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BASES FOR ARONSZAJN TREES

By

James E. BAUMGARTNER1

1. Introduction.

In [3], Hanazawa defined and studied the notion of a non-Souslin base for
certain Aronszajn trees. We extend his definition here by defining a base for an
arbitrary tree of height $\omega_{1}$ to be a collection of subtrees with the property that
every subtree contains an element of the base. We show that if there is a Kurepa

tree with $\kappa$ branches then there is a special Aronszajn tree for which every base
must have cardinality $\geq\kappa$ . This slightly improves a result of Hanazawa [3] which
draws a similar conclusion from $O^{+}$ . Then we show that it is consistent, relative
to the existence of an inaccessible cardinal, that every Aronszajn tree has a base
of cardinality $\aleph_{1}$ , and that this may be obtained even with the continuum large.

This answers a question of Hanazawa [3]. Finally, we observe that if $T$ is a tree

of height $\omega_{1}$ which is essentially non-Aronszajn in the sense that every element
has exactly $\aleph_{1}$ immediate successors, then every base for $T$ must have $2^{\aleph_{1}}$ elements.

A precise statement of the results follows a brief discussion of terminology.

The remainder of the paper is then devoted to the proofs.

A tree is a partially ordered set $(T, \leq_{T})$ with the property that for every $t\in T$,

$\{s\in T:s<\tau t\}$ is well ordered by $\leq\tau$ . The level of $t$ , denoted by $l(t)$ , is the order
type of $\{s\in T:s<\tau t\}$ , and the set of all elements of $T$ of level $\alpha$ is denoted by T..
The height of $T$ is the smallest $\alpha$ such that $T_{\alpha}=0$ . We shall be interested exclu-
sively in trees of height $\omega_{1}$ . For convenience, we shall also work only with normal
trees, e.i., trees such that each element has successors of arbitrarily high levels,

and such that when $\alpha$ is a limit ordinal and $t\in T_{\alpha}$ then $t$ is determined by {$s\in T$ :
$s<\tau t\}$ i.e., there is no other $t^{\prime}\in T_{\alpha}$ with $\{s\in T:s<\tau t\}=\{s\in T:s<\tau t^{\prime}\}$ . All our
results remain true for non-normal trees, as the reader may easily verify, but the

proofs go more smoothly for normal trees.
For our purposes, if $T$ is a (normal) tree of height $\omega_{1}$ then a subtree of $T$ is a

subset $S$ of $T$ such that $S$ itself, with the induced ordering, is a normal tree of
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height $\omega_{1}$ and $S$ is closed downward under $\leq\tau$ (i.e., if $t\in S$ and $S<\tau t$ then $s\in S$).
The crucial point is that in a subtree every element has successors of arbitrarily
high levels.

A base for $T$ is a set $B$ of subtrees such that for every subtree $S$ of $T$ there
is $S^{\prime}\in B$ with $S^{\prime}\subseteq S$.

A branch through a tree $T$ is a maximal linearly ordered subset.
An Aronszajn tree is a (normal) tree of height $\omega_{1}$ such that for all $\alpha<\omega_{1},$ $T_{\alpha}$

is countable and $T$ has no uncountable branches. An Aronszajn tree is special
(sometimes called Q-embeddable) if there is a function $ f:T\rightarrow\omega$ such that whenever
$s<\tau t$ we have $f(s)\neq f(t)$ . A Souslin tree is an Aronszajn tree with the further
property that every set of pairwise incomparable elements is countable. A Kurepa
tree is a tree $T$ of height $\omega_{1}$ such that each $T_{\alpha}$ is countable for $\alpha<\omega_{1}$ and $T$ has
more than $\aleph_{1}$ uncountable branches.

In [3], Hanazawa defined a $ non- Sousli2\iota$ base for an Aronszajn tree $T$ to be a
collection $C$ of uncountable antichains (pairwise incomparable sets) of $T$ such that
for any uncountable set $S\subseteq T$ there is $X\in C$ such that for all $s\in X$ there is $t\in S$

with $s\leq\tau t$. It is apparent that if $T$ is to have a non-Souslin base then in parti-
cular no subtree of $T$ can be Souslin. Such trees were called by the author non-
Souslin in [1]. This terminology is unfortunate since it distinguishes between
trees which are non-Souslin and those which are rct Scusiin, so the author wishes
to take this opportunity to suggest that trees with no Souslin subtrees be known
henceforth as anti-Souslin trees.

