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ON COMPLEX TORI WITH MANY ENDOMORPHISMS

By

Atsushi SHIMIZU

The endomorphism ring of a complex torus $T$ of dimension $n$ is a free
module of $rank\leqq 2n^{2}$ as a Z-module. When $T$ is an abelian variety it is well-
known that if the rank is equal to $2n^{2},$ $T$ is isogenous to the direct sum of $n$

copies of an elliptic curve with complex multiplication. We will prove a similar
result in a more general form, that is, let $T$ and $T^{\prime}$ be two complex tori of
dimension $n$ and $n^{\prime}$ respectively, and if the Z-module of all homomorphisms of
$T$ into $T^{\prime}$ is of rank $2nn^{\prime}$ , then $T$ and $T^{\prime}$ are isogenous to the direct sums of
$n$ and $n^{\prime}$ copies of an elliptic curve (Theorem 1-3). Next let $T$ be a complex

torus of dimension 2 and put $End^{Q}(T)=End(T)\otimes_{Z}Q$ . Then using the types of
$End^{Q}(T)$ we will classify all $T\prime s$ with a non-trivial endomorphism ring. The
result is given in the last part of \S 4. A complex torus $T$ of dimension 2 which
is not simple is an abelian variety, if and only if $T$ is isogenous to the direct
sum of two elliptic curves. On the other hand a simple torus $T$ of dimension 2
such that End$(T)$ is not isomorphic to $Z$ is an abelian variety if and only if
$End^{Q}(T)$ contains some real quadratic field over $Q$ . This is proved in \S 5.

NOTATIONS. We denote by $Z,$ $Q,$ $R$ and $C$ , respectively, the ring of rational
integers, the field of rational numbers, real numbers and complex numbers. For
a ring $R,$ $M(n\times m, R)$ denotes the R-module composed of all matrices with $n$

rows and $m$ columns with coefficients in $R$ . When $n=m$ , it is the R-algebra of
all square matrices of size $n$ . We simply denote it by $M(n, R)$ . The group of
all invertible elements of $M(n, R)$ is denoted by $GL(n, R)$ .

Let $T$ and $T^{\prime}$ be two complex tori. We denote by $Hom(T, T^{\prime})$ the set of
all homomorphisms of $T$ into $T^{\prime}$ and put End$(T)=Hom(T, T)$ . We put
$Hom^{Q}(T, T^{\prime})=Hom(T, T^{\prime})\otimes Q$ and $End^{Q}(T)=End(T)\otimes Q$ . $End^{Q}(T)$ is naturally

considered as an algebra over Q. $T$ and $T^{\prime}$ are called isogenous and denoted
by $T\sim T^{\prime}$ if they are of the same dimension and there exists a homomorphism
$\lambda$ of the one onto the other; such a $\lambda$ is called an isogeny. $ l\sim$ is an equiva-
lence relation. If $T_{1}$ and $T_{1}^{\prime}$ are complex tori which are isogenous $T$ and $T^{\prime}$

respectively, then $Hom^{Q}(T_{1}, T_{1}^{\prime})$ is isomorphic to $Hom^{Q}(T. T^{\prime})$ and $End^{Q}(T_{1})$ is
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isomorphic to $End^{Q}(T)$ as a Q-algebra.

Let $G$ be a lattice subgroup of $C^{n}$ and $(g_{1}, \cdots, g_{2n})$ its base. Then the
matrix $G=(g_{1}, \cdots g_{2n})\in M(n\times 2n, C)$ is called the period matrix of the complex

torus $C^{n}/G$ . We shall often denoted by $C^{n}/G$ the complex torus $C^{n}/G$ .

\S 1. Complex tori with endomorphism rings of the maximal rank.

Let $T$ and $T^{\prime}$ be two complex tori of dimension $n$ and $n^{\prime}$ respectively.

THEOREM 1-1. $Hom(T, T^{\prime})$ is a free abelian group whose rank is at most
$2nn^{\prime}$ .

PROOF. We put $T=E/G$ and $T^{\prime}=E^{\prime}/G^{\prime}$ , where $E,$ $E^{\prime}$ are complex linear
spaces and $G$ , $G^{\prime}$ are respectively their lattice subgroups. Take a C-base
$(g_{1}, \cdots, g_{n})$ of $E$ which is also a part of a Z-base of $G$ and let $H_{1}$ the subgroup
of $G$ generated by $g_{1},$

$\cdots$ , $g_{n}$ . If $\lambda$ is an element of $Hom(T, T^{\prime})$ , $\lambda$ naturally
induces a linear map $L_{\lambda}$ of $E$ to $E^{\prime}$ . Then making correspond to $\lambda$ the homo-
morphism of $H_{1}$ into $G^{\prime}$ which maps $(g_{1}, \cdots , g_{n})$ to $(L_{\lambda}(g_{1}), \cdots , L_{\lambda}(g_{n}))$ , we get
an injective homomorphism of $Hom(T, T^{\prime})$ into $Hom(H_{1}, G^{\prime})$ . Since $Hom(H_{1}, G^{\prime})$

is a free abelian group of rank $2nn^{\prime},$ $Hom(T, T^{\prime})$ which is isomorphic to a sub-
group of $Hom(H_{1}, G^{\prime})$ is a free abelian group whose rank is at most $2nn^{\prime}$ . $(q.e.d.)$

Let $T$ and $T^{\prime}$ be the direct sums of $r$ and $r^{\prime}$ complex tori $T_{1},$ $\cdots$ , $T_{r}$ and
$T_{1}^{\prime},$

$\cdots,$
$T_{r}^{\prime}$, respectively. Then, $Hom(T, T^{\prime})$ is isomorphic to the direct sum of

all $Hom(T_{i}, T_{i}^{\prime},)s$ ($i=1,2,$ $\cdots,$ $r$ and $i^{\prime}=1,2,$
$\cdots,$

$r^{\prime}$ ). If $T=T^{\prime}$ , they are iso-
morphic as rings, where for two elements $(\lambda_{ii^{\prime}}),$ $(\mu_{ii^{\prime}})$ of $\bigoplus_{i,i^{\prime}}Hom(T_{i}, T_{i^{\prime}})(\lambda_{ii^{\prime}}$

and $\mu_{ii^{\prime}}$ are elements of $Hom(T_{i}, T_{i^{\prime}}).)$ , we define the product of them by

$(\Sigma_{j=1}^{r}\lambda_{ji^{l^{Q}}}\mu_{ij})\in\bigoplus_{i.i^{\prime}}Hom(T_{i}, T_{i^{\prime}})$ . Especially when $T_{1}=T_{2}=\cdots=T_{r},$ $End(T)$ is

isomorphic to $\Lambda f(r, End(T_{1}))$ .
Let $C$ be an elliptic curve with complex multiplication, that is, complex

torus of dimension 1 with an endomorphism ring of rank 2, and let $T$ and $T^{\prime}$

be complex tori which are isogenous to the direct sums of $n$ and $n^{\prime}$ copies of $C$

respectively. Then the rank of $Hom(T, T‘)$ is clearly $2nn^{\prime}$ . We shall prove the
converse is true.

