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BASES FOR ARONSZAJN TREES

By

James E. BAUMGARTNER!

1. Introduction.

In [3], Hanazawa defined and studied the notion of a non-Souslin base for
certain Aronszajn trees. We extend his definition here by defining a base for an
arbitrary tree of height w; to be a collection of subtrees with the property that
every subtree contains an element of the base. We show that if there is a Kurepa
tree with x branches then there is a special Aronszajn tree for which every base
must have cardinality >«. This slightly improves a result of Hanazawa [3] which
draws a similar conclusion from <*. Then we show that it is consistent, relative
to the existence of an inaccessible cardinal, that every Aronszajn tree has a base
of cardinality ‘X;, and that this may be obtained even with the continuum large.
This answers a question of Hanazawa [3] Finally, we observe that if T is a tree
of height w, which is essentially non-Aronszajn in the sense that every element
has exactly ‘X, immediate successors, then every base for 7" must have 2% elements.

A precise statement of the results follows a brief discussion of terminology.
The remainder of the paper is then devoted to the proofs.

A tree is a partially ordered set (7, <r) with the property that for every fe7,
(seT:s<r t} is well ordered by <7. The level of ¢, denoted by I(f), is the order
type of {seT:s<r ¢}, and the set of all elements of T of level « is denoted by T..
The height of T is the smallest « such that 7,=0. We shall be interested exclu-
sively in trees of height w,. For convenience, we shall also work only with normal
trees, e.., trees such that each element has successors of arbitrarily high levels,
and such that when « is a limit ordinal and ¢€7, then ¢ is determined by {seT:
s<r t} ie., there is no other #'eT, with {seT:s<r t}={seT:s<r #’}. All our
results remain true for non-normal trees, as the reader may easily verify, but the
proofs go more smoothly for normal trees.

For our purposes, if T is a (normal) tree of height w, then a subtree of T is a
subset S of T such that S itself, with the induced ordering, is a normal tree of
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height @, and S is closed downward under <7 (i.e., if #€S and s<p, ¢ then s€S).
The crucial point is that in a subtree every element has successors of arbitrarily
high levels.

A base for T is a set B of subtrees such that for every subtree S of T there
is S’e B with S'cS.

A branch through a tree T is a maximal linearly ordered subset.

An Aronszajn tree is a (normal) tree of height w, such that for all a<lw, T,
is countable and 7' has no uncountable branches. An Aronszajn tree is special
(sometimes called Q-embeddable) if there is a function f: T—e such that whenever
s<r t we have f(s)#f(#). A Souslin tree is an Aronszajn tree with the further
property that every set of pairwise incomparable elements is countable. A Kurepa
tree is a tree T of height w, such that each T, is countable for a<w, and T has
more than ¥; uncountable branches.

In [3], Hanazawa defined a won-Sowuslin base for an Aronszajn tree T to be a
collection C of uncountable antichains (pairwise incomparable sets) of 7" such that
for any uncountable set SCT there is XeC such that for all seX there is €S
with s<r ¢. It is apparent that if 7 is to have a non-Souslin base then in parti-
cular no subtree of T can be Souslin. Such trees were called by the author zon-
Souslin in [1]. This terminology is unfortunate since it distinguishes between
trees which are non-Souslin and those which are not Souslin, so the author wishes
to take this opportunity to suggest that trees with no Souslin subtrees be known
henceforth as anti-Souslin trees.

There is a close connection between bases and non-Souslin bases. Suppose T
is anti-Souslin. Then every non-Souslin base for 7 gives rise to a base of no
greater cardinality, and conversely. If C is a non-Souslin base for 7T and if for
each XeC we let S(X)={teT:{seX:¢<r s} is uncountable} then it is easy to see
that S(X) is a subtree and that {S(X): XeC} is a base. If B is a base then form
C by choosing an uncountable antichain from each element of B. It is straight-
forward to check that C is a non-Souslin base for 7.

The advantage of the notion of a base, therefore, is that it applies to a larger
class of trees. For anti-Souslin trees it is essentially equivalent to Hanazawa’s
definition.

We might remark that Souslin trees always have a base of cardinality “X..
If T is Souslin, teT and T,={seT:s<r t or {<y s}, then {T,:teT} forms a base
for T. Thus questions about the cardinality of a base are only interesting for
trees which are not Souslin.