There is a close connection between bases and non-Souslin bases. Suppose $T$

is anti-Souslin. Then every non-Souslin base for $T$ gives rise to a base of no
greater cardinality, and conversely. If $C$ is a non-Souslin base for $T$ and if for
each $X\in C$ we let $S(X)=$ {$t\in T:\{s\in X:t<\tau s\}$ is uncountable} then it is easy to see
that $S(X)$ is a subtree and that $\{S(X):X\in C\}$ is a base. If $B$ is a base then form
$C$ by choosing an uncountable antichain from each element of $B$. It is straight-
forward to check that $C$ is a non-Souslin base for $T$.

The advantage of the notion of a base, therefore, is that it applies to a larger
class of trees. For anti-Souslin trees it is essentially equivalent to Hanazawa’s
definition.

We might remark that Souslin trees always have a base of cardinality $\nwarrow_{\backslash }1$ .
If $T$ is Souslin, $t\in T$ and $T_{t}=$ {$s\in T:s\leq\tau t$ or $t\leq\tau s$ }, then $\{T_{t} : t\in T\}$ forms a base
for $T$. Thus questions about the cardinality of a base are only interesting for
trees which are not Souslin.

The rest of our set-theoretical terminology is fairly standard, and can generally
be found in [4] or [5]. In independence proofs we consider forcing to be taking
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place over the universe $V$ of set theory, and we write $V^{P}$ for the generic exten-

sion of $V$ obtained by forcing with $P$. If we have a particular P-generic set $G$

then we replace $T^{r}jP$ by $V[G]$ .
Here are the main results of the paper.

THEOREM 1. Suppose there is a Kurepa tree with at least $\kappa$ branches. Then

there is a special Aronszajn tree for which every base has cardinaity $\geq\kappa$ .
Theorem 1 is proved in Section 2, using a remark of Todorcevic which greatly

simplifies the author’s original proof. It improves Theorem 2 of [3], which asserts

that if $O^{+}$ holds then there is a special Aronszajn tree such that every base has

cardinality $\geq\aleph_{2}$ , in view of Solovay’s well known result (see [5, Corollary 7.11])

that $\phi^{+}$ implies the existence of a Kurepa tree.

THEOREM 2. If it is consistent that there is an inaccessible cardinal then it

is consistent that $O$ holds and every Aronszajn tree has a base of cardinality $\nwarrow_{\backslash }1$ .

The model we use is Levy’s model in which a strongly inaccessible cardinal

is collapsed to become $\omega_{2}$ . Of course, this is the same model in which Silver [61

proved there are no Kurepa trees. In view of Theorem 1, Silver’s result is implied

by Theorem 2. Theorem 2 also shows that Hanazawa’s hypothesis $O^{+}$ cannot be

reduced to $\phi$ alone.

THEOREM 3. If it is consistent that there is an inaccessible cardinal then it is

consistent that every Aronszajn tree has a base of cardinality $\aleph_{1}$ and the continuum

is large.

The model for Theorem 3 is obtained from the one for Theorem 2 by ad-

joining any number of Cohen reals. This gives a precise meaning to the phrase
“ the continuum is large”.

Without the inaccessible one can still prove something:

THEOREM 4. Suppose $ 2^{tk_{1}}=\kappa$ . If one forces by adjoining $\lambda$ Cohen reals, then in
the extension every Aronszajn tree has a base of cardinality $\leq\kappa$ .

Thus, for example, if $\kappa=\aleph_{2}$ then it is possible to have $2^{\aleph_{0}}$ large while every
Aronszajn tree has a relatively small base, namely one of cardinality $\leq\aleph_{2}$

