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WEAKLY UNIFORM DISTRIBUTION MOD $M$

FOR CERTAIN RECURSIVE SEQUENCES

AND FOR MONOMIAL SEQUENCES

By

Kenji NAGASAKA

0. Introduction.

In my preceding paper [2], recursive sequences defined by

(1) $u_{n\dagger 1}\equiv a\cdot u_{n}+b\cdot u_{n}^{-1}(mod m)$

were considered. We investigated conditions for which above defined recursive
sequence with $a=b=1$ did not terminate and introduced the notion of uniform
distribution in $(Z/mZ)^{*}$ for non-terminating recursive sequences defined by (1). It
was proved that every non-terminating recursive sequence defined by (1) was not
uniformly distributed in $(Z/mZ)^{*}$ except one special case.

In order to avoid the repetition of the word, “ non-terminating”, we define
weakly uniform distribution mod $m$ according to W. Narkiewicz [4]. Let $a=$

$\{a_{n}\}_{n=1.2},$ $\cdots$ be a sequence of integers. For integers $N\geq 1,$ $m\geq 2$ , and $j(0\leq j\leq m$

$-1)$ , let us define $A_{N}(a;j, m)$ as the number of terms among $a_{1},$ $a_{2},$ $\cdots,$ $a_{N}$ satis-
fying the congruence $a_{n}\equiv j(mod m)$ and similarly $B_{N}(a;m)$ as the number of
terms $a_{n},$ $1\leq n\leq N$, that are relatively prime to $m$ .

A sequence $a=\{a_{n}\}_{n=1,2},$ $\cdots$ of integers is said to be weakly uniformly distri-
buted $mod m$ if, for all $j$ prime to $m$ ,

$\lim_{N\rightarrow\infty}\frac{A_{N}(a;j,m)}{B_{N}(a;m)}=\frac{1}{\phi(m)}$ ,

provided

$\lim_{N\rightarrow\infty}B_{N}(a;m)=\infty$ ,

where $\phi(\cdot)$ denotes the Euler totient function.
For recursive sequences defined by (1), uniform distributions in $(Z/mZ)^{*}$ are

equivalent to weakly uniform distributions $mod m$ .
In this note, we shall consider recursive sequences defined by
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(2) $ v_{n_{t}1}\equiv a_{k}(v_{n}^{k}+v_{n}^{-k})+a_{k-1}(v_{n}^{k-1}+v_{n}^{-(k-1)})+\cdots$

$+a_{1}(v_{n}+v_{n}^{-1})+a_{0}(mod m)$ ,

which is symmetric with respect to $v_{n}$ and $v_{n}^{-1}$ . We shall consider also recursive
sequences defined by

(3) $w_{n+1}\equiv a\cdot w_{n}^{k}+b\cdot w_{n}^{-k}(mod m)$ .

It will be proved that these recursive sequences are not weakly uniformly distri-
buted $mod m$ except for some special cases.

Uniform distribution properties $mod m$ of monomial sequences are known by
B. Zane [5]. We obtain almost similar results for weakly uniform distribution
$mod m$ of monomial sequences in the last section.

1. Symmetric recursion formula.

We considered in [2] a recursive sequence $u=\{u_{n}\}_{n=1.2}$ . $\cdots$ defined by

(4) $u_{n+1}\equiv u_{n}+u_{n}^{-1}(mod m)$ .

We introduced a function $g_{1}$ corresponding to the recursion formula (4) defined by
$q_{1}(s)=s+s^{-1}$ on the multiplicative group $G_{m}=(Z/mZ)^{*}$ .

If the sequence $u$ is weakly uniformly distributed $mod m$ , then the correspond-
ing function $g_{1}$ is necessarily bijective on $G_{m}$ . The function $g_{1}$ satisfies a functional
equation

(5) $g_{1}(s)=g_{1}(s^{-1})$

for all $s$ in $G_{m}$ , which gave Theorem 5 in [2] together with the bijectivety of $g_{1}$ .
We now determine recursion formulae to which corresponding functions $g$

satisfy the same functional equation as (5). Let us consider the function $g_{1}$ as a
function $h_{1}$ with two variables, $s$ and $s^{-1}$ . The functional equation (5) is identical
to the symmetricness of the function $h_{1}$ . It is now enough to determine all sym-
metric functions of $s$ and $s^{-1}$ .