THEOREM 1-2. Let $T$ and $T^{\prime}$ be complex tori of dimension $n$ and $n^{\prime}$ respec-
$\tau\iota vely$ . If the rank of $Hom(T, T^{\prime})$ is $2nn^{\prime},$ $T$ and $T^{\prime}$ are respectively isogenous
to the direct sums of $n$ and $n^{\prime}$ copices of an elliptic curve $C$ with complex multi-
plication.
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PROOF. Notation being as in the proof of Theorem 1-1; choose a proper

C-base of $E$ and a proper Z-base of $G$ , and we may assume that the period

matrix of $T$ is $(1_{n}, T)$ where $1_{n}$ is the unit matrix of size $n$ and $T$ is an element

of $M(n, C)$ such that the imaginary part of $T$ is a regular matrix. Similarly we
may assume that the period matrix of $T^{\prime}$ is $(1_{n^{\prime}}, T^{\prime})$ for some matrix $T^{\prime}$ of size
$n^{\prime}$ which satisfies the same condition.

Now considering $Hom(T, T^{\prime})$ to be a subgroup of $Hom(H_{1}, G^{\prime})$ , since they

are of the same rank, there exists an integer $\lambda$ such that $\lambda(Hom(H_{1}, G^{\prime}))\subset$

$Hom(T, T^{\prime})$ . In other words, for any $S\in M(2n^{\prime}\times n, Z)$ there exist $\omega\in M(n^{\prime}Xn, C)$

and $\Omega\in M(2n^{\prime}\times 2n, Z)$ such that

$\omega 1_{n}=(1_{n^{\prime}}T^{\prime})\lambda S$ and $\omega(1_{n}T)=(1_{n^{\prime}}T^{\prime})\Omega$ .

For any $\alpha\in M(n^{\prime}\times n, Z)$ , putting $S=\left(\begin{array}{l}\alpha\\ 0\end{array}\right)$ , there exists $\Omega=\left(\begin{array}{ll}A & B\\C & D\end{array}\right)(A,$ $B,$ $C,$ $ D\in$

$M(n^{\prime}\times n, Z))$ such that

$\lambda\alpha(1_{n}, T)=(1_{n^{\prime}}, T^{\prime})\Omega=(A+T^{\prime}C, B+T^{\prime}D)$ ,

and especially $\lambda\alpha T=B+T^{\prime}D$ . If we denote by ${\rm Im} T$ and ${\rm Re} T$ the imaginary
part of $T$ and the real part of $T$ respectively, we have i) $\lambda\alpha({\rm Im} T)=({\rm Im} T^{\prime})D$

and ii) $\lambda\alpha({\rm Re} T)=B+({\rm Re} T^{\prime})D$ . Therefore for any element $\alpha$ of $M(n^{\prime}\times n, Z)$

we have

$i^{\prime})$ $({\rm Im} T^{\prime})^{-1}(\lambda\alpha)({\rm Im} T)\in M(n^{\prime}\times n, Z)$

ii’) $(\lambda\alpha)({\rm Re} T)-({\rm Re} T^{\prime})({\rm Im} T^{\prime})^{-1}(\lambda\alpha)({\rm Im} T)\in\Lambda I(n^{\prime}\times n, Z)$ .

Put $({\rm Im} T^{\prime})^{-1}=(\beta_{pr}),$ $\alpha=(\alpha_{rs}),$ ${\rm Im} T=(a_{sr})$ , and $i^{\prime}$ ) implies

$\lambda\sum_{r=1}^{n^{\prime}}\sum_{s=1}^{n}\mathcal{B}_{pr}\alpha_{rs}a_{sq}\in Z$

for any $p,$ $q(p=1, \cdots n^{\prime}, q=1, \cdots, n)$ . If we put $\alpha$ to be the matrix whose
$(r, s)$-component is 1 and the others are all $0$ , we have $\lambda\beta_{pr}a_{sq}\in Z$ for any $p,$ $q$ ,

$r,$ $s$ . Especially putting $p=r=1$ , we have $\lambda\beta_{11}a_{sq}\in Z$ for any $s,$ $q$ . Therefore
there exist a real number $a_{1}$ which is independent of $s,$ $q$ and integers $a_{sq}^{*}(s,$ $q$

$=1,2,$ $\cdots$ , n) such that $a_{sq}=a_{1}a_{sq}^{*}$ . Put $T_{1}=(a_{sq}^{*})\in M(n, Z)$ , and we have ${\rm Im} T=$

$a_{1}T_{1}$ , where $a_{1}\neq 0$ and $\det T_{1}\neq 0$ . Similarly there exist $b^{\prime}\in R$ and $T_{0}^{\prime}\in M(n^{\prime}, Z)$

such that $({\rm Im} T^{\prime})^{-1}=b^{\prime}T_{0}^{\prime}$ . Putting $a_{1}^{\prime}=b^{\prime-1}(\det T_{0}^{\prime})^{-1}$ and $T_{1}^{\prime}=(\det T_{0}^{\prime})T_{0^{-1}}^{\prime}$ , we
have ${\rm Im} T^{\prime}=a_{1}^{\prime}T_{1}^{\prime}$ where $a_{1}^{\prime}$ is a real number $T_{1}^{\prime}$ is an element of $M(n^{\prime}, Z)$ . Now
we have $T={\rm Re} T+\sqrt{-1}a_{1}T_{1}$ . Considering the isogeny whose rational repre-

sentation is $\left(\begin{array}{ll}1_{n} & 0\\0 & T_{1}^{-1}\end{array}\right)$ , we can see that $T$ is isogenous to $C^{n}/(1_{n}, ({\rm Re} T)T_{1}^{-1}+$

$\sqrt{-1}a_{1}1_{n})$ . So we may assume that ${\rm Im} T=a_{1}1_{n}$ . And similarly we may assume
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that ${\rm Im} T^{\prime}=a_{1}^{\prime}1_{n^{\prime}}$ . Put $\mu=a_{1}a_{1}^{;-1}\lambda$ , and we have by ii’)

$(\lambda\alpha)({\rm Re} T)-\mu({\rm Re} T^{\prime})\alpha\in M(n^{\prime}\times n, Z)$

for any $\alpha$ . If we put ${\rm Re} T=(c_{sq}),$ ${\rm Re} T^{\prime}=(d_{pr})$ and $\alpha=(\alpha_{rs})$ , we have

$\lambda\sum_{s=1}^{n}\alpha_{ps}c_{sq}-\mu\sum_{r=1}^{n^{\prime}}d_{pr}\alpha_{rq}\in Z$

for $p=1,$ $\cdots,$ $n,$ $s=1,$ $\cdots$ , $n^{\prime}$ . Again putting $\alpha$ to be the matrix whose $(r, q)-$

component is 1 and the others are all $0$ , we have A) $\lambda c_{sq}\in Z$, if $s\neq q,$ $B$) $\mu d_{pr}\in Z$,

if $p\neq r$ , and C) $\lambda c_{ss}-\mu d_{rr}\in Z$ , for any $p,$ $q,$ $r,$ $s$ . Therefore we have $\lambda(c_{sq})-\mu d_{11}1_{n}$

$\in M(n, Z)$ and $\mu(d_{pr})-\lambda c_{11}1_{n^{\prime}}\in M(n^{\prime}, Z)$ . Put $T_{2}=\lambda(c_{sq})-\mu d_{11}1_{n}$ and $c=\mu d_{11}$ , and
we have ${\rm Re} T=\lambda^{-1}(c1_{2}+T_{2})$ . So putting $z=\lambda^{-1}c+\sqrt{-1}a_{1}$ , we have $T=z1_{n}+\lambda^{-1}T_{2}$ .