Theorems 2, 3 and 4 are proved in Section 3.
Theorems 2, 3 and 4 have consequences for certain linear orderings also. A

linear ordering $(S, \leq s)$ is called a Specker ordering (and its order type is a Specker

type) if $S$ is uncountable, has no uncountable well-ordered or conversely well-ordered
subsets, and has no uncountable subsets order-embeddable in the real numbers.
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See [2] for a discussion of Specker types. Every Specker ordering arises as a
lexicographically ordered (not necessarily normal) Aronszajn tree. If each level
$T_{\alpha}$ of $T$ is linearly ordered by $\leq_{\alpha}$ then the lexicographic ordering of $T$ is defined
by setting $s\leq t$ iff either $s\leq\tau t$ or else $s$ and $t$ are incomparable and if $u,$ $v$ are
$\leq\tau$-minimal such that $u\leq\tau s,$ $u\not\leqq\tau t$ and $v\leq\tau t,$ $v\not\leqq\tau s$ and $u,$ $v\in T_{\alpha}$ then $u\leq\alpha v$ .
A Souslin ordering is a Specker ordering with no uncountable pairwise disjoint
set of nonempty open intervals, i.e., it arises from a Souslin tree. Let us call a
Specker ordering anti-Souslin if it has no Souslin suborderings. Such orderings
arise from anti-Souslin trees.

From Theorem 2 and the equivalence of bases with non-Souslin bases for
anti-Souslin trees, we arrive at the following:

COROLLARY 5. If it is consistent that there is an inaccessible cardinal, then it
is consistent that for every anti-Souslin Specker ordering $S$ there is a collection $C$

of subsets of $S$ such that $C$ has cardinality $\leq\aleph_{1}$ and every uncountable subset of
$S$ contains an order-isomorphic copy of an element of $C$ .

Details are left to the reader. There are similar corollaries for Theorems 3
and 4.

One may wonder whether there are results similar to the ones above for trees
of height $\omega_{1}$ such that for each $\alpha<\omega_{1},$ $|T_{a}|\leq^{\backslash _{\backslash }}\backslash 1$ rather than T. $|=\aleph_{0}$ . The answer,
it turns out, is an emphatic no.

THEOREM 6. Suppose $T$ is a (normal) tree with height $\omega_{1}$ such that every ele-
ment of $T$ has exactly $\aleph_{1}$ immediate successors. Then there is a family $<S_{\alpha}$ :
$\alpha<2^{\aleph_{1}}>$ of subtrees of $T$ such that for all $\alpha,$

$\beta$ if $\alpha\neq\beta$ then $S_{\alpha}\cap S_{\beta}$ does not contain
a subtree. $lt$ follows that every base for $T$ must have the maximum cardinality
$2^{\aleph_{1}}$ .

Theorem 6 is proved in Section 4.
In view of the results here and in [3], it appears that the most interesting

problem left open is the following.

PROBLEM. Is it consistent with $2^{\aleph_{0}}=\aleph_{1}$ that no Aronszajn tree has a base of
cardinality $\aleph_{1}$ ?

2. Proof of Theorem 1.

The author wishes to thank Stevo Todorcevic for the following argument,
presented here with his permission, which reduces Theorem 1 to a straightforward
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observation.
Let $(K, \leq_{K})$ be a Kurepa tree with $\kappa$ branches and let $T$ be a special Aronszajn

tree. Let $KT$ denote { $(s,$ $t):s\in K,$ $t\in T$ and $l(s)=l(t)$ } with the coordinatewise
ordering. Then $KT$ is clearly an Aronszajn tree, for $(KT).=K.\times T$. for all $\alpha<\omega_{1}$

and if $B\subseteq KT$ were an uncountable branch then $\{t\in T:\exists s(s, t)\in B\}$ would be an
uncountable branch through $T$, which is impossible.

If $ f:T\rightarrow\omega$ witnesses that $T$ is special then $ g;KT\rightarrow\omega$ witnesses that $KT$ is
special, where $g(s, t)=f(t)$ .

Finally, let $<B_{\xi}$ ; $\xi<\kappa>$ be a sequence of distinct uncountable branches through
$K$ If $S_{\xi}=\{(s, t)\in KT:s\in B_{\xi}\}$ then it is easy to see that $S_{\text{\’{e}}}\cap S_{\eta}$ is countable when-
ever $\xi\neq\eta$ , and of course each $S_{\xi}$ is a subtree. It follows immediately that any
base for $KT$ must have cardinality at least $\kappa$ .

3. Proof of Theorems 2, 3, and 4.

Whereas the proof of Theorem 3 really includes that of Theorem 2 as a
special case, it will make the ideas clearer to prove Theorem 2 separately first.
The principal tool in both arguments is Levy’s partial ordering for collapsing an
inaccessible to $\omega_{2}$ .

