BASES FOR ARONSZAJN TREES

By

James E. BAUMGARTNER¹

1. Introduction.

In [3], Hanazawa defined and studied the notion of a non-Souslin base for certain Aronszajn trees. We extend his definition here by defining a base for an arbitrary tree of height ω_1 to be a collection of subtrees with the property that every subtree contains an element of the base. We show that if there is a Kurepa tree with κ branches then there is a special Aronszajn tree for which every base must have cardinality $\geq \kappa$. This slightly improves a result of Hanazawa [3] which draws a similar conclusion from \diamond^+ . Then we show that it is consistent, relative to the existence of an inaccessible cardinal, that every Aronszajn tree has a base of cardinality \gtrsim_1 , and that this may be obtained even with the continuum large. This answers a question of Hanazawa [3]. Finally, we observe that if T is a tree of height ω_1 which is essentially non-Aronszajn in the sense that every element has exactly \gtrsim_1 immediate successors, then every base for T must have 2^{*_1} elements.

A precise statement of the results follows a brief discussion of terminology. The remainder of the paper is then devoted to the proofs.

A tree is a partially ordered set (T, \leq_T) with the property that for every $t \in T$, $\{s \in T : s <_T t\}$ is well ordered by \leq_T . The *level* of t, denoted by l(t), is the order type of $\{s \in T : s <_T t\}$, and the set of all elements of T of level α is denoted by T_{α} . The *height* of T is the smallest α such that $T_{\alpha}=0$. We shall be interested exclusively in trees of height ω_1 . For convenience, we shall also work only with *normal* trees, e.i., trees such that each element has successors of arbitrarily high levels, and such that when α is a limit ordinal and $t \in T_{\alpha}$ then t is determined by $\{s \in T :$ $s <_T t\}$ i.e., there is no other $t' \in T_{\alpha}$ with $\{s \in T : s <_T t\} = \{s \in T : s <_T t'\}$. All our results remain true for non-normal trees, as the reader may easily verify, but the proofs go more smoothly for normal trees.

For our purposes, if T is a (normal) tree of height ω_1 then a subtree of T is a subset S of T such that S itself, with the induced ordering, is a normal tree of

¹ The preparation of this paper was partially supported by National Science Foundation grant number MCS-7903376.

Received April 10, 1984.

height ω_1 and S is closed downward under \leq_T (i.e., if $t \in S$ and $s <_T t$ then $s \in S$). The crucial point is that in a subtree every element has successors of arbitrarily high levels.

A base for T is a set B of subtrees such that for every subtree S of T there is $S' \in B$ with $S' \subseteq S$.

A branch through a tree T is a maximal linearly ordered subset.

An Aronszajn tree is a (normal) tree of height ω_1 such that for all $\alpha < \omega_1$, T_{α} is countable and T has no uncountable branches. An Aronszajn tree is special (sometimes called *Q-embeddable*) if there is a function $f: T \rightarrow \omega$ such that whenever $s <_T t$ we have $f(s) \neq f(t)$. A Souslin tree is an Aronszajn tree with the further property that every set of pairwise incomparable elements is countable. A Kurepa tree is a tree T of height ω_1 such that each T_{α} is countable for $\alpha < \omega_1$ and T has more than \aleph_1 uncountable branches.

In [3], Hanazawa defined a *non-Souslin base* for an Aronszajn tree T to be a collection C of uncountable antichains (pairwise incomparable sets) of T such that for any uncountable set $S \subseteq T$ there is $X \in C$ such that for all $s \in X$ there is $t \in S$ with $s \leq_T t$. It is apparent that if T is to have a non-Souslin base then in particular no subtree of T can be Souslin. Such trees were called by the author *non-Souslin* in [1]. This terminology is unfortunate since it distinguishes between trees which are non-Souslin and those which are not Souslin, so the author wishes to take this opportunity to suggest that trees with no Souslin subtrees be known henceforth as *anti-Souslin* trees.

There is a close connection between bases and non-Souslin bases. Suppose T is anti-Souslin. Then every non-Souslin base for T gives rise to a base of no greater cardinality, and conversely. If C is a non-Souslin base for T and if for each $X \in C$ we let $S(X) = \{t \in T : \{s \in X : t <_T s\}$ is uncountable} then it is easy to see that S(X) is a subtree and that $\{S(X) : X \in C\}$ is a base. If B is a base then form C by choosing an uncountable antichain from each element of B. It is straightforward to check that C is a non-Souslin base for T.

