten, I. Representation theory of artin algebras V, Comm. Alge-
bra, 5 (1977), 519-554.
[6] Auslander M. and Reiten, I. Representation theory of artin algebras VI, Comm. Algebra, 6 (1978), 257-300.
[7] Auslander, M. Platzeck M. I. and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc., 250 (1979), 1-46.
[8] Bernstein, I. N. Gelfand I. M. and Ponomarev, V.P. Coxeter functors and Gabriel's theorem, Uspechi. Mat. Nauk, 28 (1973), 19-33; transt. Russ. Math. Surveys, 28 (1977), 17-32.
[9] Bongartz, K. Tilted algebras, Springer Lecture Notes, 903 (1981), 26-38.
[10] Brenner S. and Butler, M. C. R. Generalization of Bernstein-Galfand-Ponomarev reflection functors, Springer Lecture Notes, 832 (1980), 103-169.
[11] Bretscher, O. Läser C. and Riedtmann, C. Selfinjective and simply connected algebras, Manuscripta Math., 36 (1981), 253-308.
[12] Dlab, V. and Ringel, C. M., Indecomposable representations of graphs and algebras, Memoirs Amer. Math. Soc., 173 (1976).
[13] Fossum, R.M., Griffith, P. A. and Reiten, I., Trivial extensions of abelian categories, Springer Lecture Notes, 456 (1975).
[14] Gabriel, P. and Riedtmann, C., Group representations without groups. Math. Helv., 54 (1979), 240-287.
[15] Happel, D. and Ringel, C. M., Tilted algebras, Trans. Amer. Math. Soc., 274 (1982), 399-443.
[16] Hoshino, M., Trivial extensions of tilted algebras, Comm. Algebra, 10 (1982), 19651999.
[17] Hughes, D. and Waschbüsch, J., Trivial extensions of tilted algebras, Proc. London Math. Soc., 46 (1983), 347-364.
[18] Iwanaga, Y. and Wakamatsu, T., Trivial extensions of artin algebras, Springer Lecture Notes, 832 (1980), 295-301.
[19] Tachikawa, H., Representations of trivial extensions of hereditary algebras, Springer Lecture Notes, 832 (1980), 572-599.
[20] Tachikawa, H., Reflection functors and Auslander-Reiten translations for trivial extensions of hereditary algebras, to appear in J. Algebra.
[21] Waschbüsch, J., Universal coverings of selfinjective algebras, Springer Lecture Notes, 903 (1981), 331-349.
[22] Yamagata, K., On algebras whose trivial extensions are of finite representation type, Springer Lecture Notes, 903 (1981), 364-371.
[23] Yamagata, K.. Extensions over hereditary artin rings with self-dualities I, J. Algebra, 73 (1981), 386-433.

Institute of Mathematics, University of Tsukuba
Sakura-mura, Ibaraki, 305 Japan