Let $\kappa$ be strongly inaccessible, and let $P$ consist of all countable functions $p$

such that domain $(p)\subseteq\kappa X\omega_{1}$ and $\forall(\alpha, \xi)\in domain(p)p(\alpha, \xi)<\alpha$ , partially ordered by
functional extension, i.e., $p\leq q$ iff $p\supseteq q$ . Then, as is well known (see [4, e.g.]), $P$

is countably closed and has the $\kappa$-chain condition, and in $V^{P}$ all cardinals of $V$

which lie strictly between $\omega_{1}$ and $\kappa$ are collapsed onto $\omega_{1}$ .
If $\alpha<\omega_{1},$ $P_{\alpha}=\{p\in P:domain(p)\subseteq\alpha\times\omega_{1}\}$ and $P^{\alpha}=\{p\in P:domain(p)\cap(\alpha\times\omega_{1})=0\}$ ,

then $P\cong P_{\alpha}\times P^{a}$ . Thus if $G$ is P-generic, $G.=G\cap P_{\alpha}$ and $G^{\alpha}=G\cap P^{\alpha}$ , then $G_{\alpha}$ is
$P_{\alpha}$-generic (over $V$ ) and $G^{\alpha}$ is P’-generic over $\nabla[G_{a}]$ . It follows that $V[G]$ is a
Levy-generic extension of $V[G_{\alpha}]$ .

If $T$ is an Aronszajn tree in $V[G]$ , then by the $\kappa$-chain condition there is $\alpha<\kappa$

such that $T\in V[G_{a}]$ . We will show that every subtree of $T$ in $V[G]$ contains a
subtree that lies in $V[G_{\alpha}]$ , and this will suffice, since the subtrees of $T$ in $V[G_{\alpha}]$

form a set of cardinality at most $[2^{\aleph_{1}}]^{\nabla[G\alpha]}$ , and hence of cardinality $\aleph_{1}$ in $V[G]$ .
By the remark in the preceding paragraph, we may assume $T\in V$.

Thus it will suffice to prove:

LEMMA 3.1. Suppose $T\in V$ is an Aronszajn tree. $lfS$ is a subtree of $T$ lying
in $V[G]$ , then there is a subtree $S^{\prime}$ of $S$ lying in $V$.

PROOF. We work in $V$. Let $\dot{S}$ be a P-name for $S$, and assume $|\vdash P\dot{S}$ is a
subtree of $T$.
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First observe that if $p\in P$ and $U=\{t\in T:p|\vdash t\in\dot{S}\}$ is uncountable, then $S^{\prime}=\{t\in 2^{\prime}$ :
$\{u\in U:t\leq\tau u\}$ is uncountable} is a subtree and $p|\vdash S^{\prime}\subseteq\dot{S}$ . Thus we may assume
that $U$ is always countable, and hence that $\exists\alpha_{p}<\omega_{1}\forall\beta\geq\alpha_{p}\forall t\in T_{\beta}\exists q\leq pq|\vdash t\not\in\dot{S}$ .
For convenience, take $\alpha_{p}$ minimal.

Now fix $p\in P$ and choose $\lambda$ regular and so large that $P,\dot{S}\in H(\lambda)$ , where $H(\lambda)$

denotes the collection of sets hereditarily of cardinality $<\lambda$ . Let $N$ be a countable
elementary substructure of $H(\lambda)$ (with respect to $\in$ ) such that $p,$ $P,\dot{S}\in N$, and let
$\alpha=\omega_{1}\cap N$. Let $<t_{n}$ : $n<\omega>$ enumerate $T_{\alpha}$ . Now define a descending sequence
$<p_{n}$ : $n<\omega>$ of elements of $P\cap N$ so that $p_{0}=p$ and $\forall n\exists s<\tau t_{n}p_{n\{1}|\vdash s\not\in\dot{S}$. This is

possible since, given $p_{n}$ , we know that $\alpha_{p_{n}}\in N$ since $p_{n}\in N$, and hence $\alpha_{p_{n}}<\alpha$ . Thus

if $s<\tau t_{n}$ is chosen with $s\in T_{\alpha}p_{n}$ then $\exists p_{n\{1}\leq p_{n}p_{n+1}|\vdash s\not\in\dot{S}$.

