ON MAXIMAL GRADINGS OF SIMPLY CONNECTED ALGEBRAS

(Dedicated to Prof. N. Sone on his $65-$ th birthday)

By

Masahisa Sato

Recently K. Bongartz and P. Gabriel [2] introduced simply connected algebras and also proved that these algebras are completely determined by their trees and their gradings. Also they showed that each tree admits only a finite number of representation finite gradings.

In this paper, we are concerned with the maximal value $G(n)$ of gradings through all simply connected algebras with n simple modules for each n. This is accomplished by determining a maximal length $F(n)$ of the Auslander-Reiten quivers of these algebras, because we have $G(n+1)=F(n)+1$ in Lemma 1. (For the definition, see $\S 1$ or [2].) Further we shall show that in order to estimate the value $F(n)$, the following facts are essential.
(i) The Auslander-Reiten quiver of an algebra with the maximal length $F(n)$ is fully embedded in the Auslander-Reiten quiver of a suitable algebra whose graded tree admits $G(n+1)$.
(ii) In the latter quiver, there is a path from a vertex $P(p)$ to $P(t)$, where $P(p)$ and $P(t)$ are projective vertices which correspond respectively to vertices p and t of its graded tree such that a grading at t is $G(n+1)$ and a grading of p is maximal among gradings of vertices except t.

Finally we have the following result.

$$
\begin{aligned}
& G(2)=1, G(3)=3, G(4)=5, G(5)=7, G(6)=11, G(7)=15, G(8) \leqq 41 \text { and } \\
& G(n) \leqq \begin{cases}60 n-469 & (9 \leqq n \leqq 32) \\
n^{2}-4 n+615 & (n \geqq 33)\end{cases} \\
& F(2)=2, F(3)=4, F(4)=6, F(5)=10, F(6)=14, F(7) \leqq 40 \text { and } \\
& F(n) \leqq \begin{cases}60 n-410 & (8 \leqq n \leqq 31) \\
n^{2}-2 n+611 & (n \geqq 32)\end{cases}
\end{aligned}
$$

It follows from our theorem that an upper bound of the number of

[^0]indecomposable modules over simply connected algebra with n simple module is $\frac{(n-1) F(n)}{2}+4\left[\frac{n+2}{3}\right]$ where $[m]$ means a maximal natural number not exceeding m. We are sure that our result will help us to know the precise number $G(n)$.

§ 1. Preliminaries and Notations.

Let K be an algebraically closed field. Here we recall the definitions introduced in [2]. An algebra over K is called simply connected iff it is representa-tion-finite, connected, basic, finite dimensional with a simply connected AuslanderReiten quiver.

In the following, we use freely the results in [2] stated below.
Let (T, g) be a representation-finite graded tree. We consider the algebra $A^{T}=\underset{p, q}{\oplus} K\left(R_{T}\right)(p, q)$, where $K\left(R_{T}\right)$ is the mesh category of the Auslander-Reiten quiver R_{T} of the graded tree (T, g) and p, q run through all projective vertices in R_{T}.

Theorem A. (Bongartz, Gabriel [2]) The map $(T, g) \mapsto A^{T}$ yields a bijection between the isomorphism classes of representation-finite graded trees and isomorphism classes of simply connected algebras. Further in this case, $K\left(R_{T}\right) \cong \operatorname{Ind}\left(A^{T}\right)$ and $R_{T} \cong \Gamma_{A} T$, here $\Gamma_{A} T$ is the Auslander-Reiten quiver of the algebra A^{T}.

According to this theorem, we shall identify A^{T} and (T, g) as follows. For a connected graded tree (T, g) with a maximal grading at a vertex x having r neighbours $\left\{x_{i}\right\}_{1 \leq i \leq r}$, we can reconstruct graded trees $\left(T^{i}, g^{i}\right)$'s for $1 \leqq i \leqq r$ by removing a vertex x as in [2]. Further we define a starting function at x by $s_{x}^{T}(y)=\operatorname{dim}_{K} K\left(R_{T}\right)(x, y)$ for each vertex y in R_{T} and also denote by $S_{i}^{T^{i}}$ the support of the starting functions $s_{x_{i}}^{T i}$ in $R_{T_{i}}$, which is endowed with a partial order as a full subquiver of $R_{T i}$.