Consider the isogeny whose rational representation is $\left(\begin{array}{ll}1_{n} & -\lambda^{-1}T_{2}\\0 & 1_{n}\end{array}\right)$ , and we can

see that $T$ is isogenous to $C^{n}/(1_{n}, z1_{n})$ which is clearly isogenous to the direct
sum of $n$ copies of $C=C/(1, z)$ . Similarly $T^{\prime}$ is isogenous to the direct sum of
$n^{\prime}$ copies of some complex torus C’ of dimension 1. Since $Hom(T, T^{\prime})$ is iso-
morphic to the direct sum of $nn^{\prime}$ copies of $Hom(C, C^{\prime})$ , the rank of $Hom(C, C^{\prime})$

is 2, hence $C$ is an elliptic curve with complex multiplication which is isomorphic

to $C^{\prime}$ . $(q.e. d.)$

\S 2. Period matrices of complex tori with many endomorphisms.

Let $T$ be a complex torus whose $End^{Q}(T)$ contains a division sub-algebra $D$

which contains $Q$ properly. Let $Z$ be the center of $D$ and $K$ one of the maxi-
mal commutative subfields of $D$ and denote the dimensions of the vector spaces
$D,$ $K$ and $Z$ over $Q$ by $d,$ $e$ and $f$ respectively. Then we have $d/f=(e/f)^{2}$ , in
other words $df=e^{2}$ . On the other hand, considering a rational representation of
$D$ , the linear space $Q^{2n}$ can be regarded as a D-module. Since $D$ is a division
algebra, a D-module is always free, hence denoting by $r$ the rank of the module
over $D$ , we have $rd=2n$ . Now the following theorem has been proved.

THEOREM 2-1. Let $D$ be a division algebra contained in $End^{Q}(T)$ . If we
donote by $d,$ $e$ and $f$, respectively, the dimensions over $Q$ of $D$ , one of the maxi-
mal subfield of $D$ and the center of $D$ , we have

i) $df=e^{2}$

ii) $f|e|d|2n$ (where $a|b$ means $a$ divides $b.$ )

COROLLARY 2-2. Let $n$ be a positive odd integer which is square-free, and $T$

a complex torus of dimension $n$ . $\mathcal{T}hen$ any division algebra which is contained in
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$End^{Q}(T)$ is commutative.

PROOF. Notations being as in Theorem 2-1, $(e/f)^{2}=d/f$ divides $2n$ . Hence
$e/f=1$ , that is, $D$ is commutative. $(q.e.d.)$

Next we shall inquire into the period matrix of $T$.

THEOREM 2-3. Let $T=E/G$ be a complex torus of dimension $n$ such that
$End^{Q}(T)$ contains a division algebra $D$ which contains $Q$ properly. Take any
element $\phi$ of $D$ which is not contained in Q. Choosing an adequate C-base of
C-vector space $E$ , the analytic representation of $\phi$ is a diagonal matrix

$\left(\begin{array}{lll}\alpha_{1} & & 0\\ & \ddots & \\0 & & \alpha_{n}\end{array}\right)$

where $\alpha_{i}$ is the image of $\phi$ by an isomorphism of $Q(\phi)$ into $C(i=1,2, \cdots, n)$ .
And put $h=[Q(\phi):Q],$ $s=2n/h$ and

$\Phi=(\dot{i}1$ $\alpha_{n}^{1}\alpha$

$\alpha_{1}^{2}.\cdots.\alpha_{1}^{h-1}\alpha_{n}^{2}\cdot\alpha_{n}^{\dot{h}- 1}\in M(n\times h, C)$ .

And put

$G(g_{ij})=(\left(\begin{array}{lll}g_{11} & 0 & \\ & \ddots & \\0 & & g_{1n}\end{array}\right)\Phi\left(\begin{array}{lll}g_{21} & 0 & \\ & \ddots & \\0 & & g_{2n}\end{array}\right)\Phi\cdots\left(\begin{array}{lll}g_{s1} & 0 & \\ & \ddots & \\0 & & g_{sn}\end{array}\right)\Phi)$

where $g_{ij}(i=1, \cdots, s, j=1, \cdots, n)$ are somd given complex numbers. Then there

exists $ns$ complex numbers $g_{ij}$ such that $T$ is isogenous to the complex torus

$T(g_{ij})$ whose period matrix is $G(g_{ij})$ .

PROOF. Let $\omega$ be an analytic representation of $\phi$ and $\Omega$ a rational represen-

tation. Since the minimal polynomial $f$ of $\Omega$ is also the minimal polynomial of
$\phi$ when $Q(\phi)$ is regarded as an algebraic field over $Q,$ $f$ is irreducible. Clearly

$f(\omega)=0$, so that the minimal polynomial of $\omega$ has no multiple root. Here choosing

an adequate C-base of $E$ ,

$\omega=\left(\begin{array}{lll}\alpha_{1} & & 0\\ & \ddots & \\0 & & \alpha_{n}\end{array}\right)$

where $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ are roots of the algebraic equation $f(x)=0$ . On the other hand

the characteristic polynomial $F$ of $\Omega$ is s-th power of $f$. Therefore if we con-
sider $\Omega$ to be a linear transformation on $Q^{2n}$ , there exists an element $P$ of
$GL(2n, Q)\cap M(2n, Z)$ such that
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$P^{-1}\Omega P=\left(\begin{array}{lll}A_{1} & & 0\\ & \ddots & \\0 & & A_{s}\end{array}\right)$

$0\cdots\cdots\cdots 0-a_{0}$

:.
1 :: $-a_{1}$

where $A_{1}=A_{2}=\cdots=A_{s}=0$
$\cdot..$

$0^{:}$ $::.\cdot$.
$\in GL(h, Q)$ ,

$\dot{0}^{:}$

$0$ $1-a_{h-1}$
:

and $f(x)=x^{h}+a_{h-1}x^{h-1}+\cdots+a_{0}$ . Considering the isogeny whose rational rep-
resentation is $P$, we may assume that the analytic representation $\omega$ of $\phi$ is a

diagonal matrix $\left(\begin{array}{lll}\alpha_{1} & & 0\\ & \ddots & \\0 & & \alpha_{n}\end{array}\right)$ and the rational representation $\Omega$ of $\phi$ is $\left(\begin{array}{lll}A_{1} & & 0\\ & \ddots & \\0 & & A_{s}\end{array}\right)$ . Then

let $G$ be the period matrix, and we have $\omega G=G\Omega$ . We only have to compare
each component of $\omega G$ with the corresponding component of $ G\Omega$ to complete the
proof. $(q.e.d.)$

Conversely suppose complex numbers $\{g_{ij}\}$ are given. Is $G(g_{ij})$ the period

matrix of some complex torus ? Since $\left(\begin{array}{l}0\omega\\ 0 \overline{\omega}\end{array}\right)(\frac{G}{G})=(\frac{G}{G})\Omega$ , $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ have to

satisfy the following condition $(\#)$ ;
$(\#)$ the image of $\phi$ by any isomorphism of $Q(\phi)$ into $C$ appears just $s$ times in
$\alpha_{1},$

$\cdots$ , $\alpha_{n},\overline{\alpha}_{1},$ $\cdots,\overline{\alpha}_{n}$ (where bl means the complex conjugate of $\alpha$ ).