The advantage of the notion of a base, therefore, is that it applies to a larger class of trees. For anti-Souslin trees it is essentially equivalent to Hanazawa's definition.

We might remark that Souslin trees always have a base of cardinality \mathfrak{K}_1 . If T is Souslin, $t \in T$ and $T_t = \{s \in T : s \leq_T t \text{ or } t \leq_T s\}$, then $\{T_t : t \in T\}$ forms a base for T. Thus questions about the cardinality of a base are only interesting for trees which are not Souslin.

The rest of our set-theoretical terminology is fairly standard, and can generally be found in [4] or [5]. In independence proofs we consider forcing to be taking place over the universe V of set theory, and we write V^P for the generic extension of V obtained by forcing with P. If we have a particular P-generic set G then we replace V^P by V[G].

Here are the main results of the paper.

THEOREM 1. Suppose there is a Kurepa tree with at least κ branches. Then there is a special Aronszajn tree for which every base has cardinality $\geq \kappa$.

Theorem 1 is proved in Section 2, using a remark of Todorcevic which greatly simplifies the author's original proof. It improves Theorem 2 of [3], which asserts that if \diamond^+ holds then there is a special Aronszajn tree such that every base has cardinality $\geq \bigotimes_2$, in view of Solovay's well known result (see [5, Corollary 7.11]) that \diamond^+ implies the existence of a Kurepa tree.

THEOREM 2. If it is consistent that there is an inaccessible cardinal then it is consistent that \diamondsuit holds and every Aronszajn tree has a base of cardinality \gtrsim_1 .

The model we use is Levy's model in which a strongly inaccessible cardinal is collapsed to become ω_2 . Of course, this is the same model in which Silver [6] proved there are no Kurepa trees. In view of Theorem 1, Silver's result is implied by Theorem 2. Theorem 2 also shows that Hanazawa's hypothesis \diamond^+ cannot be reduced to \diamond alone.

THEOREM 3. If it is consistent that there is an inaccessible cardinal then it is consistent that every Aronszajn tree has a base of cardinality \aleph_1 and the continuum is large.

The model for Theorem 3 is obtained from the one for Theorem 2 by adjoining any number of Cohen reals. This gives a precise meaning to the phrase "the continuum is large".

Without the inaccessible one can still prove something:

THEOREM 4. Suppose $2^{*_1} = \kappa$. If one forces by adjoining λ Cohen reals, then in the extension every Aronszajn tree has a base of cardinality $\leq \kappa$.

Thus, for example, if $\kappa = \bigotimes_2$ then it is possible to have 2^{\bigotimes_0} large while every Aronszajn tree has a relatively small base, namely one of cardinality $\leq \bigotimes_2$.

Theorems 2, 3 and 4 are proved in Section 3.

Theorems 2, 3 and 4 have consequences for certain linear orderings also. A linear ordering (S, \leq_S) is called a *Specker ordering* (and its order type is a *Specker type*) if S is uncountable, has no uncountable well-ordered or conversely well-ordered subsets, and has no uncountable subsets order-embeddable in the real numbers.

See [2] for a discussion of Specker types. Every Specker ordering arises as a lexicographically ordered (not necessarily normal) Aronszajn tree. If each level T_{α} of T is linearly ordered by \leq_{α} then the lexicographic ordering of T is defined by setting $s \leq t$ iff either $s \leq_T t$ or else s and t are incomparable and if u, v are \leq_T -minimal such that $u \leq_T s, u \leq_T t$ and $v \leq_T t, v \leq_T s$ and $u, v \in T_{\alpha}$ then $u \leq_{\alpha} v$. A *Souslin ordering* is a Specker ordering with no uncountable pairwise disjoint set of nonempty open intervals, i.e., it arises from a Souslin tree. Let us call a Specker ordering *anti-Souslin* if it has no Souslin suborderings. Such orderings arise from anti-Souslin trees.

From Theorem 2 and the equivalence of bases with non-Souslin bases for anti-Souslin trees, we arrive at the following:

COROLLARY 5. If it is consistent that there is an inaccessible cardinal, then it is consistent that for every anti-Souslin Specker ordering S there is a collection C of subsets of S such that C has cardinality $\leq \gtrsim_1$ and every uncountable subset of S contains an order-isomorphic copy of an element of C.