The partially ordered set is representation-finite in the sense of NazarovaRoiter [3] iff it does not contain as a full subposet one of the following five forms ;
$\bigcirc \bigcirc \bigcirc \bigcirc$, $[1,1,1,1]$

$[2,2,2]$
$[1,3,3]$

[1,2,5]

[$\mathrm{N}, 4]$.

Next for a graded tree (T, g), we define a length function $L^{T}:\left(R_{T}\right)_{0} \rightarrow$
$\boldsymbol{N} \cup\{0\}$ by $L^{T}(t)=0$ if $g(t)=0$ and $L^{T}(t)=L^{T}(s)+1$ if there is an arrow $s \rightarrow t$ in R_{T}.

Related to this, we define the length $L^{T}(R)$ of a full subtranslation quiver R of R_{T} as the maximal value of $L^{T}(z)$ where z runs over all vertices in R. We sometimes use the notation L instead of L^{T} if the meaning is clear. Also we put $F(n)=\max L^{T}\left(R_{T}\right)$ where (T, g) runs over all representation-finite graded trees with n vertices.

Then the next theorem is very useful for our classification in $\S 3$.
Theorem B. (Bongartz, Gabriel [2]) Let (T, g) be an admissible tree. Then the following statements are equivalent.
(1) (T, g) is representation-finite.
(2) The following three conditions (a), (b) and (c) are satisfied.
(a) Each $\left(T^{i}, g^{i}\right)$ is representation-finite.
(b) The value of each $s_{x_{i}}^{7 i}$ is $\leqq 1$.
(c) The partially ordered set $S_{x_{1}}^{T^{1}} \Perp \cdots \Perp S_{x_{r}}^{T r}$ is representation-finite in the sense of Nazarova-Roiter [3].

§ 2. Simply Connected Algebras with Maximal Grading.

In this section, we shall study the Auslander-Reiten quivers of simply connected algebras in order to give an upper bound of the values of gradings. Let (T_{n}, g_{n}) be one of the representation-finite graded trees with n vertices such that there is a vertex t in T_{n} whose grading $g_{n}(t)$ is maximal among all possible values of gradings of representation-finite graded trees with n vertices. We put $G(n)=g_{n}(t)$.

Then we have the following lemmas. Here a vertex x of a tree T is called a tip if x has only one neighbour, clearly which is equivalent that $T \backslash\{x\}$ is connected.

LEMMA 1. $\quad G(n+1)=F(n)+1$ and $F(n+1) \geqq F(n)+2$.
Proof. Let (T, g) be a representation-finite graded tree with n vertices such that there is a vertex x in R_{T} with $L^{T}(t)=F(n)$. We construct a new translation quiver R as follows.

$$
\begin{aligned}
& R_{0}=\left(R_{T}\right)_{0} \cup\left\{p, \tau^{-1} t\right\} \quad \text { where } \tau \text { is a translation, } \\
& R_{1}=\left(R_{T}\right)_{1} \cup\left\{t \rightarrow p, p \rightarrow \tau^{-1} t\right\} .
\end{aligned}
$$