THEOREM 2-4. We assume $\alpha_{1},$ $\cdots,$ $\alpha_{n}$ satisfy the condition $(\#)$ . Then if $g_{ij}$

$(i=1, \cdots, s, j=1, \cdots, n)$ are generally given, $G(g_{ij})$ is the period matrix of some
complex torus. (That is, the subset in $C^{sn}$ composed of all $\{g_{ij}\}$ such that $G(g_{ij})$

is a period matrix is open dense in $C^{sn}.$ )

PROOF. Let $X_{ij}(i=1, \cdots, s, j=1, \cdots n)$ be $ns$ variables, and we only have

to prove that $\det(\frac{G(X_{ij})}{G(X_{ij})})=0$ is a non-trivial equation. Let $\phi_{1},$ $\cdots$
$\oint h$ be the

images of $\phi$ by all the isomorphisms of $Q(\phi)$ into $C$ , and put

$\Phi=($ $1\dot{i}$
$\dot{\phi}_{n}^{1}\phi.\cdot.\cdot.\cdot\phi_{\dot{h}-1}^{h-1}\phi_{h}^{1}$).

Then we have

$\det(\frac{G(X_{ij})}{G(X_{ij})})=X_{\$ 1}^{11}\Phi X_{ss}^{*}\Phi X_{*}^{*}\Phi\cdot.\cdot..\cdot X_{i,:}^{*_{\$}}\Phi:.=X_{s1}^{:_{*..\dot{x}_{s^{s}}^{:_{*_{S}}^{*}}}^{*}}X_{11}.\cdots X_{1}(\det\Phi)^{s}$

where $X_{ij}^{*}(i, j=1,2, \cdots, s)$ are diagonal matrices such that all $X_{ij}$ and all $\overline{X}_{ij}$

appear once and only once in their diagonal components. Since $\det\Phi\neq 0$, we
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only have to prove the following lemma to complete the proof.

LEMMA 2-5. Let $f(x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m})$ be a polynomial of $2m$ variables
$x_{1},$ $\cdots,$ $x_{m},$ $y_{1},$ $\cdots,$ $y_{m}$ with coefficients in C. If $f(z_{1}, \cdots z_{m},\overline{z}_{1}, \cdots,\overline{z}_{m})=0$ for
any $m$ complex numbers $z_{1},$ $\cdots,$ $z_{m}$ , then $f=0$ as a polynomial.

PROOF. It is easily seen that we may assume $m=1$ . Put $f(x, y)=F_{p}(x)y^{p}$

$+\cdots+F_{0}(x)$ . If $f(z,\overline{z})=0,\overline{z}$ is a root of the algebraic equation $F_{p}(z)y^{p}+\cdots+$

$F_{0}(z)=0$ with an unknown $y$ . If $p>0,\overline{z}$ is locally a holomorphic function of $z$

on an open subset in $C$ . That is a contradiction. Therefore $p=0$ . Then it is
clear that $f=0$ since $F_{0}(z)=0$ for any $z$ . $(q. e. d.)$

\S 3. Invariant subtori.

Let $T$ be a complex torus and $T^{\prime}$ its subtorus. We call $T^{\prime}$ invariant through-

out this paper if the image of $T^{\prime}$ by any endomorphism of $T$ is contained in $T^{\prime}$ .
Of course $T$ itself and $\{0\}$ are invariant subtori. We call each of them a trivial
invariant subtorus.

THEOREM 3-1. If a complex torus $T$ has no non-trivial invariant subtorus.
Then $T$ is isogenous to the direct sum of some copies of a simple torus. (A com-
plex torus is called simple if it has no subtorus but itself and $\{0\}.$ )

PROOF. Let $T^{\prime}$ be a simple subtorus which is not $\{0\}$ . The set $\Lambda=$

$\{\lambda(T^{\prime})|\lambda\in End(T)\}$ is a finite set. In fact, since any $\lambda(T^{\prime})$ is simple, if $\Lambda^{\prime}=$

$\{\lambda_{1}(T^{\prime}), \cdots, \lambda_{m}(T^{\prime})\}$ be a subset of $\Lambda$ ( $\lambda_{i}(T^{\prime})\neq\lambda_{j}(T^{\prime})$ if $i\neq j$), $T_{0}=\lambda_{1}(T^{\prime})+\cdots+$

$\lambda_{m}(T^{\prime})$ is isogenous to the direct sum $\lambda_{1}(T^{\prime})\oplus\cdots\oplus\lambda_{m}(T^{\prime})$ which is isogenous to

the direct sum of $m$ copies of $T^{\prime}$ . So $\Lambda$ is a finite set. Put $\Lambda^{\prime}=\Lambda$ especially,

and $T_{0}=\lambda_{1}(T^{\prime})+\cdots+\lambda_{m}(T^{\prime})$ is an invariant subtorus which is not $\{0\}$ . There-

fore $T_{0}=T$, that is, $T$ is isogenous to the direct sum of $m$ copies of a simple

subtorus $T^{\prime}$ . $(q. e. d.)$

THEOREM 3-2. Let $T^{\prime}$ be an invariant svbtorus of a complex torus T. Then

we have
i) $rank_{Z}End(T)\leqq rank_{Z}End(T/T^{\prime})+rank_{Z}Hom(T, T^{\prime})$

ii) $rank_{Z}End(T)\leqq rank_{Z}End(T^{\prime})+rank_{Z}Hom(T/T^{\prime}, T)$ .

PROOF. We define an homomorphism $\Phi$ : End $(T)\rightarrow End(T^{\prime})$ by the natural
restriction. It is clear that the kernel of $\Phi$ can be considered to be a subset of
$Hom(T/T^{\prime}, T)$ , so ii) is proved. Considering similarly the natural homomorphism
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$\Phi^{\prime}$ : End $(T)\rightarrow End(T/T^{\prime})$ , we have i). $(q.e.d.)$

COROLLARY 3-3. Let $T$ be a complex torus of dimension $n$ . If $rank_{Z}End(T)$

$>2n^{2}-2n+2$ , there exists an integer $m>1$ such $th2tT$ is isogenous to the direct
sum of $m$ copies of a simple torus.