The rest of our set-theoretical terminology is fairly standard, and can generally
be found in [4] or [5]. In independence proofs we consider forcing to be taking
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place over the universe V of set theory, and we write V? for the generic exten-
sion of V obtained by forcing with P. If we have a particular P-generic set G
then we replace 1% by VI[G.

Here are the main results of the paper.

THEOREM 1. Suppose there is a Kurepa tree with at least k branches. Then
there is a special Aromszajn tree for which every base has cardinaity Z>«.

is proved in Section 2, using a remark of Todorcevic which greatly
simplifies the author’s original proof. It improves of [3], which asserts
that if <>+ holds then there is a special Aronszajn tree such that every base has
cardinality >, in view of Solovay’s well known result (see [5, Corollary 7.11))
that &* implies the existence of a Kurepa tree.

THEOREM 2. If it is comsistent that there is an inaccessible cardinal then it
is comsistent that <> holds and every Arvonszajn tree has a base of cardinality "X..

The model we use is Levy’s model in which a strongly inaccessible cardinal
is collapsed to become w,. Of course, this is the same model in which Silver [6]
proved there are no Kurepa trees. In view of [Theorem 1] Silver’s result is implied
by Theorem 2. [Theorem 2 also shows that Hanazawa’s hypothesis <* cannot be
reduced to < alone.

THEOREM 3. If it is comsistent that there is an inaccessible cardinal then it is
consistent that every Arvonszajn tree has a base of cardinality X, and the continuum

is large.
The model for [Theorem 3 is obtained from the one for by ad-

joining any number of Cohen reals. This gives a precise meaning to the phrase

“the continuum is large”.
Without the inaccessible one can still prove something :

THEOREM 4. Suppose 2%=r. If one forces by adjoining A Cohen reals, then in
the extension every Aromszajn tree has a base of cardinality <k.

Thus, for example, if £='%. then it is possible to have 2% large while every
Aronszajn tree has a relatively small base, namely one of cardinality <X..

Theorems 2, 3 and 4 are proved in Section 3.

Theorems 2, 3 and 4 have consequences for certain linear orderings also. A
linear ordering (S, <s) is called a Specker ordering (and its order type is a Specker
type) if S is uncountable, has no uncountable well-ordered or conversely well-ordered
subsets, and has no uncountable subsets order-embeddable in the real numbers.
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See for a discussion of Specker types. Every Specker ordering arises as a
lexicographically ordered (not necessarily normal) Aronszajn tree. If each level
T. of T is linearly ordered by <, then the lexicographic ordering of 7 is defined
by setting s<¢ iff either s<r ¢ or else s and ¢ are incomparable and if %, v are
<r-minimal such that #<r s, #$r ¢t and v<r ¢, v¥r s and #, veT, then u<, v.
A Souslin ordering is a Specker ordering with no uncountable pairwise disjoint
set of nonempty open intervals, i.e., it arises from a Souslin tree. Let us call a
Specker ordering anti-Souslin if it has no Souslin suborderings. Such orderings
arise from anti-Souslin trees.

From and the equivalence of bases with non-Souslin bases for
anti-Souslin trees, we arrive at the following:

CoROLLARY 5. If it is consistent that there is an inaccessible cardinal, then it
is consistent that for every anti-Souslin Specker ordering S there is a collection C
of subsets of S such that C has cardinality <X, and every uncountable subset of
S contains an order-isomorphic copy of an element of C.

Details are left to the reader. There are similar corollaries for Theorems 3
and 4.

One may wonder whether there are results similar to the ones above for trees

of height o, such that for each a<w,, |T.|<'X: rather than |7T,|=%, The answer,
it turns out, is an emphatic no.

THEOREM 6. Suppose T is a (normal) tree with height w, such that every ele-
ment of T has exactly X, immediate successors. Then there is a family <S,:
a<2%> of subtrees of T such that for all a, B if a+p then S.NS; does not contain

a subtree. It follows that every base for T wmust have the maximum cardinality
2%,

Theorem 6 is proved in Section 4.
In view of the results here and in [3], it appears that the most interesting
problem left open is the following.

ProBLEM. Is it consistent with 2% =%, that no Aronszajn tree has a base of
cardinality X,?

2. Proof of Theorem 1.

The author wishes to thank Stevo Todorcevic for the following argument,
presented here with his permission, which reduces Theorem 1 to a straightforward
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observation.