The tree T^{\prime} of R is the tree linked one vertex corresponding to p with T at a
vertex corresponding to the τ-orbit of t by a path. Further

$$
g^{\prime}(z)= \begin{cases}g(z) & \text { if } \quad z \in T \\ F(n)+1 & \text { if } \quad z=p\end{cases}
$$

is a grading of T^{\prime}. Then $\left(T^{\prime}, g^{\prime}\right)$ is a representation-finite graded tree with $R_{T^{\prime}}=R$. Hence $F(n+1) \geqq L\left(R_{T^{\prime}}\right)=L\left(R_{T}\right)+2=F(n)+2$. Next we must show that $g^{\prime}(p)=G(n+1)$. Let $\left(T^{*}, g^{*}\right)$ be any representation-finite graded tree with $n+1$ vertices and let z be a vertex in T^{*} whose grading is maximal. Consider a connected component T_{1}^{*} of $T^{*} \backslash\{z\}$ which contains a vertex whose grading is 0 . By Theorem B, $\left(T_{1}^{*}, g^{*} \mid T_{1}^{*}\right)$ is representation-finite, hence $L\left(R_{T_{1}^{*}} \leqq F(n)\right.$. Also $g^{*}(z) \leqq L\left(R_{T_{1}^{*}}\right)+1 \leqq F(n)+1$, then $g^{\prime}(p)=G(n+1)$.

Lemma 2. For the graded tree $\left(T_{n+1}, g_{n+1}\right)$, t is a tip of T_{n+1}.
Proof. Assume the contrary t has at least two neighbours. Let T^{*} be a connected component of $T_{n+1} \backslash\{t\}$ which contains a vertex whose grading is 0 . Since $\left(T^{*}, g \mid T^{*}\right)$ is representation-finite and $\left|T^{*}\right| \leqq n-1$, we can construct two representation-finite graded trees $\left(T_{1}^{*}, g_{1}^{*}\right)$ and (T_{2}^{*}, g_{2}^{*}) in the following way;

$$
\begin{array}{ll}
T_{1}^{*}=T^{*} \cup\{t\} & g_{1}^{*}=g^{*} \mid T_{1}^{*} \\
T_{2}^{*}=T_{1}^{*} \cup\{p\} & g_{2}^{*} \mid T_{1}^{*}=g_{1}^{*} \quad \text { and } \quad g_{2}^{*}(p)=L\left(R_{r_{1}^{*}}^{*}\right)+1
\end{array}
$$

Hence $G(n+1) \geqq g^{*}(p)>L\left(R_{T_{1}^{*}} \geqq g_{1}^{*}(t)=g^{*}(t)=G(n+1)\right.$, which is a contradiction.
We put $T_{n}^{*}=T_{n+1} \backslash\{t\}$ and $g_{n}^{*}=g_{n+1} \mid T_{n}^{*}$, then T_{n}^{*} is connected tree from Lemma 2 and (T_{n}^{*}, g_{n}^{*}) is a representation-finite graded tree.

In the following, $P(t)$ denotes an indecomposable projective module corresponding to a vertex t in a tree and B_{n} denotes an algebra $A^{T_{n}^{*}}$.

Lemma 3. rad $P(t)$ is simple injective as B_{n}-module.
Proof. Let L be a length function with respect to $\left(T_{n}^{*}, g_{n}^{*}\right)$. By Lemma 2, $\operatorname{rad} P(t)$ is indecomposable, hence the canonical inclusion map $\operatorname{rad} P(t) \rightarrow P(t)$ is a irreducible map and $L(\operatorname{rad} P(t))+1=L(P(t))$. On the other hand, $g_{n+1}(t)=G(t)=$ $F(n)+1$, thus $L(\operatorname{rad} P(t))=F(n)$. This means there is no irreducible map starting from $\operatorname{rad} P(t)$ in $R_{T_{n}^{*}}$, so $\operatorname{rad} P(t)$ is a simple injective B_{n}-module.

Lemma 4. Assume $p \in T_{n}^{*}$ is a vertex with a maximal grading in (T_{n}^{*}, g_{n}^{*}). Then there exists a path from $P(p)$ to $P(t)$ in $P_{r_{n+1}}$.