PROOF. Let $T^{\prime}$ be an invariant subtorus and $k$ its dimension. By ii) we have
$2n^{2}-2n+2<rank_{Z}End(T)\leqq rank_{Z}End(T^{\prime})+rank_{Z}Hom(T/T^{\prime}, T)\leqq 2k^{2}+2(n-k)n$ .
So we have $k=0$ or $n$ . On the other hand if $T$ is simple, $rank_{Z}End(T)\leqq 2n$ .
Therefore $T$ is isogenous to the direct sum of $m$ copies of a simple torus for
some $m>1$ . $(q.e.d.)$

We will use the corollary to prove the following proposition which is a
special case of Theorem 1-2

PROPOSITION. Let $T$ be complex torus of dimension $n$ . If the rank of End $(T)$

is $2n^{2},$ $T$ is isogenous to the direct sum of $n$ copies of an elliptic curve $C$ with
complex multiplication.

PROOF. We may assume $n>1$ . Then since $rank_{Z}End(T)=2n^{2}>2n^{2}-2n-2$,
$T$ is isogenous to the direct sum of some copies of a simple torus $T^{\prime}$ . Let $r$

be the dimension of $T^{\prime}$ , and $rank_{Z}End(T)=rank_{Z}M(n/r, End(T^{\prime}))$ , therefore $2n^{2}$

$\leqq(n/r)^{2}(2r)=2n^{2}/r$ . So $r=1$ and $rank_{Z}End(T^{\prime})=2$ . $(q. e.d.)$

REMARK. Let $T$ and $T_{1}$ be two complex tori and $T^{\prime}$ and $T_{1}^{\prime}$ their subtori
respectively. We call the pair $(T^{\prime}, T_{1}^{\prime})$ I-pair if the image of $T^{\prime}$ by any homo-
morphism of $T$ into $T_{1}$ is contained in $T_{1}^{\prime}$ . If $T$ and $T_{1}$ have no non-trivial
I-pair, $T_{1}$ is isogenous to the direct sum of copies of a simple torus. And we
have equations which are similar to i) and ii) in Theorem 3-2. Therefore if
$Hom(T, T_{1})$ is of the maximal rank, $T_{1}$ is isogenous to the direct sum of copies

of an elliptic curve. Considering dual tori, we can see that $T$ is also isogenous
to the direct sum of copies of an elliptic curve. Thus Theorem 1-2 itself can
be proved.

Now let $T$ be a complex torus such that a division algebra $D$ is contained
in $End^{Q}(T)$ as a subalgebra. If $T^{\prime}$ is a non-trivial invariant subtorus, $\Phi$ and $\Phi^{\prime}$

in the proof of Theorem 3-2 induce the following Q-algebra homomorphisms;

$\Phi^{Q}$ : $End^{Q}(T)\rightarrow End^{Q}(T^{\prime})$

$\Phi^{JQ}$ : $End^{Q}(T)\rightarrow End^{Q}(T/T^{\prime})$ .
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$\Phi^{Q}$ is injective on $D$ . In fact, if not, there exists an element of $D$ such that
$\Phi^{Q}(\phi)=0$ then $\phi(T^{\prime})=\{0\}$ . But such a $\phi$ cannot be an isogeny. Similarly $\Phi^{\prime Q}$ is
injective on $D$ , too. Hence we may consider $D$ a subalgebra of $End^{Q}(T^{\prime})$ and
$End^{Q}(T/T^{\prime})$ .

THEOREM 3-3. Let $T$ be a complex torus of dimension $n$ . If $End^{Q}(T)$ con-
tains a division algebra of dimension $2n$ as a Q-vector space, $T$ is isogenous to the
direct sum of some copies of a simple torus.

PROOF. If $T$ has a non-trivial invariant subtorus $T^{\prime},$ $End^{Q}(T^{\prime})$ contains a
division algebra of dimension $2n$ . But this is impossible. Hence $T$ has no non-
trivial invariant subtorus, so that, by theorem 3-1, $T$ is isogenous to the direct
sum of some copies of a simple torus. $(q.e.d.)$

\S 4. Complex tori of dimension 2.

Throughout this section $T$ will denote a complex torus of dimension 2. In
this section we will study the structure of $End^{Q}(T)$ .

(1) The case that $T$ is simple.

If $T$ is simple any endomorphism is an isogeny, so $End^{Q}(T)$ is a division
algebra. Let $K$ be one of the maximal commutative subfields of $End^{Q}(T)$ and $d$

its degree over $Q$ , and $d$ divides 4, so $d=1,2$ or 4. If $d=1,$ $End^{Q}(T)=Q$ .
a) The case of $d=4$ .
In this case $End^{Q}(T)=K$ is isomorphic to a quartic field $Q[X]/(f(X))$ over

$Q$ where $f(X)$ is an irreducible polynomial of degree 4. By Theorem 2-3, there
exist complex numbers $\zeta,$ $\xi$ such that $\{\zeta, \xi,\overline{\zeta},\overline{\xi}\}$ is the set of all roots of the
equation $f(X)=0$ and $T$ is isogenous to

$T^{\prime}(\zeta, \xi)=C^{2}/\left(\begin{array}{llll}1 & \zeta & \zeta^{2} & \zeta^{3}\\1 & \xi & \xi^{2} & \xi^{3}\end{array}\right)$ .

Conversely let $f(X)$ be an irreducible polynomial of degree 4 and $\zeta,$ $\xi$ two com-
plex numbers such that $\{\zeta, \xi,\overline{\zeta},\overline{\xi}\}$ is the set of all roots of the equation $f(X)=0$ .
Then $T^{\prime}(\zeta, \xi)$ is a complex torus such that $End^{Q}(T^{\prime}(\zeta, \xi))$ contains a division
algebra $Q(\zeta)$ of dimension 4. If $T^{\prime}(\zeta, \xi)$ is not simple, by Theorems 3-3, $T^{\prime}(\zeta, \xi)$

is isogenous to the direct sum of two copies of an eliptic curve $C=C/(1, z)$ . In
other words there exist $\omega\in GL(2, C)$ and $\Omega\in GL(4, Q)$ such that

$\left(\begin{array}{llll}1 & \zeta & \zeta^{2} & \zeta^{3}\\1 & \xi & \xi^{2} & \xi^{3}\end{array}\right)\Omega=\omega\left(\begin{array}{llll}1 & z & 0 & 0\\0 & 0 & 1 & z\end{array}\right)$ . (1)

Let $F$ be the minimal Galois extension of $Q$ containing $Q(\zeta),$ $G^{*}$ its Galois group
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and $\sigma$ one of elements of $G^{*}$ such that $\zeta^{\sigma}=\xi$ . Put $\omega=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ and (1) implies that

$\alpha,$ $\beta,$ $\alpha z$ and $\beta z$ are all contained in $Q(\zeta)$ and $\gamma,$
$\delta,$