Details are left to the reader. There are similar corollaries for Theorems 3 and 4.

One may wonder whether there are results similar to the ones above for trees of height ω_1 such that for each $\alpha < \omega_1$, $|T_{\alpha}| \leq \aleph_1$ rather than $|T_{\alpha}| = \aleph_0$. The answer, it turns out, is an emphatic no.

THEOREM 6. Suppose T is a (normal) tree with height ω_1 such that every element of T has exactly \gtrsim_1 immediate successors. Then there is a family $\langle S_{\alpha} : \alpha \langle 2^{st_1} \rangle$ of subtrees of T such that for all α , β if $\alpha \neq \beta$ then $S_{\alpha} \cap S_{\beta}$ does not contain a subtree. It follows that every base for T must have the maximum cardinality 2^{st_1} .

Theorem 6 is proved in Section 4.

In view of the results here and in [3], it appears that the most interesting problem left open is the following.

PROBLEM. Is it consistent with $2^{*_0} = \bigotimes_1$ that no Aronszajn tree has a base of cardinality \bigotimes_1 ?

2. Proof of Theorem 1.

The author wishes to thank Stevo Todorcevic for the following argument, presented here with his permission, which reduces Theorem 1 to a straightforward

observation.

Let (K, \leq_K) be a Kurepa tree with κ branches and let T be a special Aronszajn tree. Let KT denote $\{(s, t): s \in K, t \in T \text{ and } l(s) = l(t)\}$ with the coordinatewise ordering. Then KT is clearly an Aronszajn tree, for $(KT)_{\alpha} = K_{\alpha} \times T_{\alpha}$ for all $\alpha < \omega_1$ and if $B \subseteq KT$ were an uncountable branch then $\{t \in T: \exists s(s, t) \in B\}$ would be an uncountable branch through T, which is impossible.

If $f: T \rightarrow \omega$ witnesses that T is special then $g: KT \rightarrow \omega$ witnesses that KT is special, where g(s, t) = f(t).

Finally, let $\langle B_{\xi} : \xi < \kappa \rangle$ be a sequence of distinct uncountable branches through *K*. If $S_{\xi} = \{(s, t) \in KT : s \in B_{\xi}\}$ then it is easy to see that $S_{\xi} \cap S_{\eta}$ is countable whenever $\xi \neq \eta$, and of course each S_{ξ} is a subtree. It follows immediately that any base for *KT* must have cardinality at least κ .

3. Proof of Theorems 2, 3, and 4.

Whereas the proof of Theorem 3 really includes that of Theorem 2 as a special case, it will make the ideas clearer to prove Theorem 2 separately first. The principal tool in both arguments is Levy's partial ordering for collapsing an inaccessible to ω_2 .

Let κ be strongly inaccessible, and let P consist of all countable functions p such that domain $(p) \subseteq \kappa \times \omega_1$ and $\forall (\alpha, \xi) \in \text{domain}(p) \ p(\alpha, \xi) < \alpha$, partially ordered by functional extension, i.e., $p \leq q$ iff $p \supseteq q$. Then, as is well known (see [4, e.g.]), P is countably closed and has the κ -chain condition, and in V^P all cardinals of V which lie strictly between ω_1 and κ are collapsed onto ω_1 .

If $\alpha < \omega_1$, $P_{\alpha} = \{p \in P : \operatorname{domain}(p) \subseteq \alpha \times \omega_1\}$ and $P^{\alpha} = \{p \in P : \operatorname{domain}(p) \cap (\alpha \times \omega_1) = 0\}$, then $P \cong P_{\alpha} \times P^{\alpha}$. Thus if G is P-generic, $G_{\alpha} = G \cap P_{\alpha}$ and $G^{\alpha} = G \cap P^{\alpha}$, then G_{α} is P_{α} -generic (over V) and G^{α} is P^{α} -generic over $V[G_{\alpha}]$. It follows that V[G] is a Levy-generic extension of $V[G_{\alpha}]$.

If T is an Aronszajn tree in V[G], then by the κ -chain condition there is $\alpha < \kappa$ such that $T \in V[G_{\alpha}]$. We will show that every subtree of T in V[G] contains a subtree that lies in $V[G_{\alpha}]$, and this will suffice, since the subtrees of T in $V[G_{\alpha}]$ form a set of cardinality at most $[2^{\aleph_1}]^{V[G_{\alpha}]}$, and hence of cardinality \aleph_1 in V[G]. By the remark in the preceding paragraph, we may assume $T \in V$.