But now if $q\leq\cup\{p_{n} : n<\omega\}$ and $q|\vdash t_{n}\in\dot{S}$ (which must be possible for some $q$

and $n$), we arrive at a contradiction because $\exists s<\tau t_{n}p_{n}1|\vdash s\not\in\dot{S}$ and hence $q|\vdash s\not\in\dot{S}$.
Since $P$ is countably closed and adjoins a subset of $\omega_{1}$ , it follows that $O$ is

true in $V[G]$ . Alternatively, one can argue easily that any $O$-sequence in $V$

remains a $O$-sequence in $V[G]$ .
Now we turn our attention to Theorem 3. The proof is similar but a trifle

more complicated because of the need to adjoin many real numbers.

Let $\mu$ be a cardinal, and let $Q$ be the partial ordering of finite functions map-
ping subsets of $\mu$ into 2. Then $Q$ is the usual ordering for adjoining $\mu$ Cohen

subsets of $\omega$ .
We will eventually force with $P\times Q$ , but first let us make an observation about

forcing with $Q$ alone.

LEMMA 3.2. Suppose $T$ is an Aronszajn tree (in $V$) and $H$ is Q-generic. Then
any subtree of $T$ which lies in $V[H]$ contains a subtree lying in $V$.

PROOF. Let $\dot{S}$ be a Q-name such that $|\vdash\dot{S}$ is a subtree of $T$. As in the proof

of Lemma 3.1, if $p\in P$ and $\{t\in T:p|\vdash t\in\dot{S}\}$ is uncountable then we are done, so
assume otherwise. Then there is $\alpha_{p}$ so that $\forall\beta\geq\alpha_{p}\forall t\in T_{\beta}\exists q\leq pq|\vdash t\not\in\dot{S}$.

It is now an easy matter to find $\alpha<\omega_{1}$ and a countable set $ X\subseteq\mu$ such that,

if $P|X=\{p\in P:domain(p)\subseteq X\}$ , then $\forall p\in P|X\alpha_{p}<\alpha$ and $\forall t\in T_{a}p\exists q\in P|Xq\leq p$ and
$q|\vdash t\not\in\dot{S}$.

But if $q\in P$ and $t\in T_{\alpha}$ with $q|\vdash t\in\dot{S}$, then $p=q|X\in P|X$ so $\exists p^{\prime}\in P|Xp^{\prime}\leq p$ and
$p^{\prime}|\vdash s\not\in\dot{S}$, where $s$ is the unique predecessor of $t$ of level $\alpha_{p}$ . But then clearly $p^{\prime}$

and $q$ are compatible, and this contradiction completes the proof.

REMARK. Lemma 3.2 really completes the proof of Theorem 4. If $ 2^{\aleph_{1}}=\kappa$ and

we adjoin $\lambda$ Cohen reals then any Aronszajn tree $T$ must lie in an intermediate
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model $V_{1}$ obtained by adjoining at most $\backslash \backslash 1$ of the Cohen reals, and the remaining
Cohen reals are generic over $V_{1}$ . Thus by Lemma 3.2 the subtrees of $T$ lying
in $V_{1}$ form a base for $T$, and there are at most $[2^{\aleph_{1}}]^{V_{1}}=[2^{\aleph_{1}}]^{V}=\kappa$ such subtrees in
$V_{1}$ .

Now suppose $G\times H$ is $(P\times Q)$-generic and $T$ is an Aronszajn tree in $V[G][H]$ .
Then by the countable chain condition for $Q,$ $T$ is adjoined to $V[G]$ by at most
$\omega_{1}$ Cohen reals, and by Lemma 3.2 a base for $T$ in this intermediate model is
still a base for $T$ in $V[G][H]$ so without loss of generality we may take $\mu=\omega_{1}$ .

Also, it is not hard to see that by the $\kappa$-chain condition for $P$, we have $ T\in$

$V[G_{\xi}][H]$ for some $\xi<\kappa$ . Since $P\chi Q\cong P_{\xi}\times P^{\xi}\times Q$ , we see that $G^{\xi}$ is $P^{\xi}$ -generic
over $V[G_{\xi}][H]$ . Let $V_{1}=V[G_{\xi}],$ $V_{2}=V_{1}[H]$ . The following lemma will complete
the proof.