Every symmetric function can be represented as a polynomial of fundamental
symmetric functions. In this case, two fundamental symmetric functions are $s+$

$s^{-1}$ and $s\cdot s^{-1}=1$ , and so every symmetric function $h(s, s^{-1})$ is a polynomial of
$(s+s^{-1})$ .

Applying Newton’s binomial theorem to the expansion of $(s+s^{-1})^{n}$ , the coeffi-
cient of $s^{k}$ is $(_{(n+k)/2}n)$ which coincides with that of $s^{-k}$ , where the symbol $(_{r}^{x})$ is
the generalized binomial coefficient [1]. Hence the function satisfying (5) can be
represented by
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(6) $g(s)=a_{k}(s^{k}+s^{-k})+a_{k-1}(s^{k-1}+s^{-(k-1)})+\cdots+a_{1}(s+s^{-1})+a_{0}$ ,

and the corresponding recursion formula is (2).

We shall prove the

THEOREM 1. No recursive sequence $v=\{v_{n}\}_{n=1,2},$ $\cdots$ is weakly uniformly distri-
buted mod $m$ except for

$v_{n\prec 1}\equiv v_{n}+v_{n}^{-1}(mod 3)$

and for
$v_{n\vdash 1}\equiv v_{n}^{2}+v_{n}+1+v_{n}^{-1}+v_{n}^{-2}(mod 3)$ .

NOTE. The sequence defined by the latter congruence is substantially identical
with the sequence defined by the former, since

$v_{n}^{2}\equiv v_{n}^{-2}\equiv 1(mod 3)$ for all $n$ .

PROOF. If a recursive sequence $v=\{v_{n}\}_{n=1,2}$ . $\cdots$ is weakly uniformly distributed
$mod m$ , then the function $q$ in (6) corresponding to the recursion formula (2) is
necessarily bijective from $G_{m}=(Z/mZ)^{*}$ to $G_{m}$ . The function $g$ satisfies $g(s)=g(s^{-1})$ ,

from which and from the bijectivity of $g$ we deduce that

$s\equiv s^{-1}(mod m)$ ,

or equivalently to

(7) $s^{2}\equiv 1(mod m)$ ,

for all $s$ in $G_{m}$ .
(i) Case of odd $m\prime s$ . For any odd integer $m$ , the multiplicative group $G_{m}$

contains 2 as an element. Substituting 2 in (7), we obtain $m=3$ .
From Fermat’s theorem, $s^{3}\equiv s(mod 3)$ for all $s$ in $Z/3Z$, then we may restrict

ourselves to the following recursion formulae:

$v_{n+1}\equiv a_{2}(v_{n}^{2}+v_{n}^{-2})+a_{1}(v_{n}+v_{n}^{-1})+a_{0}(mod 3)$ .

Direct calculation shows that only the following two recursion formulae:

$v_{n+1}\equiv v_{n}+v_{\overline{n}}^{1}(mod 3)$

and

$v_{n+1}\equiv v_{n}^{2}+v_{n}+1+v_{n}^{-1}+v_{n}^{-2}(mod 3)$

generate weakly uniformly distributed sequences $mod 3$ .
(ii) Case of even $m\prime s$ . We denote $r$ the smallest positive odd integer other
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than the unit element in the multiplicative group $G_{m}=(Z/mZ)^{*}$ . Substituting $r$ in
(7), we have $m=r^{2}-1$ . The smallestness of $r\neq 1$ in $G_{m}$ assures that $m$ is divisible
by all primes $p_{j}$ less than $r$, which signifies

(8) $\Pi_{j=}^{\Pi(r_{1})-1}p_{j}<r^{2}-1$ .

The inequality (8) holds, from the prime number theorem, for only small values
of $r$. Indeed (8) is valid only for $r=3,5,7$ and 9. Considering prime factors of
$r^{2}-1$ for above values of $r$ satisfying (8), it is enough to consider the following
two cases: $m=8$ and $m=24$ .