Thus it will suffice to prove:

LEMMA 3.1. Suppose $T \in V$ is an Aronszajn tree. If S is a subtree of T lying in V[G], then there is a subtree S' of S lying in V.

PROOF. We work in V. Let \dot{S} be a P-name for S, and assume $\Vdash_P \dot{S}$ is a subtree of T.

First observe that if $p \in P$ and $U = \{t \in T : p \Vdash t \in \dot{S}\}$ is uncountable, then $S' = \{t \in T : \{u \in U : t \leq_T u\}$ is uncountable} is a subtree and $p \Vdash S' \subseteq \dot{S}$. Thus we may assume that U is always countable, and hence that $\exists \alpha_p < \omega_1 \forall \beta \ge \alpha_p \forall t \in T_\beta \exists q \leq p q \Vdash t \notin \dot{S}$. For convenience, take α_p minimal.

Now fix $p \in P$ and choose λ regular and so large that P, $\dot{S} \in H(\lambda)$, where $H(\lambda)$ denotes the collection of sets hereditarily of cardinality $<\lambda$. Let N be a countable elementary substructure of $H(\lambda)$ (with respect to ϵ) such that p, P, $\dot{S} \in N$, and let $\alpha = \omega_1 \cap N$. Let $< t_n : n < \omega >$ enumerate T_{α} . Now define a descending sequence $< p_n : n < \omega >$ of elements of $P \cap N$ so that $p_0 = p$ and $\forall n \exists s < T_n p_{n+1} \Vdash s \notin S$. This is possible since, given p_n , we know that $\alpha_{p_n} \in N$ since $p_n \in N$, and hence $\alpha_{p_n} < \alpha$. Thus if $s <_T t_n$ is chosen with $s \in T_{\alpha p_n}$ then $\exists p_{n+1} \notin p_n p_{n+1} \Vdash s \notin S$.

But now if $q \leq \bigcup \{p_n : n < \omega\}$ and $q \Vdash t_n \in \dot{S}$ (which must be possible for some q and n), we arrive at a contradiction because $\exists s < T t_n p_{n+1} \Vdash s \notin \dot{S}$ and hence $q \Vdash s \notin \dot{S}$.

Since P is countably closed and adjoins a subset of ω_1 , it follows that \diamondsuit is true in V[G]. Alternatively, one can argue easily that any \diamondsuit -sequence in V remains a \diamondsuit -sequence in V[G].

Now we turn our attention to Theorem 3. The proof is similar but a trifle more complicated because of the need to adjoin many real numbers.

Let μ be a cardinal, and let Q be the partial ordering of finite functions mapping subsets of μ into 2. Then Q is the usual ordering for adjoining μ Cohen subsets of ω .

We will eventually force with $P \times Q$, but first let us make an observation about forcing with Q alone.

LEMMA 3.2. Suppose T is an Aronszajn tree (in V) and H is Q-generic. Then any subtree of T which lies in V[H] contains a subtree lying in V.

PROOF. Let \dot{S} be a Q-name such that $\Vdash \dot{S}$ is a subtree of T. As in the proof of Lemma 3.1, if $p \in P$ and $\{t \in T : p \Vdash t \in \dot{S}\}$ is uncountable then we are done, so assume otherwise. Then there is α_p so that $\forall \beta \ge \alpha_p \ \forall t \in T_\beta \ \exists q \le p \ q \Vdash t \notin \dot{S}$.

It is now an easy matter to find $\alpha < \omega_1$ and a countable set $X \subseteq \mu$ such that, if $P|X=\{p \in P: \operatorname{domain}(p) \subseteq X\}$, then $\forall p \in P|X \ \alpha_p < \alpha$ and $\forall t \in T_{\alpha_p} \exists q \in P|X \ q \leq p$ and $q \Vdash t \notin S$.

But if $q \in P$ and $t \in T_{\alpha}$ with $q \Vdash t \in \dot{S}$, then $p = q |X \in P| X$ so $\exists p' \in P |X \ p' \leq p$ and $p' \Vdash s \notin \dot{S}$, where s is the unique predecessor of t of level α_p . But then clearly p' and q are compatible, and this contradiction completes the proof.