Let (K, <x) be a Kurepa tree with « branches and let 7 be a special Aronszajn
tree. Let KT denote {(s, #):se€K, ¢teT and [(s)=I¢)} with the coordinatewise
ordering. Then KT is clearly an Aronszajn tree, for (KT).=K,x T, for all a<a,
and if BESKT were an uncountable branch then {teT':3s(s, £)eB} would be an
uncountable branch through 7, which is impossible.

If f:T—w witnesses that T is special then ¢:K7T—w witnesses that KT is
special, where g(s, )= ().

Finally, let <B::é<r> be a sequence of distinct uncountable branches through
K. If Se={(s, t)eKT:seB:} then it is easy to see that S;nS, is countable when-
ever §+y, and of course each S; is a subtree. It follows immediately that any
base for K7 must have cardinality at least «.

3. Proof of Theorems 2, 3, and 4.

Whereas the proof of Theorem 3 really includes that of Theorem 2 as a
special case, it will make the ideas clearer to prove Theorem 2 separately first.
The principal tool in both arguments is Levy’s partial ordering for collapsing an
inaccessible to w,.

Let « be strongly inaccessible, and let P consist of all countable functions p
such that domain(p)SrXw; and V(a, £)edomain(p) pla, €)<a, partially ordered by
functional extension, ie., p<gq iff p2g. Then, as is well known (see [4, e.g.]), P
is countably closed and has the k-chain condition, and in V?® all cardinals of V
which lie strictly between w, and « are collapsed onto w;.

If a<o, P.={peP:domain(p)Caxw} and P*={peP:domain(p)N (aXw,)=0},
then P=P,xXP*. Thus if G is P-generic, G,.=GNP, and G*=GNP*, then G, is
P,-generic (over V') and G is P"-generic over V[G,]. It follows that V[G] is a
Levy-generic extension of V[G.].

If T is an Aronszajn tree in V[G], then by the x-chain condition there is a <k
such that TeV([G,l. We will show that every subtree of T in V[G] contains a
subtree that lies in V[G.], and this will suffice, since the subtrees of 7" in V[G.]
form a set of cardinality at most [2%]"'¢<) and hence of cardinality X, in V[G].
By the remark in the preceding paragraph, we may assume TeV.

Thus it will suffice to prove:

LemMmA 3.1. Suppose Te€V is an Arvonszajn tree. If S is a subtree of T lying
in VIG], then there is a subtree S’ of S lying in V.

Proor. We work in V. Let S be a P-name for S, and assume |-pS is a
subtree of 7.
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First observe that if peP and U={teT: pl-teS} is uncountable, then S'={te7":
(weU:t<r u} is uncountable} is a subtree and p-S'cS. Thus we may assume
that U is always countable, and hence that Ja,<w, VB=ap VieT, Ig<p ql-t4S.
For convenience, take a, minimal.

Now fix peP and choose 2 regular and so large that P, SeH(4), where H(A)
denotes the collection of sets hereditarily of cardinality <i. Let N be a countable
elementary substructure of H(1) (with respect to €) such that p, P, SeN, and let
a=w;NN. Let <t,:n<w> enumerate 7,. Now define a descending sequence
<pn:in<w> of elements of PNN so that po=p and Vn3s<rtn pu.-s¢S. This is
possible since, given p,, we know that a,,€N since p,€N, and hence a,,<a. Thus
if s<r ¢, is chosen with seT,, then 3p,..<pn Drril-séS.

But now if ¢g< U{pn:n<w} and gi-#,€S (which must be possible for some ¢
and #), we arrive at a contradiction because Is<gt, pn.:l-s¢S and hence gi-sé¢S.

Since P is countably closed and adjoins a subset of w,, it follows that < is
true in V[G]. Alternatively, one can argue easily that any <-sequence in V/
remains a {>-sequence in V[G].

Now we turn our attention to The proof is similar but a trifle
more complicated because of the need to adjoin many real numbers.

Let u# be a cardinal, and let @ be the partial ordering of finite functions map-
ping subsets of g into 2. Then @ is the usual ordering for adjoining p Cohen
subsets of w. |

We will eventually force with Px@Q, but first let us make an observation about
forcing with @ alone.

LeEMMA 3.2. Suppose T is an Aronszajn tree (in V) and H is Q-generic. Then
any subtree of T which lies in V[H] contains a subtree lying in V.