On $G_{8}=(Z/8Z)^{*}$ , the function $g_{1}(s)$ takes only two distinct values, from which
$g1S$ not bijective on $G_{8}$ . Similarly $g$ is neither bijective on $G_{24}=(Z/24Z)^{*}$ . Thus
we complete the proof.

2. Recursive sequences defined by $w_{n+1}\equiv a\cdot w_{n}^{k}+b\cdot w_{n}^{-k}(mod m)$ .
We now consider recursive sequences $w=\{w_{n}\}_{n=1.2}$ . $\cdots$ defined by

(3) $w_{n+1}\equiv a\cdot w_{n}^{k}+b\cdot w_{n}^{-k}(mod m)$ ,

that is a generalization of the recursion formula (1) considered in [2]. We obtain

THEOREM 2. No recursive sequence $w=\{w_{n}\}_{n=1.2}$ . $\cdots$ defined by (3) is weakly
uniformly distributed mod $m$ except for $a=b=k=1$ and $m=3$ .

PROOF. The corresponding function $f$ to the recursion formula (3) is

$f(s)=a\cdot s^{k}+b\cdot s^{-k}$

$=a\cdot s^{k}+b(s^{k})^{-1}$ .

If a recursive sequence $w=\{w_{n}\}_{n=1.2}$ . $\cdots$ is weakly uniformly distributed $mod m$ ,

then the function $f$ from $G_{m}=(Z/mZ)^{*}$ is bijective to $G_{m}$ , from which we deduce
that the function $f_{k}$ from $G_{m}$ defined by

$f_{k}(s)=s^{k}$

is also bijective to $G_{m}$ , since $f$ may be considered as a function of $s^{k}$ . Then the
following congruential equation

(9) $s^{k}\equiv c(mod m)$

has only one solution in $G_{m}$ for all $c$ in $G_{m}$ .
Setting $c=a$ and $c=b$ , we denote the unique solution in (9) $a_{0}$ and $b_{0}$ , respec-

tively. Then the function $f$ corresponding to (3) satisfies a functional equation:

(10) $f(s)=f(b_{0}\cdot a_{0}^{-1}\cdot s^{-1})$
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for all $s$ in $G_{m}$ . The bijectivity of $f$ and (10) shows that

(11) $s\equiv b_{0}\cdot a_{0}^{-1}\cdot s^{-1}(mod m)$

for all $s$ in the multiplicative group $G_{m}$ .
Substituting for $s=1$ , we have

$c\equiv d(mod m)$ ,

which is a special case in Theorem 1. Thus the proof is completed.

3. Monomial Sequences.

In the preceding section, the solvability of (9) is a necessary condition for
weakly uniform distribution $mod m$ of $w=\{w_{n}\}_{n=1,2},$ $\cdots$ . Thus we are naturally
led to consider distribution properties of monomial sequences.

Let us consider, for nonnegative integer $k$ , monomial sequences $m(k;a)=\{a$ .
$n^{k}\}_{n=1,2},$ $\cdots$ . If a monomial sequence $m(k;a)$ is weakly uniformly distributed mod
$m$ , then the following congruential equation

(12) $a\cdot s^{k}\equiv c(mod m)$

has a unique solution in $G_{m}=(Z/mZ)^{*}$ for all $c$ in $G_{m}$ and $a$ is necessarily prime
to $m$ . Then multiplying $a^{-1}$ to (12), it is enough to consider the unique solvability
of (9) for all $c$ in the multiplicative group $G_{m}$ .

Let $m$ be a composite integer such that

(13)
$m=p_{1}^{\alpha_{1}}\cdot p_{2^{2}}^{\alpha}\cdots p_{r^{r}}^{\alpha}(\alpha_{i}\geq 1)$ ,

where $p_{1},$ $p_{2},$
$\cdots,$ $p_{r}$ are distinct primes. Then (9) has only one solution if and

only if

(14) $s^{k}\equiv c(mod p_{i}^{\alpha}i)$

has only one solution for each $i,$ $1\leq i\leq r$. In order to determine whether a mono-
mial sequence $m(k;a)$ is weakly uniformly distributed $mod m$ , it is enough to
consider (14) for each $i$ .