$\gamma z$ and $\delta z$ are in $Q(\xi)$ and
moreover $\alpha^{\sigma}=\gamma,$ $(\alpha z)^{\sigma}=\gamma z,$ $\beta^{\sigma}=\delta,$ $(\beta z)^{\sigma}=\delta z$ . So $z$ is contained in both $Q(\zeta)$ and
$Q(\xi)$ , and $z^{\sigma}=z$ . We put $K^{\prime}=Q(z)$ , then $Q(\zeta)$ is a quadratic extension of $K^{\prime}$ and
$\xi$ is the conjugate of $\zeta$ over $K^{\prime}$ . Therefore $Q(\zeta)=Q(\xi)$ and $Q(\overline{\zeta})=Q(\overline{\xi})$ . By the
way there exist only four distinct elements in all $\zeta^{\rho}(\rho\in G^{*})$ , and there exist at

most two elements $\rho$ of $G^{*}$ such that $\zeta^{\rho}=\zeta$ . In fact if $\zeta^{\rho}=\zeta,$ $\xi^{\rho}=\xi$, so $\overline{\zeta}^{\rho}$ must

be $\overline{\zeta}$ or $\overline{\xi}$ . Hence the order of $G^{*}$ is 4 or 8. Making $\zeta,$ $\xi,\overline{\zeta},\overline{\xi}$ correspond to
1, 2, 3, 4 respectively we consider $G^{*}$ to be a subgroup of the symmetric group
$S_{4}$ . Then $G^{*}=V_{4}=\{id, $(12) $(34), $(13) $(23), $(14) $(23)\}$ or $G^{*}=V_{4}\cup(12)V_{4}=\{id,$ (12),

(12)(34), (34), (13)(24), (1423), (1324), (14)(23)} where $id$ ’ means the unit element
of the group.

Conversely if $G^{*}$ is one of those subgroups, putting $ z=\zeta+\xi$ , it is easily seen
that $T^{\prime}(\zeta, \xi)$ is not simple.

b) The case of $d=2$ .
In this case $K$ is isomorphic to a quadratic field $Q(\sqrt{m})$ where $m$ is a

square-free integer. By Theorem 2-3 $T$ is isogenous to

$C^{2}/\left(\begin{array}{llll}a & \sqrt{m}a & b & \sqrt{m}b\\c & \sqrt{m}c & d & \sqrt{m}d\end{array}\right)$ or $C^{2}/\left(\begin{array}{llll}a & \sqrt{m}a & b & \sqrt{m}b\\c & -\sqrt{m}c & d & -\sqrt{n\iota}d\end{array}\right)$

for some complex numbers $a,$ $b,$ $c,$
$d$ . Since $T$ is simple, $abcd\neq 0$, so we may

assume $a=c=1$ . But $\left(\begin{array}{llll}1 & \sqrt{m} & b & \sqrt{m}b\\1 & \sqrt{m} & d & \sqrt{m}d\end{array}\right)$ cannot be a period matrix of a simple

torus. Hence $T$ is isogenous to a complex torus

$T_{1}(m;b, d)=C^{2}/\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)$

where $b,$ $d$ are complex numbers such that $b,$ $d\not\in R$ if $m>0$ and $b\neq\overline{d}$ if $m<0$ .
Conversely if such $m,$ $b,$ $d$ are given, $\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)$ is certainly a period

matrix of some complex torus $T_{1}(m;b, d)$ .

LEMMA 4-1. $T_{1}(m;b, d)$ defned above is not simple if and only if the fol-
lowing condition $i^{*}$ ) is satisfied.
$i^{*})$ There exist rational numbers $x,$ $y$ and an element $z$ of $Q(\sqrt{m})$ with are not
all zero and satisfy

(t) $2xbd+zb+z^{\sigma}d+2y=0$ (where $z^{\sigma}$ means the conjugate of $z$).

$(t\mathfrak{f})$ $N(z/2)+xy\in N(Q(\sqrt{m}))$ (where $N(z)=zz^{\sigma}$ for $z\in Q(\sqrt{m})$ ).

PROOF. Let $x,$ $y,$ $z_{1},$ $z_{2},$ $b_{1},$ $b_{2},$ $b_{3},$ $b_{4}$ are given rational numbers such that
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$(x, y, z_{1}, z_{2})\neq(0,0,0,0)$ and $(b_{1}, b_{2}, b_{3}, b_{4})\neq(0,0,0,0)$ and consider simultaneous
equations with unknowns $X_{1},$ $X_{2},$ $X_{3},$ $X_{4}$ ,

$x=b_{3}X_{4}-b_{4}X_{3}$

$y=b_{1}X_{2}-b_{2}X_{1}$

(1)
$z_{1}=b_{1}X_{4}-b_{2}X_{3}-b_{4}X_{1}+b_{3}X_{2}$

$z_{2}=b_{1}X_{3}-mb_{2}X_{4}-b_{3}X_{1}+mb_{4}X_{2}$ ,
that is,

$(-b_{3}^{2}-b0$ $ m^{3}b_{4}b^{0_{1}}b-b_{1}-b_{2}^{4}0_{b}-m^{1}b_{2}bb0^{3}|(XXX_{3}^{1}X_{4}^{2}\}=\left(\begin{array}{l}x\\y\\z_{1}\\z_{2}\end{array}\right)\cdot$

Put $z=z_{1}+\sqrt{m}-1_{Z_{2}}$ If $x,$ $y,$ $z$ satisfy (t) and (1) has a solution $X_{i}=a_{i}(i=1,2$ ,

3, 4), $T_{1}(m;b, d)$ is not simple. In fact let $\Omega$ be an element of $GL(4, Q)$ such
that

$\Omega=\left\{\begin{array}{lll}a_{1} & b_{1} & \\a_{2} & b_{2} & \\ & & *\\a_{3} & b_{3} & \\a_{4} & b_{4} & \end{array}\right\}$

and $\omega$ an element of $GL(2, C)$ such that

$\omega=(-\alpha*\beta*)$

where $\alpha=b_{1}-b_{2}\sqrt{m}+b_{3}d-b_{4}d\sqrt{m},$ $\beta=b_{1}+b_{2}\sqrt{m}+b_{3}b+b_{4}b\sqrt{m}$. Then we have
by (1) and (t)

$\omega\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)\Omega=(0*$ $0*$ $**$ $**$).
Conversely if $T_{1}(m;b, d)$ is not simple, there exist such an $\omega$ and an $\Omega$ . There-
fore there exist $x,$ $y,$ $z$ which satisfy (\dagger ) and $b_{1},$ $b_{2},$ $b_{3},$ $b_{4}$ such that (1) has a
solution.

On the other hand (1) has a solution if and only if

$rank[-b_{4}^{2}-b0$ $m^{b}b_{4}b_{3}^{1}0-b_{1}-b^{4}0_{b^{2}}$ $-m^{1}b_{2}b_{3}b0zzy_{2}x_{1}|=rank\left\{\begin{array}{l}0 0 -b_{4} b_{3}\\-b_{2} b_{1} 0 0\\-b_{4} b_{3} -b_{2} b_{1}\\-b_{3}mb_{4} b_{1} -mb_{2}\end{array}\right.$
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It is easily seen that this equation is equivalent to the following equation (2);

(2) $x(b_{1}^{2}-mb_{2}^{2})+y(b_{3}^{2}-mb_{4}^{2})+z_{2}(b_{1}b_{4}-b_{2}b_{3})-z_{1}(b_{1}b_{3}-mb_{2}b_{4})=0$ .
Put $\epsilon=b_{1}+\sqrt{m}b_{2}$ and $\eta=b_{3}+\sqrt{m}b_{4}$ , and (2) implies

(3) $\epsilon\epsilon^{\sigma}x+\eta\eta^{\sigma}y-(\epsilon\eta^{\sigma}z+\epsilon^{\sigma}\eta z^{\sigma})/2=0$ .
There exist $\epsilon$ and $\eta$ which are not both zero and satisfy (3) if and only if ( $tT\rangle$

is satisfied. In fact, put $\nu=2y\eta-z\epsilon$ , and (3) implies

$(N(z/2)-xy)\epsilon\epsilon^{\sigma}=\nu\nu^{\sigma}/4\in N(Q(\sqrt{m}))$ .
Hence the proof is completed.