Proor. Let S be a Q-name such that I=S is a subtree of 7. As in the proof
of Lemma 3.1, if peP and {teT:pi-teS} is uncountable then we are done, so
assume otherwise. Then there is ap so that Va>a, VteT; Ig<p qI-t4S.

It is now an easy matter to find a<ew; and a countable set XCp such that,
if P|X={peP:domain(p)cX}, then VpeP|X ay<a and VieT,, IgeP|X g<p and
ql-1¢S.

But if geP and teT, with gl-teS, then p=q|XeP|X so Ip’eP|X p’'<p and
p'I-s¢S, where s is the unique predecessor of ¢ of level a,. But then clearly p’
and g are compatible, and this contradiction completes the proof.

REMARK. really completes the proof of Theorem 4l If 2% =x and
we adjoin 2 Cohen reals then any Aronszajn tree 7 must lie in an intermediate
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model V,; obtained by adjoining at most ‘X, of the Cohen reals, and the remaining
Cohen reals are generic over Vi. Thus by Lemma 3.2 the subtrees of T lying
in V; form a base for 7, and there are at most [2%]"1=[2%]" =, such subtrees in
V.

Now suppose G X H is (PXQ)-generic and T is an Aronszajn tree in V[GIH].
Then by the countable chain condition for @, 7 is adjoined to V[G] by at most
w; Cohen reals, and by Lemma 3.2 a base for 7" in this intermediate model is
still a base for T in V[G]H] so without loss of generality we may take QL=

Also, it is not hard to see that by the r-chain condition for P, we have Te
VIG[H] for some é<k. Since PXQ=P;xXP‘xQ, we see that G¢ is Pt-generic
over V[Ge[H]. Let V\=VI[G.], Vo=Vi[H]. The following lemma will complete
the proof.

LemmA 3.3. Suppose S is a subtree of T and SeV,[G¢] (= VIGIHY). Then
there is a subtree S'CS such that S’ e Vs,.

Proor. We work in V. and consider forcing with respect to P Suppose
= PeS is a subtree of 7. As before, we may assume that for every peP* there is
ap<w: such that VB>a, VteT, Ig<p gi-14¢S. Also, since @ has the countable
chain condition and V,=V,[H], we may assume that the correspondence carrying
D to ap lies in V..

Now we work in V;. Let 7 be a Q-name for T and suppose

¢ 7 is an Aronszajn tree.

Without loss of generality we may suppose T.eV:; for example we may take
T.={a}Xw. Let 2 be regular and large enough that P%, Q, 7, SeH(2) (here S is
really a Q-name for the Pi-name S), and let N be a countable elementary sub-
structure of H(2) with ¥, @, 7, SeN. Let a=w:NN, and let y>a be large enough
so that if f<a, seT}, teT, and pl-s<r ¢, then ply-s<r £

Let <(ts, pn):n<eo> enumerate all pairs (¢, ¢)e T. X (Q|7). Beginning with an
arbitrary pe PPN N (which we could have chosen before N, if necessary), we find
a sequence <p,:n<w> of elements of NN much as in the proof of
3.1. Set po=p. Given p,, we find p,.; as follows. Let ap=ay,, and find 7,<q,,
7a€Ply so that for some sn€T.,, 72l5,<r tn.

But we also have I-q “3p'<pn p'I- :5.4S”, so there is 7,€QN N, 7,<7,|a, and
D€ PPNN so that 7,l-¢ “ puiil- peS2¢S”. But then 7, is compatible with 7,, so
72 U7 < g

Finally, suppose p'< U{p»:7<w} (note that the sequence < Dnin<w> lies in
Vi, so the union is in F¥), te7. and in V, p't . t€S. Then for some geH we
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have
qF“ 'l s teS”.

It is clear from the construction of the 7, that {r,U7,:¢,=¢ is dense in @
and lies in V,, so In 7,Ur.eH, t,=¢. For this n, qU7r,Ur,cH.
But now we are in trouble, for in V. we must have

pn+1“" Pesn¢S
since this is forced by 7z,
s'ngT ¢

since this is forced by 7, and

p’""P:- teS

since this is forced by ¢. All this, of course, adds up to a contradiction, and
completes the proof of Theorems 2 and 3.