Proof. Assume there are no paths stated above. We consider a full subtranslation quiver R (it may be non-connected) of $R_{\left.T_{n}^{*} \backslash p\right)}$ consisting of vertices
which are not successors of $P(p)$. So we put R^{1} a connected component of R which contains $\operatorname{rad} P(t)$, further q a neighbour of p in T_{n}^{*} such that $P(q)$ belongs to R^{1}. For length functions L_{1} and L with respect to R^{1} and R respectively, $L-L_{1}$ has the constant value a for every vertex in R^{1}, where a is equal to the value of a minimal grading of projective vertices in R^{1}. We remark that

$$
F(n)=G(n+1)-1=L(\operatorname{rad} P(t))=L_{1}(\operatorname{rad} P(t))+a .
$$

If $a=0$ or R has at least three connected component, then as constructed in Lemma 1, there is a simply connected algebra whose maximal grading is larger than $F(n+1)$.

So we may assume $a>0$ and R has two connected component. Let R^{2} be another connected component of R which contains a vertex with zero grading and M a neighbour of $P(p)$ such that M is contained in R^{2}. We remark $L\left(R^{2}\right)$ $\geqq a$, since $L\left(R^{2}\right) \geqq L(M)=g_{n}^{*}(p)-1 \geqq L(P(q))=L_{1}(P(q))+a \geqq a$.

Now we consider the following trees and their gradings.

$$
T_{n}^{*} \backslash\{p\}=T_{1} \cup T_{2} \quad \text { (disjoint union of connected trees), }
$$

We may assume that q is a vertex of T_{1}. Under this assumption, we define

$$
\begin{array}{ll}
g_{1}=g_{n}^{*}-a \mid T_{1} & \text { (a grading of } \left.T_{1}\right), \\
g_{2}=g_{n}^{*} \mid T_{2} & \text { (a grading of } \left.T_{2}\right) .
\end{array}
$$

We can check the facts that $\left(T_{1}, g_{1}\right)$ and (T_{2}, g_{2}) are representation-finite graded trees and R^{1} and R^{2} are full subtranslation quivers of $R_{T_{1}}$ and $R_{T_{2}}$ respectively. Choose a simple injective module S_{2} in $R_{T_{2}}$ and $S_{1}=P\left(z_{1}\right)$ a simple projective module in $R_{T_{1}}$, here z_{1} is a vertex of T_{1} such that $g_{n}^{*}\left(z_{1}\right)=a$. Then we can define a representation-finite translation quiver Q with $n-1$ vertices as follows.

$$
\begin{array}{ll}
Q_{0}=\left(R_{T_{1}}\right)_{0} \cup\{P\} \cup\left(R_{T_{2}}\right)_{0} & \text { (set of vertices), } \\
Q_{1}=\left(R_{T_{1}}\right)_{1} \cup\left(R_{T_{2}}\right)_{1} \cup\left\{S_{2} \rightarrow P, P \rightarrow S_{1}\right\} & \text { (set of arrows), } \\
\tau^{-1} S_{2}=S_{1} & \text { (new translation). }
\end{array}
$$

We put L^{Q} a length function with respect to Q, then we have $L^{Q}(\operatorname{rad} P(t))$ $=L_{1}(\operatorname{rad} P(t))+2+L^{Q}\left(S_{2}\right)=L_{1}(\operatorname{rad} P(t))+2+L_{2}\left(S_{2}\right) \geqq L_{1}(\operatorname{rad} P(t))+2+a=F(n)+2$, this is a contradiction.

The following corollary is useful to calculate an upper bound of $G(n+1)-G(n)$.
Corollary 5. Assume T_{1} is a connected component of $T_{n}^{*} \backslash\{p\}$ such that $R_{T_{1}}$ has maximal length among the translation quivers corresponding to other connected
components of $T_{n}^{*} \backslash\{p\}$. We put $m=n-\left|T_{1}\right|-1$, then it holds that
(1) $\quad F(n)=\max \left\{L(M) \mid M\right.$ is a successar of $P(p)$ in $R_{T_{n}^{*}}$. .
(2) $\quad F(n-1) \geqq L_{1}\left(R_{T_{1}}\right)+2 m$.