LEMMA 3.3. Suppose $S$ is a subtree of $T$ and $S\in V_{2}[G^{\xi}](=V[G][H])$ . Then
there is a subtree $S^{\prime}\subseteq S$ such that $S^{\prime}\in V_{2}$ .

PROOF. We work in $V_{2}$ and consider forcing with respect to $P^{\xi}$ . Suppose
$|\vdash_{P^{\xi}}\dot{S}$ is a subtree of $T$. As before, we may assume that for every $p\in P^{\xi}$ there is
$\alpha_{p}<\omega_{1}$ such that $\forall\beta\geq\alpha_{p}\forall t\in T_{\beta}\exists q\leq pq|\vdash t\not\in\dot{S}$ . Also, since $Q$ has the countable
chain condition and $V_{2}=V_{1}[H]$ , we may assume that the correspondence carrying
$p$ to $\alpha_{p}$ lies in $V_{1}$ .

Now we work in $V_{1}$ . Let $\dot{T}$ be a Q-name for $T$ and suppose

$|\vdash Q\dot{T}$ is an Aronszajn tree.

Without loss of generality we may suppose $T_{a}\in V_{1}$ ; for example we may take
$ T.=\{\alpha\}\times\omega$ . Let $\lambda$ be regular and large enough that $P^{\xi},$ $Q,\dot{T},\dot{S}\in H(\lambda)$ (here $\dot{S}$ is
really a Q-name for the $P^{\xi}$ -name $\dot{S}$), and let $N$ be a countable elementary sub-
structure of $H(\lambda)$ with $P^{\xi},$ $Q,\dot{T},\dot{S}\in N$. Let $\alpha=\omega_{1}\cap N$, and let $\gamma\geq\alpha$ be large enough
so that if $\beta<\alpha,$ $s\in T_{\beta},$ $t\in T_{\alpha}$ and $p|\vdash s\leq\tau t$ , then $p|\gamma|\vdash s\leq\tau t$ .

Let $<(t_{n}, p_{n}):n<\omega>$ enumerate all pairs $(t, q)\in T_{\alpha}\times(Q|\gamma)$ . Beginning with an
arbitrary $p\in P^{\xi}\cap N$ (which we could have chosen before $N$, if necessary), we find
a sequence $<p_{n}$ : $n<\omega>$ of elements of Pg $\cap N$ much as in the proof of Lemma
3.1. Set $p_{0}=p$ . Given $p_{n}$ , we find $p_{n+1}$ as follows. Let $\alpha_{p}=\alpha_{p_{n}}$ , and find $r_{n}\leq q_{n}$ ,
$ r_{n}\in P|\gamma$ so that for some $s_{n}\in T_{\alpha}n\prime r_{n}|\vdash s_{n}\leq\tau t_{n}$ .

But we also have $|\vdash Q$
“

$\exists p^{\prime}\leq p_{n}p^{\prime}|\vdash_{P^{\xi}}s_{n}\not\in\dot{S}$ ”, so there is $r_{n}^{\prime}\in Q\cap N,$ $ r_{n}^{\prime}\leq r_{n}|\alpha$ , and
$p_{n+1}\in P^{\xi}\cap N$ so that $\gamma_{n^{1\vdash}Q}^{\prime}$

”
$p_{n+1}|\vdash_{P^{\xi}}s_{n}\not\in\dot{S}$ ”. But then $r_{n}^{\prime}$ is compatible with $r_{n}$ , so

$r_{n}^{\prime}\cup r_{n}\leq q_{n}$ .
Finally, suppose $p^{t}\leq\cup\{p_{n} ; n<\omega\}$ (note that the sequence $<p_{n}$ : $n<\omega>$ lies in

$V_{1}$ , so the union is in $P^{\xi}$), $t\in T_{\alpha}$ and in $V_{2}p^{\prime}|\vdash_{P^{\xi}}t\in\dot{S}$ . Then for some $q\in H$ we
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have

$q|\vdash p^{\prime}|\vdash_{P^{e}}4t\in\dot{S}$ ”.