REMARK. Lemma 3.2 really completes the proof of Theorem 4. If $2^{*_1} = \kappa$ and we adjoin λ Cohen reals then any Aronszajn tree T must lie in an intermediate

model V_1 obtained by adjoining at most \gtrsim_1 of the Cohen reals, and the remaining Cohen reals are generic over V_1 . Thus by Lemma 3.2 the subtrees of T lying in V_1 form a base for T, and there are at most $[2^{*_1}]^{v_1} = [2^{*_1}]^v = \kappa$ such subtrees in V_1 .

Now suppose $G \times H$ is $(P \times Q)$ -generic and T is an Aronszajn tree in V[G][H]. Then by the countable chain condition for Q, T is adjoined to V[G] by at most ω_1 Cohen reals, and by Lemma 3.2 a base for T in this intermediate model is still a base for T in V[G][H] so without loss of generality we may take $\mu = \omega_1$.

Also, it is not hard to see that by the κ -chain condition for P, we have $T \in V[G_{\xi}][H]$ for some $\xi < \kappa$. Since $P \times Q \cong P_{\xi} \times P^{\xi} \times Q$, we see that G^{ξ} is P^{ξ} -generic over $V[G_{\xi}][H]$. Let $V_1 = V[G_{\xi}]$, $V_2 = V_1[H]$. The following lemma will complete the proof.

LEMMA 3.3. Suppose S is a subtree of T and $S \in V_2[G^{\epsilon}]$ (= V[G][H]). Then there is a subtree $S' \subseteq S$ such that $S' \in V_2$.

PROOF. We work in V_2 and consider forcing with respect to P^{ϵ} . Suppose $\Vdash_{P^{\epsilon}} \dot{S}$ is a subtree of T. As before, we may assume that for every $p \in P^{\epsilon}$ there is $\alpha_p < \omega_1$ such that $\forall \beta \ge \alpha_p \quad \forall t \in T_{\beta} \quad \exists q \le p \quad q \Vdash t \notin \dot{S}$. Also, since Q has the countable chain condition and $V_2 = V_1[H]$, we may assume that the correspondence carrying p to α_p lies in V_1 .

Now we work in V_1 . Let \dot{T} be a Q-name for T and suppose

 $\Vdash_Q \dot{T}$ is an Aronszajn tree.

Without loss of generality we may suppose $T_{\alpha} \in V_1$; for example we may take $T_{\alpha} = \{\alpha\} \times \omega$. Let λ be regular and large enough that P^{ϵ} , Q, \dot{T} , $\dot{S} \in H(\lambda)$ (here \dot{S} is really a Q-name for the P^{ϵ} -name \dot{S}), and let N be a countable elementary substructure of $H(\lambda)$ with P^{ϵ} , Q, \dot{T} , $\dot{S} \in N$. Let $\alpha = \omega_1 \cap N$, and let $\gamma \ge \alpha$ be large enough so that if $\beta < \alpha$, $s \in T_{\beta}$, $t \in T_{\alpha}$ and $p \Vdash s \leqslant_T t$, then $p|\gamma \Vdash s \leqslant_T t$.

Let $\langle (t_n, p_n) : n < \omega \rangle$ enumerate all pairs $(t, q) \in T_{\alpha} \times (Q|\gamma)$. Beginning with an arbitrary $p \in P^{\varepsilon} \cap N$ (which we could have chosen before N, if necessary), we find a sequence $\langle p_n : n < \omega \rangle$ of elements of $P^{\varepsilon} \cap N$ much as in the proof of Lemma 3.1. Set $p_0 = p$. Given p_n , we find p_{n+1} as follows. Let $\alpha_p = \alpha_{p_n}$, and find $r_n \leq q_n$, $r_n \in P|\gamma$ so that for some $s_n \in T_{\alpha_n}$, $r_n \Vdash s_n \leq_T t_n$.

But we also have \Vdash_Q " $\exists p' \leq p_n p' \Vdash_{p^{\xi}} s_n \notin S$ ", so there is $r'_n \in Q \cap N$, $r'_n \leq r_n \mid \alpha$, and $p_{n+1} \in P^{\xi} \cap N$ so that $r'_n \Vdash_Q$ " $p_{n+1} \Vdash_{p^{\xi}} s_n \notin S$ ". But then r'_n is compatible with r_n , so $r'_n \cup r_n \leq q_n$.