Proof. The first statement follows immediately from Lemma 4. Since $\left|T_{1}\right|$ $=n-m-1, \quad F(n-m-1) \geqq L_{1}\left(R_{T_{1}}\right)$ and $\quad F(n-1) \geqq F(n-m-1)+2 m$ by Lemma 1. Hence the second inequality holds.

Here we remark, by the above fact, it holds that

$$
G(n+1)-g_{n}^{*}(p)=F(n)-L(\operatorname{rad} P(p))
$$

and

$$
G(n)-g_{n}^{*}(p)=F(n-1)-L(\operatorname{rad} P(p)) \geqq L_{1}\left(R_{T_{1}}\right)-L_{1}(\operatorname{rad} P(p))+2 m,
$$

hence

$$
G(n+1)-G(n) \leqq\{F(n)-L(\operatorname{rad} P(p))\}-\left\{L_{1}\left(R_{T_{1}}\right)-L_{1}(\operatorname{rad} P(p))\right\}-2 m .
$$

Now we must define some quiver which we need to estimate the value $F(n)-L(\operatorname{rad} P(p))=\max \{L(M)\}$ stated in Corollary 5.

We denote $\boldsymbol{r}(\operatorname{rad} P(p))$ and $\boldsymbol{r}^{*}(\operatorname{rad} P(p))$ full subtranslation quivers of $R_{T_{n}^{*} \backslash p p}$ and $R_{T_{n}^{*}}$ consisting of successors of some indecomposable direct summand of $\operatorname{rad} P(p)$. Further we put $\boldsymbol{s}(\operatorname{rad} P(p))$ a full subtranslation quiver of $\boldsymbol{r}(\operatorname{rad} P(p))$ consisting of vertices m in $\boldsymbol{r}(\operatorname{rad} P(p))$ such that $\tau m \in \boldsymbol{r}(\operatorname{rad} P(p))$. This is a union of some connected sections. We define $s^{*}(\operatorname{rad} P(p))$ by a section in $\boldsymbol{r}^{*}(\operatorname{rad} P(p))$ linked the sections in $\boldsymbol{s}(\operatorname{rad} P(p))$ at p. Next, for a section \boldsymbol{s} in a quiver R_{T}, we define a quiver $S(s)$ associated with a vector to each vertex.

Let x_{1}, \cdots, x_{n} be vertices in \boldsymbol{s}. Inductively we define $S(\boldsymbol{s})$ and it's vector $d(x) \in Q^{n}$ for each vertex x in $S(\boldsymbol{s})$, here Q is the rational field.

First $d\left(x_{i}\right)=\left(\delta_{i, j}\right),(1 \leqq i, j \leqq n$, and δ is the Kronecker $\delta)$.
Let $a_{1} \overbrace{}^{y_{1}}$ be a diagram already defined, here a_{1}, \cdots, a_{m} are all

arrows which start from $x . \quad \tau^{-1} x$ is defined in the case that a vector $-\left(\sum_{i=1}^{m} d\left(y_{i}\right)-d(x)\right)$ doesn't appear in vectors already defined and also we put $d\left(\tau^{-1} x\right)=\sum_{i=1}^{m} d\left(y_{i}\right)-d(x)$.

The following lemmas follow easily from definitions.

Lemma 6. $\quad \boldsymbol{r}\left(\operatorname{rad}(P(p))\right.$ and $\boldsymbol{r}^{*}(\operatorname{rad} P(p))$ are embeded into $S(\boldsymbol{s}(\operatorname{rad} P(p)))$ and $S\left(s^{*}(\operatorname{rad} P(p))\right)$ respectively as full subtranslation quivers.