It is clear from the construction of the $\sqrt{n}$ that $\{t_{n}\cup r_{n} : t_{n}=t\}$ is dense in $Q$

and lies in $V_{1}$ , so $\exists n\sqrt{n}\cup r_{n}\in H,$ $t_{n}=t$ . For this $n,$ $q\cup r_{n}^{\prime}\cup r_{n}\in H$.
But now we are in trouble, for in $V_{2}$ we must have

$p_{n+1}|\vdash_{P^{\xi}}s_{n}\not\in\dot{S}$

since this is forced by $\nearrow n$

’

$S_{n}\leq\tau t$

since this is forced by $r_{n}$ , and

$p^{\prime}|\vdash_{P}:\cdot t\in\dot{S}$

since this is forced by $q$ . All this, of course, adds up to a contradiction, and
completes the proof of Theorems 2 and 3.

REMARK. One may complicate this argument still further and arrange for $2^{tt_{1}}$

to be arbitrarily large, independently of $2^{\aleph_{0}}$ . Just use the usual (ground model)

ordering to adjoin many subsets of $\omega_{1}$ with countable conditions. Since this order-
ing is countably closed and has the $[2^{\aleph_{0}}]^{+}$ -chain condition, hence the $\kappa$-chain condi-
tion, we may simply combine it with $P$ in the argument above. Details are left
to the reader.

4. Proof of Theorem 6.

Suppose now that $T$ has height $\omega_{1}$ , every element of $T$ has successors at
every higher level, and every element of $T$ has exactly $\aleph_{1}$ immediate successors.
If $INC=$ {$s\in\cup\{^{a}\omega_{1}$ ; $\alpha<\omega_{1}\}:s$ is strictly increasing}, then it is easy to see by indu-
ction on the levels of $T$ that $T$ is isomorphic to a subtree of $lNC$ , and that since
each element of $T$ has $\backslash _{!\backslash _{1}}$ immediate successors the subtree can be chosen so that

whenever it contains $s$ , then it also contains $ s\alpha$ for every $\alpha$ such that $s\alpha\in INC$ .
Here by $ s\alpha$ we mean the function $t$ with domain equal to domain$(s)+1$ and such
that $t|domain(s)=s$ and $ t(domain(s))=\alpha$ . Hence without loss of generality we may
identify $T$ with this subtree of INC. Thus $T\subseteq INC$ .

Let $S=\{s\in T:\forall\alpha<domain(s)$ if $\alpha$ is a limit ordinal then $\sup\{s(\beta):\beta<\alpha\}>\alpha$ ,

and $\forall\beta\in domain(s)s(\beta)>\beta$ }.

LEMMA 4.1. $S$ is a subtree of $T$.

PROOF. It is clear that $S$ is closed downward. Let $s\in S$ and let $\alpha>level(s)$ be
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fixed. There is some immediate successor of $s$ in $T$ of the form $ s\beta$ , where $\beta>\alpha$ .
Now let $t$ be any element of $T$ of level $\alpha$ extending $ s\beta$ . Clearly $t\in S$ . Thus $S$ is
a subtree.

We will find all the $S_{\alpha}$ as subsets of $S$ . Suppose $s\in S$, and consider the sequence
$0,$ $s(O),$ $s^{2}(0),$ $s^{3}(0)$ , $\cdot$ . . If all the $s^{n}(0)<domain(s)$ then if $\alpha=\sup\{s^{n}(0);n<\omega\}$ we
have $\sup\{s(\beta):\beta<\alpha\}=\alpha$ , a contradiction since $s\in S$ . Thus there is an $i$ such that
$s^{i-1}(0)<domain(s)\leq s^{i}(0)$ . We refer to $i$ as the depth of $s$ .