Finally, suppose $p' \leq \bigcup \{p_n : n < \omega\}$ (note that the sequence $\langle p_n : n < \omega \rangle$ lies in V_1 , so the union is in P^{ϵ}), $t \in T_{\alpha}$ and in $V_2 p' \Vdash_{P^{\epsilon}} t \in \dot{S}$. Then for some $q \in H$ we

have

 $q \Vdash p' \Vdash_{p} t \in \dot{S}$ ".

It is clear from the construction of the r'_n that $\{r'_n \cup r_n : t_n = t\}$ is dense in Q and lies in V_1 , so $\exists n \ r'_n \cup r_n \in H$, $t_n = t$. For this $n, \ q \cup r'_n \cup r_n \in H$.

But now we are in trouble, for in V_2 we must have

$$p_{n+1} \Vdash_{p \notin} s_n \notin S$$

since this is forced by r'_n ,

 $s_n \leq T t$

since this is forced by r_n , and

p'⊩_p: t∈Ś

since this is forced by q. All this, of course, adds up to a contradiction, and completes the proof of Theorems 2 and 3.

REMARK. One may complicate this argument still further and arrange for 2^{*_1} to be arbitrarily large, independently of 2^{*_0} . Just use the usual (ground model) ordering to adjoin many subsets of ω_1 with countable conditions. Since this ordering is countably closed and has the $[2^{*_0}]^+$ -chain condition, hence the κ -chain condition, we may simply combine it with P in the argument above. Details are left to the reader.

4. Proof of Theorem 6.

Suppose now that T has height ω_1 , every element of T has successors at every higher level, and every element of T has exactly \aleph_1 immediate successors. If $INC = \{s \in \bigcup \{ {}^{\alpha} \omega_1 : \alpha < \omega_1 \} : s$ is strictly increasing}, then it is easy to see by induction on the levels of T that T is isomorphic to a subtree of INC, and that since each element of T has \aleph_1 immediate successors the subtree can be chosen so that whenever it contains s, then it also contains $s\alpha$ for every α such that $s\alpha \in INC$. Here by $s\alpha$ we mean the function t with domain equal to domain(s)+1 and such that t | domain(s) = s and $t(\text{domain}(s)) = \alpha$. Hence without loss of generality we may identify T with this subtree of INC. Thus $T \subseteq INC$.

Let $S = \{s \in T : \forall \alpha < \text{domain}(s) \text{ if } \alpha \text{ is a limit ordinal then sup } \{s(\beta) : \beta < \alpha\} > \alpha,$ and $\forall \beta \in \text{domain}(s) \ s(\beta) > \beta\}.$

LEMMA 4.1. S is a subtree of T.

PROOF. It is clear that S is closed downward. Let $s \in S$ and let $\alpha > \text{level}(s)$ be

38

fixed. There is some immediate successor of s in T of the form $s\beta$, where $\beta > \alpha$. Now let t be any element of T of level α extending $s\beta$. Clearly $t \in S$. Thus S is a subtree.

We will find all the S_{α} as subsets of *S*. Suppose $s \in S$, and consider the sequence 0, s(0), $s^2(0)$, $s^3(0)$, \cdots . If all the $s^n(0) < \text{domain}(s)$ then if $\alpha = \sup \{s^n(0) : n < \omega\}$ we have $\sup \{s(\beta) : \beta < \alpha\} = \alpha$, a contradiction since $s \in S$. Thus there is an *i* such that $s^{i-1}(0) < \text{domain}(s) \leq s^i(0)$. We refer to *i* as the *depth* of *s*.

Next, let $\langle A_n: n < \omega \rangle$ be a disjoint decomposition of ω into infinite sets such that $\forall n \ n \in \bigcup \{A_i: i < n\}$. Let X be an uncountable subset of ω_1 with uncountable complement. For each $\alpha < \omega_1$ and $n < \omega$, let $\phi_{\alpha n}: {}^{\alpha}2 \rightarrow {}^{(A_n)}2$ be a bijection. Let $\langle f_i: \xi < 2^{*_1} \rangle$ enumerate ${}^{\omega_1}2$.

Fix $\xi < 2^{\aleph_1}$. We define S_{ξ} . Suppose $s \in S$ with depth *i*. If $1 \le j < i$, let us say that *j* is *s*-good for ξ provided that if $j-1 \in A_n$ and $\alpha = s^{n+1}(0)$ then $s^{j+1}(0) \in X$ iff $\phi_{\alpha n}(f_{\xi}|\alpha)(j-1)=0$. (This assumes that $\alpha \ge \omega$; the case $\alpha < \omega$ is omitted.) Now let $s \in S_{\xi}$ iff for all *j*, if $1 \le j < i$ then *j* is *s*-good for ξ . Note in particular that if i=1 then $s \in S_{\xi}$.