Lemma 7. In the same notations of the above remark, it holds that $F(n)$ $L(\operatorname{rad} P(p)) \leqq$ the length of $S\left(s^{*}(\operatorname{rad} P(p))\right)$.
[REMARK] From lemma 7, in order to calculate the value $F(n)-L(\operatorname{rad} P(p))$, we need only to get a quiver $S(s)$ whose length is maximal for a possible section $\boldsymbol{s}=\boldsymbol{s}(\operatorname{rad} P(p))$. So, we classify the possible $\boldsymbol{r}(\operatorname{rad} P(p))$ and study $S\left(\boldsymbol{s}^{*}(\operatorname{rad} P(p))\right.$, also we shall get an upper bound of $G(n+1)-G(n)$ for each case that $R_{T_{n+1}}$ has a subtranslation quiver classified there in next section.

§ 3. The Classification of $r(\operatorname{rad} P(p))$ and an Upper Bound of $G(n+1)-$ $\boldsymbol{G}(\boldsymbol{n})$.

As stated before, in this section, we classify $s(\operatorname{rad} P(p))$ and $r(\operatorname{rad} P(p))$ such that the support of the starting function $s_{\mathrm{rad} P(p)}$ is of finite type as a partially ordered set and the value of the function is not exceeding 1. Also we give an upper bound of $G(n+1)-G(n)$ when $R_{T_{n+1}}$ has $\boldsymbol{r}(\operatorname{rad} P(p))$ in each case.
$\operatorname{rad} P(p)$ has at most three direct summands, otherwise a partially ordered set [$1,1,1,1]$ appears in $S_{x_{1}}^{T 1} \Perp \cdots \Perp S_{x_{r}}^{T r}$.
I. Suppose $\operatorname{rad} P(p)$ is indecomposable.

We put $a_{0}=\operatorname{rad} P(p)$. The slice $\boldsymbol{s}\left(a_{0}\right)$ is one of the following four forms.
The case (i)

$$
a_{0} \longrightarrow a_{1} \longrightarrow \cdots \longrightarrow a_{k} \quad 0 \leqq k,
$$

The case (ii)

The case (iii)

Then case (iv)

$$
\begin{aligned}
\substack{c_{1} \\
\uparrow_{i} \\
a_{k}} \cdots \longrightarrow b_{1} \longrightarrow \cdots \longrightarrow b_{j} \quad 1 \leqq j \leqq i, 0 \leqq k .
\end{aligned}
$$

To avoid the lengthy explanation, the reason of the fact (for example, it is injective or non-injective, etc.) will be shown shortly in parenthesis except that
we need to explain particularly.
The case (i). In this case, $\boldsymbol{r}\left(a_{0}\right)$ is as follows. Hence if $\left(T_{n}^{*}, g_{n}^{*}\right)$ has this slice $\boldsymbol{s}\left(a_{0}\right)$, then $G(n+1)-G(n) \leqq 2$.

Then $\boldsymbol{r}^{*}\left(a_{0}\right)$ is as follows.

The case (ii). In this case, a_{k} is injective. Otherwise $s_{a_{0}}\left(\tau^{-1} a_{k}\right)=2$. Also $j=1$ and $i=1$ or 2 , otherwise it appears

$$
\left[\begin{array}{ccc}
b_{2} & c_{2} & d_{2} \\
\uparrow \uparrow & \uparrow & \uparrow \\
b_{1} & c_{1} & d_{1}
\end{array}\right]=[2,2,2] \quad \text { and }\left[\begin{array}{cc}
c_{3} & d_{3} \\
\uparrow & \uparrow \\
b_{1} & c_{2} \\
\uparrow & d_{2} \\
\uparrow & \uparrow \\
c_{1} & d_{1}
\end{array}=[1,3,3] .\right.
$$

If $i=1$, then $\boldsymbol{r}\left(a_{0}\right)$ and $\boldsymbol{r}^{*}\left(a_{0}\right)$ are as follows. Hence $G(n+1)-G(n) \leqq n$.