Let $R$ be a commutative ring and $\alpha,$ $\beta$ elements of $R$ . We denote by $(\alpha, \beta)_{R}$

the quatenion over $R$ which is generated as a R-module by $\{1, e_{1}, e_{2}, e_{3}\}$ where
1 is the unit and $e_{1}^{2}=\alpha,$ $e_{2}^{2}=\beta,$ $e_{1}e_{2}=-e_{2}e_{1}=e_{3}$ .

We will call a complex torus of dimension 2 which is isogenous to $T_{1}(m;b, d)$

such that there exist $x,$ $y,$ $z$ which satisfy (t) but there exist no $x,$ $y,$ $z$ which
satisfy both (\dagger ) and (tt) of a quatenion type. By the above lemma a complex
torus of a quatenion type is simple.

THEOKEM 4-2. Let $T$ be a simple complex torus of dimension 2. End $(T)$ is
a non-commutative ring of rank 4 if and only if $T$ is of a quatenion type. $In$

this case, $T$ is isogenous to $T_{1}(m;b, d)$ such that $bd=q$ is a rational number and
$End^{Q}(T)$ is isomorphic to $(m, q)_{Q}$ .

PROOF. First assume that $T$ is of a quatenion type. Then we may assume
that $T=T_{1}(m;b, d)$ and there exist $x,$ $y,$ $z$ such that $2xbd+zb+z^{\sigma}d+2y=0$ . Since
(tt) is not satisfied, $xy\neq 0$ and we may assume $x=1$ . If we put $b^{\prime}=b-z^{\sigma}$ , $d’=$

$d-z$ and $q=zz^{\sigma}-y\in Q$ , then $b^{\prime}d^{\prime}=q$ and $T=T_{1}(m;b, d)$ is isogenous to $T_{1}(m$ ,
$b^{\prime},$ $d^{\prime}$ ) by an isogeny the rational representation of which is

$M(0001$ $0001-z0^{1}z_{2}1-m_{1}z0^{z_{1}^{2}}$

where $z=z_{1}+z_{2}\sqrt{m}$ and $M$ is an integer which is large enough to make coeffi-
cients integral. It can be easily seen that $End^{Q}(T_{1}(m;b^{\prime}, d^{\prime}))$ is a quatenion
generated as a Q-module by four elements whose analytic representations are

$\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right),$ $(^{\sqrt{m}0}0-\sqrt{m}),$ $\left(\begin{array}{ll}0 & b^{\prime}\\d\prime & 0\end{array}\right),$ $(_{-\sqrt{m}^{0}}$

d’
$\sqrt{m}b^{\prime}0)$ .
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That implies the “if” part of the theorem, so we next prove the “only if” part

of the theorem. If End $(T)$ is a non-commutative ring of rank 4, $T$ is clearly

isogenous to $T_{1}(m;b, d)$ for some complex numbers $b,$ $d$ , and we may assume
that $T=T_{1}(m;b, d)$ . We denote by $\phi$ the endomorphism whose analytic repre-

sentation is $(^{\sqrt{m}0}0-\sqrt{m})$ . Let $\psi$ be an endomorphism which is not commutative

with $\phi$ and $\left(\begin{array}{ll}s & u\\vt & \end{array}\right)$ its analytic representation. Since

$(0-\sqrt{m}^{0})\left(\begin{array}{ll}s & u\\vt & \end{array}\right)(0-\sqrt{m})^{-1}-\left(\begin{array}{ll}s & u\\vt & \end{array}\right)=\left(\begin{array}{ll}0 & -2u\\-2v & 0\end{array}\right)$ ,

There exists an endomorphism $\psi^{\prime}$ whose rational representation is $\left(\begin{array}{ll}0 & u^{\prime}\\v\prime & 0\end{array}\right)$ for

some $u^{\prime},$ $v^{\prime}$ . Since End $(T)$ is not commutative, the degree of $\psi^{\prime}$ over $Q$ is 2, so
there exist rational numbers $a_{1},$ $a_{2}$ such that $\psi^{\prime 2}+a_{1}\psi^{\prime}+a_{2}=0$ . Hence

$\left(\begin{array}{lll}u & \prime v^{\prime} & 0\\ & 0 & uv^{\prime}\end{array}\right)+a_{1}\left(\begin{array}{ll}0 & u^{\prime}\\v & 0\end{array}\right)+a_{2}=0$

That implies $a_{1}=0$ and $u^{\prime}v^{\prime}$ is a rational number. Let $\Omega=(\Omega_{ij})$ be the rationaI
representation of $\psi^{\prime}$ , and

$|\Omega_{11}\Omega_{12}\Omega_{13}\Omega_{14}$

$\left(\begin{array}{ll}0 & u^{\prime}\\v & 0\end{array}\right)\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)=\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)\Omega_{31}^{21}\Omega\Omega_{32}^{22}\Omega\Omega_{33}^{23}\Omega\Omega_{34}^{24}\Omega$

$|\Omega_{41}\Omega_{42}\Omega_{43}\Omega_{44}$

Put $\alpha_{1}=\Omega_{11}+\sqrt{m}\Omega_{21}$ and $\alpha_{2}=\Omega_{31}+\sqrt{m}\Omega_{41}$ , and $u^{\prime}=\alpha_{1}+b\alpha_{2}$ and $v^{\prime}=\alpha_{1}^{\sigma}+d\alpha_{2}^{\sigma}$

where $\alpha_{1}$ and $\alpha_{2}$ are not both zero. Since $u^{\prime}v^{\prime}$ is a rational number, putting
$x=\alpha_{2}\alpha_{2}^{\sigma}/2,$ $y=(\alpha_{1}\alpha_{1}^{\sigma}-u^{\prime}v^{\prime})/2$ and $z=\alpha_{2}\alpha_{2}^{\sigma}$, the equation (t) is satisfied. In fact

$0=(\alpha_{1}+b\alpha_{2})(\alpha_{1}^{\sigma}+d\alpha_{2}^{\sigma})-u^{\prime}v^{\prime}=\alpha_{2}\alpha_{2}^{\sigma}bd+\alpha_{2}\alpha_{1}^{\sigma}b+\alpha_{2}^{\sigma}\alpha_{1}d+\alpha_{1}\alpha_{1}^{\sigma}-u^{\prime}v^{\prime}$ . $(q.e.d.)$

(2) The case that $T$ is not simple nor isogenous to the direct sum of two

elliptic curves.
If $T$ has a subtorus of dimension 1, we may assume the period matrix of

$T$ is

$\left(\begin{array}{llll}1 & z_{1} & 0 & w\\0 & 0 & 1 & z_{2}\end{array}\right)$

for some complex numbers $z_{1},$ $Z_{2},$ $w$ .