LEMMA 4.2. S_{ε} is a subtree.

PROOF. It is clear that S_{ε} is closed downward. Fix $s \in S_{\varepsilon}$ with depth *i*, and let $\beta > \text{level}(s)$ be given. We know that there is $t \ge s$ such that $t \in S$ and *t* has level $s^{i}(0)$. Then *t* also has depth *i*, so $t \in S_{\varepsilon}$ as well. Now fix $\gamma \ge \beta$ such that $\gamma \in X$ iff $\phi_{\alpha n}(f_{\varepsilon}|\alpha)(i-1)=0$ (where $i-1 \in A_n$ and $\alpha = t^{n+1}(0)$) and γ is so large that $t\gamma \in S$. Then if $u=t\gamma$ we have $u \in S_{\varepsilon}$ also since $u^{j}(0)=s^{j}(0)$ for all j < i and $u^{i+1}(0)=\gamma$. But now if $v \ge u$ is an element of level β then *v* has depth i+1 so $v \in S_{\varepsilon}$ also. Hence *s* is extended in S_{ε} at level β .

The following lemma will now complete the proof.

LEMMA 4.3. If $\xi \neq \eta$ then $S_{\xi} \cap S_{\eta}$ contains no subtree of T.

PROOF. Suppose on the contrary that $U \subseteq S_{\varepsilon} \cap S_{\eta}$ is a subtree. Let $\beta < \omega_1$ be arbitrary and choose $u \in U$ with $|evel(u) \ge \beta$. Say i = depth(u). Then determine inductively a sequence in U, $u = u_i < u_{i+1} < u_{i+2} < \cdots$, such that for all $j \ge i$, level $(u_{j+1}) > u_j^j(0)$. If we set $\bar{u} = \bigcup \{u_j : j \ge i\}$ then $\bar{u}^j(0)$ is defined for all $j \in \omega$. Let $\bar{\alpha} =$ $\sup \{\bar{u}^j(0) : j \in \omega\}$. Then $f_{\varepsilon} | \bar{\alpha}$ may be recovered from \bar{u} in the following way. If $\delta < \bar{\alpha}$ then for some $m \ge i$ we have $\bar{u}^m(0) > \delta$. Consider the function $g : A_{m-1} \rightarrow 2$ given by g(j)=0 iff $\bar{u}^{j+2}(0) \in X$. Let $\alpha_m = \bar{u}^m(0)$ and let $f = \phi_{\alpha_m}^{-1}m_{-1}(g)$. Then since each of the $u_j \in S_{\varepsilon}$ and $u_j^k(0) = \bar{u}^k(0)$ whenever $u_j^k(0)$ is defined, we must have f = $f_{\varepsilon} | \alpha_m$. Thus $f_{\varepsilon} | \bar{\alpha}$ is the union of the $f_{\varepsilon} | \alpha_m$ and so is canonically determined from \bar{u} . But of course the same argument applies to determine $f_{\eta}|\bar{\alpha}$ in exactly the same way, so $f_{\xi}|\bar{\alpha}=f_{\eta}|\bar{\alpha}$. Finally, since β was arbitrary and $\bar{\alpha}>\beta$ we must have $f_{\xi}=f_{\eta}$, a contradiction since $\xi=\eta$.

References

- [1] Baumgartner, J. E., Decompositions and embeddings of trees, Notices Amer. Math. Soc. 17 (1970), 967.
- [2] Baumgartner, J. E., Order types of real numbers and other uncountable orderings, in Ordered Sets, I. Rival, ed., D. Reidel, 1982, 239-277.
- [3] Hanazawa, M., On Aronszajn trees with a non-Souslin base, Tsukuba J. Math. 6 (1982), 177-185.
- [4] Jech, T., Set Theory, Academic Press, 1978.
- [5] Kunen, K., Set Theory, North-Holland, 1980.
- Silver, J., The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, in Axiomatic Set Theory, D. Scott, ed., Proc. Symp. Pure Math. 13, Amer. Math. Soc., 1971, 391-396.

Dartmouth College Hanover, NH 03755 USA