If $i=2$, then $s=2,3$ or 4 , otherwise it appears [1,2,5]. By looking over the quiver $S\left(r^{*}\left(\operatorname{rad}\left(a_{0}\right)\right)\right)$ same as before, if $R_{T_{n+1}}$ has one of these quivers, then

$$
G(n+1)-G(n) \leqq \begin{cases}10 & (n=7) \\ 13 & (n=8) \\ 26 & (n \geqq 9)\end{cases}
$$

The case (iii). Let r and m be maximal numbers through all these numbers r^{\prime} and m^{\prime} respectively such that $\tau^{-r^{\prime}} a_{k+1-r^{\prime}}$ and $\tau^{-m^{\prime}} c_{i+1-m^{\prime}}$ exist. In this case, $j=1$ or $s=1$, otherwise [2,2,2] appears. If $j \geqq 2$ and $s=1$, then $t=2,3$ or 4 and a_{k} is injective since otherwise it appears [1,2,5] and [1, 1, 1, 1]. Further if a_{k} is non-injective, then c_{1} is injective or $r=1$. If a_{k} and c_{1} are non-injective, then some c_{v} is injective, otherwise $s_{a_{0}}\left(\tau^{-1} c_{i}\right)=2$. In any way, we can find a minimal number v such that c_{v} is injective if a_{k} is non-injective. Hence we have the following classification list in this case.

If $R_{T_{n+1}}$ has one of the cases from (1) to (9) as $\boldsymbol{r}\left(\operatorname{rad} a_{0}\right)$, then we get

$$
G(n+1)-G(n) \leqq \begin{cases}14 & (n=7) \\ 28 & (n=8) \\ 30 & (9 \leqq n \leqq 17) \\ 2 n-5 & (n \leqq 18) .\end{cases}
$$

(*1) In this case, $s=1,0 \leqq m \leqq 3$ and $t \leqq 4$ by $[2,2,2],[1,2,5]$ and [$1,2,5$] respectively. Assume $m=0$. If $t=2$, then $1 \leqq r \leqq 3$ by [1,2,5] and if $t=3$ or 4 , then $r=1$ by $[1,3,3]$. We have following four cases. (1) $m=0$, $r=1$ and $t=2,3$ or 4. (2) $m=0, r=2$ or 3 and $t=2$. (3) $m=1, t=2$ and $r=1$ or 2 by [2, 2, 2] and [$N, 4]$. (4) $m=2$ or $3, t=2$ and $r=1$ by [1, 3, 3].

In this case, we get

$$
G(n+1)-G(n) \leqq \begin{cases}10 & (n=7) \\ 16 & (n=8) \\ 28 & (n \geqq 9)\end{cases}
$$

(*2) The following two cases are possible; (1) c_{i} is injective, $v=2$ or 3 by $[1,2,5]:(2) c_{i}$ is non-injective, $v=2, m=1$ by $[N, 4]$ and $[1,3,3]$.

In these cases, we get

$$
G(n+1)-G(n) \leqq \begin{cases}16 & (n=8) \\ 30 & (n \geqq 9)\end{cases}
$$

(*3) In this case, we have six cases by the same method as above and we get

$$
G(n+1)-G(n) \leqq \begin{cases}14 & (n=7) \\ 28 & (n=8) \\ 36 & (9 \leqq n \leqq 35) \\ n+1 & (n \leqq 36)\end{cases}
$$

The case (iv). This case is most complicated. But we can classify and calculate by similar method discussed above. So we shall only give the result.

$$
G(n+1)-G(n) \leqq \begin{cases}15 & (n=7) \\ 27 & (n=8) \\ 60 & (n \geqq 9)\end{cases}
$$

II. Suppose that $\operatorname{rad} P(p)=a_{0} \oplus b_{0}$. Then $\boldsymbol{s}(\operatorname{rad} P(p))$ has the following form.

$$
\begin{aligned}
& d_{1} \longrightarrow \cdots \longrightarrow d_{t} \\
& a_{0} \longrightarrow \cdots \longrightarrow e_{i} \longrightarrow e_{1} \longrightarrow \cdots \longrightarrow e_{s} \longrightarrow \cdots \longrightarrow b_{j} \\
&
\end{aligned}
$$