Starting from small values of $k$ , we trivially obtain from the theory of linear
congruences

THEOREM 3. Monomial sequence $m(1;a)$ of degree one is weakly uniformly
distributed mod $m$ if and only if $a$ is relatively prime to $m$ .

Likewise to uniformly distributed sequences of integers, we call an integer
sequence $b=\{b_{n}\}_{n=1,2}$ . $\cdots$ to be weakly uniformly distributed if $b$ is weakly uni-
formly distributed $mod m$ for all integers $m\geq 2$ . Dirichlet’s prime number theorem
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asserts us that the sequence of prime numbers is an example of weakly uniformly
distributed sequences of integers.

From Theorem 3, we derive

COROLLARY. $m(1;a)$ is not weakly uniformly distributed except for $a=\pm 1$ .
For monomial sequences $m(2l;a)$ of even degree, we get a negative answer

to weakly uniform distribution $mod m$ .

THEOREM 4. No monomial sequence $m(2l;a)$ of even degree is weakly $uni$ .

formly distributed mod $m$ except for $m=2$ and odd integer $a$ .

PROOF. For the case of $l=0$ , the statement of the Theorem is evident.
Setting now that $1\geq 1$ and we suppose that a monomial sequence $m(2l;a)$ is

weakly uniformly distributed $mod m$ , where $m$ is of the form (13). Then, the
congruence

(15) $s^{2l}\equiv c(mod p_{i^{i}}^{a})$

has only one solution. From the unique existence of (15) for all $c$ in $G_{Pi^{\alpha_{i}}}=(Z/$

$p_{i}^{\alpha}iZ)^{*}$ , we deduce that $2l$ and $\phi(p_{i}^{\alpha}i)$ are relatively prime, which is impossible for
odd prime $p$.

We now restrict ourselves to the modulus of the form $2^{a}$ and next Proposition
(Theorem 63 in [3]) is useful.

PROPOSITION. The numbers $\pm 5,$ $\pm 5^{2},$
$\cdots,$

$\pm 5^{2^{\beta-2}}$ form a reduced residue system

modulo $2^{\beta}$ when $\beta\geq 3$ .
That signifies

(16) $G_{2^{a}}=(Z/2^{\alpha}Z)^{*}=1\pm 5,$ $\pm 5^{2},$ $\cdots$ , $\pm 5^{2^{\alpha-2}}$ }.

Suppose further that

(17) $2l=2^{r}\cdot l’$ , where $l$
’ is an odd integer,

and consider the following congruence

(18) $s^{2l}\equiv c(mod 2^{\alpha})$ .

From (16), we may put, for $\alpha\geq 3$ ,

(19) $c\equiv(-1)^{\lambda}\cdot 5^{h}(mod 2^{\alpha})$ ,

(20) $s\equiv(-1)^{\mu}\cdot 5^{x}(mod 2^{\alpha})$ ,

where $h,$ $x,$
$\lambda$ and $\mu$ are nonnegative integers. By introducing (19) and (20) in (18),

we get
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$5^{2xl}\equiv(-1)^{\lambda}\cdot 5^{h}(mod 2^{\alpha})$ .

Hence the number $\lambda$ is even. Then again from (16) and introducing (17), we
obtain

$2^{r}\cdot l’\cdot x\equiv h(mod 2^{a-2})$ .
This implies $h\equiv 0(mod 2^{r})$ .

Then we derive that the congruential equation (18) has solutions if $c\equiv 5^{h}$ (mod
$2^{a})$ with $h\equiv 0(mod 2^{\gamma})$ ; otherwise it has no solution. We henceforth conclude that
no monomial sequence $m(2l;a)$ is weakly uniformly distributed $mod 2^{\alpha}$ when $\alpha\geq 3$ .

For $\alpha=1$ and $\alpha=2$ , we examine $m(2l;a)$ directly and obtain that $m(2l;a)$ is
weakly uniformly distributed $mod 2$ for odd $a$ . Thus we complete the proof.

For monomial sequences of odd degree we obtain first positive answers to
weakly uniform distribution $mod m$ .

THEOREM 5. Monomial sequences $m(k;a)$ of odd degree are weakly uniformly
distributed mod $2^{\alpha}$ for every $\alpha\geq 1$ , provided $a$ is odd.