ReEMARK. One may complicate this argument still further and arrange for 2%
to be arbitrarily large, independently of 2%. Just use the usual (ground model)
ordering to adjoin many subsets of w, with countable conditions. Since this order-
ing is countably closed and has the [2%]*-chain condition, hence the «-chain condi-
tion, we may simply combine it with P in the argument above. Details are left
to the reader.

4. Proof of Theorem 6.

Suppose now that 7 has height ,, every element of T has successors at
every higher level, and every element of 7 has exactly X; immediate successors.
If INC={se U{®w,:a<w,}:s is strictly increasing}, then it is easy to see by indu-
ction on the levels of T that T is isomorphic to a subtree of INC, and that since
each element of 7 has ‘X, immediate successors the subtree can be chosen so that
whenever it contains s, then it also contains sa for every « such that saeINC.
Here by sa we mean the function ¢ with domain equal to domain(s)+1 and such
that #/domain(s)=s and #(domain(s))=a. Hence without loss of generality we may
identify T with this subtree of INC. Thus T<INC.

Let S={seT:Va<domain(s) if a« is a limit ordinal then sup {s(8):pB<a}>a,
and Vpedomain(s) s(B)> B}

LemmMA 4.1. S is a subtree of T.

Proor. It is clear that S is closed downward. Let seS and let a>level(s) be
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fixed. There is some immediate successor of s in 7 of the form sB, where g>a.
Now let ¢ be any element of T of level « extending s3. Clearly ¢teS. Thus S is
a subtree.

We will find all the S, as subsets of S. Suppose se€S, and consider the sequence
0, s(0), s%0), s*0), ---. If all the s™(0)<domain(s) then if a=sup {s"(0):n<w} we
have sup {s(8):B<a}=a, a contradiction since seS. Thus there is an i such that
st71(0)< domain(s)<s%0). We refer to i as the depth of s.

Next, let <A,:n<w> be a disjoint decomposition of w into infinite sets such
that V# ne U{A;:i<n}). Let X be an uncountable subset of w; with uncountable
complement. For each a<w; and #<w, let ¢,,: “2—>“™2 be a bijection. Let <f.:
£<2% > enumerate “12.

Fix £<2%, We define S;. Suppose seS with depth 7. If 1<j<i, let us say
that j is s-good for & provided that if j-leA, and a=s"*'(0) then s/*'(0)eX iff
Gan(fela)(j—1)=0. (This assumes that a>w; the case a<w is omitted.) Now let
seS; iff for all j, if 1<j<i then j is s-good for & Note in particular that if i=1
then seS..

LeMmMA 4.2. S;: is a subtree.

Proor. It is clear that S: is closed downward. Fix seS; with depth 7, and
let g>level(s) be given. We know that there is #>s such that €S and ¢ has
level si(0). Then ¢ also has depth 7, so teS; as well. Now fix y>p such that ye X
iff Gan(fela)@i—1)=0 (where i—1eA, and a=¢"*'(0)) and 7 is so large that freS.
Then if w=¢y we have ueS; also since #/(0)=s/(0) for all j<i and #**'(0)=y. But
now if »># is an element of level g then » has depth i+1 so »eS; also. Hence
s is extended in S; at level §.

The following lemma will now complete the proof.

LeMMA 4.3. If &+ then S:NS, contains no subtree of T.

PrOOF. Suppose on the contrary that UcSS;NS, is a subtree. Let S<w: be
arbitrary and choose weU with level(w)>p8. Say i=depth(x). Then determine
inductively a sequence in U, u=u;<w;,<wui2<---, such that for all j>i, level
(24+1) >uf(0). If we set #=U{u;:j>i} then #/(0) is defined for all jew. Let a=
sup {#’(0):jew}. Then f:|a may be recovered from # in the following way. If
6<a then for some m>i we have #™0)>4. Consider the function ¢g:An_1—2
given by ¢(j)=0 iff #/**(0)eX. Let an=a™0) and let f=¢'m-1(9). Then since
each of the w;eS; and #%0)=u*0) whenever «%0) is defined, we must have f=
felam. Thus fe]la is the union of the f:.lan and so is canonically determined from
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But of course the same argument applies to determine f,|a@ in exactly the

same way, so f¢|la=f,la. Finally, since 5 was arbitrary and a>p8 we must have

fe=/f, a contradiction since &=y

(1]
(2]
£3]
(4]

[5]
[6]
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