Clearly it is impossible that the case $t=s=0$ occurs by calculating vectors in $S\left(s^{*}(\operatorname{rad} P(p))\right.$. So assume $s \geqq 1$, then $s=1$ or $j=0$, otherwise it appears [2,2,2]. Furthermore if $s \geqq 2$ and $j=0$, then $s=2$ by [1,3,3]. We shall left the concrete classification to the readers. We get in these cases

$$
G(n+1)-G(n) \leqq \begin{cases}9 & (n=7) \\ 23 & (n=8) \\ 36 & (9 \leqq n \leqq 35) \\ n+1 & (n \leqq 36)\end{cases}
$$

III. In the case $\operatorname{rad} P(p)=a_{0} \oplus b_{0} \oplus c_{0}$. Then $\boldsymbol{s}(\operatorname{rad} P(p))$ has the form below, otherwise it appears $[1,1,1,1]$.

Here it must be $k=0$, otherwise it appears [2,2,2]. Further $j=0$ or 1 by $[1,3,3]$. So there are only two cases. (1) $j=0$ and (2) $j=1$, $i \leqq 3$ by [1, 2, 5]. Hence we get

$$
G(n+1)-G(n) \leqq \begin{cases}5 & (n=5) \\ 11 & (n=6) \\ 20 & (7 \leqq n \leqq 22) \\ n-2 & (n \leqq 23) .\end{cases}
$$

This completes the classifications and the calculation of the possible values of $G(n+1)-G(n)$.

From the above values, we get a result stated in the introduction.
Theorem 8. Let n be a natural number and let $G(n)$ and $F(n)$ maximal numbers of all the values of gradings and lengthes of Auslander-Reiten quivers of simply connected algebras with n sinple modules respectively. Then it holds that

$$
\begin{aligned}
& G(2)=1, G(3)=3, G(4)=5, G(5)=7, G(6)=11, G(7)=15, G(8) \leqq 41 \text { and } \\
& G(n) \leqq \begin{cases}60 n-469 & (9 \leqq n \leqq 32) \\
n^{2}-4 n+615 & (n \geqq 33) .\end{cases}
\end{aligned}
$$

Also for $F(n)=G(n+1)-1$, we have

$$
\begin{aligned}
& F(2)=2, F(3)=4, F(4)=6, F(5)=10, F(6)=14, F(7) \leqq 40 \text { and } \\
& F(n) \leqq \begin{cases}60 n-410 & (8 \leqq n \leqq 31) \\
n^{2}-2 n+611 & (n \geqq 32) .\end{cases}
\end{aligned}
$$

[REMARK] The graded trees which gives $F(5)$ and $F(6)$ are as following.

For the number of indecomposable modules over simply connected algebras, we get the following corollary. (cf. [1])

Corollary 9. The number of indecomposable modules over a simply connected algebra with n simple modules for a natural number n is smaller than $\frac{(n-1) F(n)}{2}+4\left[\frac{n+2}{3}\right]$. Here $[m]$ means a maximal natural number not exceeding m.

Proof. The number of vertices whose grading is 0 is smaller than $2\left[\frac{n+2}{3}\right]$. By duality, the number of injective module whose length is maximal is smaller than $2\left[\frac{n+2}{3}\right]$. So we get the above inequality.

References

[1] Bongartz, K., Treue einfach zusamenhangende Algebren I. Commen. Math. Helv., 2 (1982), 282-330.
[2] and Gabriel, P., Covering Spaces in Representation Theory. Invent. Math., 65 (1982), 331-378.
[3] Nazarova, L.A. and Roiter, A.V., Representations of partially ordered set. Zap. Naucn. Sem. LOMI 28 (1972), 5-31.
[4] Riedtman, Chr., Algebren, Darstellungsköcher und zurück. Comm. Math. Helv., 55 (1980), 199-224.

Institute of Mathematics, Yamanashi University
Kōfu, 400 Japan

[^0]: Received December 5, 1983.