Next, let $<A_{n}$ : $n<\omega>$ be a disjoint decomposition of $\omega$ into infinite sets such
that $\forall nn\in\cup\{A_{i} : i<n\}$ . Let $X$ be an uncountable subset of $\omega_{1}$ with uncountable
complement. For each $\alpha<\omega_{1}$ and $ n<\omega$ , let $\phi_{\alpha n}$ : $2\rightarrow^{()}2A_{n}$ be a bijection. Let $<f_{r}$ :
$\xi<2^{\aleph_{1}}>$ enumerate $\omega_{12}$

Fix $\xi<2^{\aleph_{1}}$ . We define $S_{\xi}$ . Suppose $s\in S$ with depth $i$ . If $1\leq j<i$ , let us say

that $j$ is s-good for $\xi$ provided that if $j-1\in A_{n}$ and $\alpha=s^{n+1}(0)$ then $s^{j+1}(0)\in X$ iff
$\phi_{\alpha n}(f_{\xi}|\alpha)(j-1)=0$ . (This assumes that $\alpha\geq\omega$ ; the case $\alpha<\omega$ is omitted.) Now let
$s\in S_{:}$. iff for all $j$ , if $1\leq j<i$ then $j$ is $s$-good for $\xi$ . Note in particular that if $i=1$

then $s\in S_{\xi}$ .

LEMMA 4.2. $S_{\xi}$ is a subtree.

PROOF. It is clear that $S_{\xi}$ is closed downward. Fix $s\in S_{\xi}$ with depth $i$ , and
let $\beta>level(s)$ be given. We know that there is $t\geq s$ such that $t\in S$ and $t$ has

level $s^{i}(0)$ . Then $t$ also has depth $i$ , so $t\in S_{\xi}$ as well. Now fix $\gamma\geq\beta$ such that $\gamma\in X$

iff $\phi_{\alpha n}(f_{\xi}|\alpha)(i-1)=0$ (where $i-1\in A_{n}$ and $\alpha=t^{n+1}(0)$ ) and $\gamma$ is so large that $t\gamma\in S$ .
Then if $ u=t\gamma$ we have $u\in S_{\xi}$ also since $u^{j}(0)=s^{j}(0)$ for all $j<i$ and $ u^{i+1}(0)=\gamma$ . But
now if $v\geq u$ is an element of level $\beta$ then $v$ has depth $i+1$ so $v\in S_{\xi}$ also. Hence
$s$ is extended in $S_{\xi}$ at level $\beta$ .

The following lemma will now complete the proof.

LEMMA 4.3. If $\xi\neq\eta$ then $S_{\xi}\cap S_{\eta}$ contains no subtree of $T$ .

PROOF. Suppose on the contrary that $U\subseteq S_{\xi}\cap S_{\eta}$ is a subtree. Let $\beta<\omega_{1}$ be
arbitrary and choose $u\in U$ with level $(u)\geq\beta$ . Say $i=depth(u)$ . Then determine
inductively a sequence in $U,$ $ u=u_{i}<u_{i+1}<u_{i+2}<\cdots$ , such that for all $j\geq i$ , level
$(u_{j+1})>u_{j}^{j}(0)$ . If we set $\overline{u}=\cup\{u_{j} : j\geq i\}$ then $\overline{u}^{j}(0)$ is defined for all $ j\in\omega$ . Let $\overline{\alpha}=$

$\sup\{\overline{u}^{j}(0):j\in\omega\}$ . Then $f_{\xi}|\overline{\alpha}$ may be recovered from $\overline{u}$ in the following way. If
$\delta<\overline{\alpha}$ then for some $m\geq i$ we have $\overline{u}^{m}(0)>\delta$ . Consider the function $g:A_{m-1}\rightarrow 2$

given by $g(j)=0$ iff $\overline{u}^{j+2}(0)\in X$. Let $\alpha_{m}=\overline{u}^{m}(0)$ and let $f=\phi_{\alpha}^{-1}m^{m-1}(g)$ . Then since
each of the $u_{j}\in S_{\xi}$ and $u_{j}^{k}(0)=\overline{u}^{k}(0)$ whenever $u_{j}^{k}(0)$ is defined, we must have $f=$

$f_{\text{\’{e}}}|\alpha_{m}$ . Thus $f_{\xi}|\overline{\alpha}$ is the union of the $f_{\xi}|\alpha_{m}$ and so is canonically determined from
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$\overline{u}$ . But of course the same argument applies to determine $f_{\eta}|\overline{\alpha}$ in exactly the
same way, so $f_{\xi}|\overline{\alpha}=f_{\eta}|\overline{\alpha}$ . Finally, since $\beta$ was arbitrary and $\overline{\alpha}>\beta$ we must have
$f_{\xi}=f_{\eta}$ , a contradiction since $\xi=\eta$
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