PROOF. For $\alpha=1$ and $\alpha=2$ , direct calculations gives the statement of the
Theorem 5.

For $\alpha\geq 3$ , using the same representations as in (19) and (20),

(21) $s^{k}\equiv c(mod 2^{\alpha})$

may be rewritten by

$(-1)^{\mu}\cdot 5^{xk}\equiv(-1)^{\lambda}\cdot 5^{h}(mod 2^{\alpha})$ .

Hence $\mu\equiv\lambda(mod 2)$ and again from Proposition

$x\cdot k\equiv h(mod 2^{\alpha-2})$ .
Since $k$ is odd, this linear congruential equation has only one solution. Therefore,

the congruence (21) has exactly one solution for all $c$ in $G_{2^{\alpha}}$ , which completes the
the proof.

THEOREM 6. If $k$ is odd, then there exist infinitely many primes $p$ such that
a monomial sequence $m(k;a)$ is weakly uniformly distributed mod $p^{\alpha}$ for all $\alpha\geq 1$ ,
provided $a$ and $p$ are relatively prime.

PROOF. Theorem 3 asserts the statement of Theorem 6 for $k=1$ . Hence we
suppose that $k$ is greater than 1.

From the proof of Theorem 4 and Theorem 5, we know that $m(k;a)$ is weakly
uniformly distributed $mod p^{\alpha}$ if $k$ is prime to $\phi(p^{a})$ . By Dirichlet’s theorem the
arithmetic progression
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$2+k,$ $2+2k,$ $\cdots,$ $2+mk,$ $\cdots$

contains an infinite number of primes. Let $p=2+mk$ be any such prime satisfying
$p>a$ . If $d$ is a divisor of $p-1=1+mk$ and if $d$ is also a divisor of $k$ , then $k$ must

be a divisor of 1. It follows that $k$ is relatively prime to $\phi(p^{\alpha})=p^{\alpha-1}(p-1)$ . The

proof is now completed.
We get, however, a negative answer to weakly uniform distribution $mod m$

for monomial sequences of odd degree greater than one.

THEOREM 7. $lfk$ is an odd integer greater than one, then there exist infinitely

many primes $p$ such that $m(k;a)$ is not weakly uniformly distributed mod $p$ .

PROOF. It is enough to prove the existence of an infinite number of primes
$p$ for which $p-1$ are not prime to $k$ . Again by Dirichlet’s theorem, there exist
infinitely many primes $p$ in the following arithmetic progression

$1+k,$ $1+2k,$ $\cdots,$ $1+mk,$ $\cdots$ .

Let $p=1+mk>k$ be any such prime, then

$(k, p-1)=(k, mk)=k>1$ ,

where $(a, b)$ denotes the greatest common divisor of two integers $a$ and $b$ . Thus
the proof is finished.

REMARK. No monomial sequence $m(k;a)$ is weakly uniformly distributed
except for $m(1;\pm 1)$ .

References

[1] Feller, W., An Introduction to Probability Theory and Its Applications. Vol. 1. Third
Ed. John Wiley and Sons, New York et al. 1968.

[2] Nagasaka, K., Distribution property of recursive sequences defined by $u_{n+1}\equiv u_{n}+u_{n}^{-1}$

(mod$ $m). Fibonacci Q. 22 (1984), 76-81.
[3] Nagell, Y., Introduction to Number Theory. Chelsea Publishing Company, New York

1964.
[4] Narkiewicz, W., Uniform distribution of sequences of integers. Joum\’ees Arithm\’eti-

ques 1980. Edited by J.V. Armitage. London Mathematical Society Lecture
Note Series 56. Cambridge University Press, London (1982), 202-210.

[5] Zane, B., Uniform distribution modulo m of monomials. Amer. Math. Monthly 71
(1964), 162-164.

Department of Mathematics
Faculty of Education
Shinsyu University
Nagano Pref.
380 Japan


	WEAKLY UNIFORM DISTRIBUTION ...
	0. Introduction.
	1. Symmetric recursion ...
	THEOREM 1. ...
	THEOREM 2. ...

	3. Monomial Sequences.
	THEOREM 4. ...
	THEOREM 5. ...
	THEOREM 6. ...
	THEOREM 7. ...

	References