LEMMA 4-3. The complex torus $T=C^{2}/\left(\begin{array}{llll}1 & z_{1} & 0 & w\\0 & 0 & 1 & z_{2}\end{array}\right)$ is isogenous to the direct

sum of two elliptic curves if and only if $w=q_{0}+q_{1}z_{1}+q_{2}z_{2}+q_{3}z_{1}z_{2}$ for some rational
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numbers $q_{0},$ $q_{1},$ $q_{2},$ $q_{3}$ .

PROOF. If $w=q_{0}+q_{1}z_{1}+q_{2}z_{2}+q_{3}z_{1}z_{2}$ , it is easy to transform $\left(\begin{array}{llll}1 & z_{1} & 0 & u)\\0 & 0 & 1 & z_{2}\end{array}\right)$ by

some isogeny into $\left(\begin{array}{l}1z_{1}00\\001z_{2}\end{array}\right)$ . Conversely if $T$ is isogenous to the direct sum
of elliptic curves, there exist an element $\omega=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ of $GL(2, C)$ and an element
$\Omega=(a_{ij})$ of $GL(4, Q)$ and complex numbers $x,$ $y$ such that

$\omega\left(\begin{array}{llll}1 & z_{1} & 0 & w\\0 & 0 & 1 & z_{2}\end{array}\right)=\left(\begin{array}{llll}1 & x & 0 & 0\\0 & 0 & 1 & y\end{array}\right)\Omega$ ,

that is,

$\left(\begin{array}{llll}a & az_{1} & b & aw+bz_{2}\\c & cz_{1} & d & cw+dz_{2}\end{array}\right)=\left(\begin{array}{llll}a_{11}+a_{21}x & a_{12}+a_{22}x & a_{13}+a_{23}x & a_{14}+a_{24}x\\a_{31}+a_{41}y & a_{32}+a_{42}y & a_{33}+a_{43}y & a_{34}+a_{44}y\end{array}\right)$ .

Eliminating $x$ from the equation of the first line, we have

$(a_{11}a_{22}-- a_{21}a_{12})w=(a_{22}a_{14}-a_{24}a_{11})+(a_{24}a_{11}-a_{12}a_{21})z_{1}+(a_{12}a_{23}-a_{22}a_{13})z_{2}$

$+(a_{21}a_{13}-a_{23}a_{11})z_{1}z_{2}$ .
Considering the second line, if necessary, we may assume $a=a_{11}+a_{21}x\neq 0$ . Since
$z_{1}$ is not a rational number, $a=a_{11}+a_{21}x$ and $az_{1}=a_{12}+a_{22}x$ are linearly independ-
ent over $Q$ , hence $a_{11}a_{22}-a_{21}a_{12}\neq 0$ . Therefore $w$ is a linear combination of 1,
$z_{1},$ $z_{2},$ $z_{1}z_{2}$ with coefficients in Q. $(q. e.d.)$

LEMMA 4-4. Let $T$ be a complex torus which is not simple nor isogenous to
the direct sum of two elliptic curves. Then $T$ has the unique subtorus $T^{\prime}$ of
dimension 1, which is invariant. If $End^{Q}(T)\neq Q,$ $T^{\prime}$ is isogenous to the factor
torus $T/T^{\prime}$ . Therefore $T$ is isogenous to a complex torus of the following type;

$T_{2}(z;w)=C^{2}/\left(\begin{array}{llll}1 & z & 0 & w\\0 & 0 & 1 & z\end{array}\right)$ .

PROOF. Of course $T$ has a subtorus $T^{\prime}$ of dimension 1. If there exists
another subtorus $T$ “ of dimension 1, $T$ is isogenous to $T^{\prime}\oplus T^{\prime\prime}$ . Hence $T^{\prime}$ is
the unique subtorus of dimension 1. Now assume that $End^{Q}(T)\neq Q$ . If there
exists an endomorphism $\phi$ such that $\phi(T)=T^{\prime},$ $T^{\prime}$ is contained in the kernel of
$\phi$ , so $\phi$ induces an isogeny of $T/T^{\prime}$ to $T^{\prime}$ . If there does not exist such a $\phi$ ,
$End^{Q}(T)$ is division algebra. We have seen in \S 3 that $End^{Q}(T)$ is considered to
be a subalgebra of $End^{Q}(T^{\prime})$ and of $End^{Q}(T/T^{\prime})$ . Since $End^{Q}(T)\neq Q$ , we have
$End^{Q}(T^{\prime})\cong End^{Q}(T)\cong End^{Q}(T/T^{\prime})$ . So $T^{\prime}$ is isogenous to $T/T^{\prime}$ . $(q.e.d.)$

Now to study the endomorphism ring of $T_{2}(z;w)$ we prepare a lemma.
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LEMMA 4-5. Let $T=E/G$ be a complex torus of dimension $n$ and $T^{\prime}$ an
invariant subtorus of dimension $r$ . If $(1_{r}T^{\prime})$ and $(1_{s}T^{\prime\prime})$ are the period matrices

of $T^{\prime}$ and $T/T^{\prime}$ respectively where $r+s=n$ , then we can choose a C-base of $E$

and a Z-base of $G$ such that the period matrix is of the following type;

$(_{0^{r}}^{1}0_{s}1T_{0}^{\prime}\tau^{*}’)$ .

Then the analytic representation $\omega$ and the rational representation $\Omega$ of any

element of $End^{Q}(T)$ are matrices of the following types;

$|\leftarrow r\rightarrow|\leftarrow s\rightarrow|$

$\omega=[$ $0*$ $**$ $]\overline{\underline{\frac{r\uparrow\downarrow}{\uparrow\downarrow s}}}$
$\Omega=$

$|\leftarrow r\rightarrow|\leftarrow s\rightarrow|\leftarrow r\rightarrow|\leftarrow s\rightarrow|$

$\uparrow$

$*$ $*$ $*$ $*$ $r$

$\frac{\downarrow}{\uparrow}$

$0$ $*$ $0$ $*$ $s$

$\frac{\downarrow}{\uparrow}$

$*$ $*$ $*$ $*$ $r$

$\frac{\downarrow}{\uparrow}$

$0$ $*$ $0$ $*$

$\backslash $

$\underline{\downarrow s}$

PROOF. Putting $T=E/G,$ $T^{\prime}=E^{\prime}/G^{\prime}(E\subset E^{\prime}),$ $E^{\prime}$ is invariant by the linear

extension of any endomorphism. The lemma follows immediately.

We now pass on to the consideration on a complex torus

$T_{2}=T_{2}(z_{J}w)=C^{2}/\left(\begin{array}{llll}1 & 0 & z & w\\0 & 1 & 0 & z\end{array}\right)$

and $End^{Q}(T_{2})$ . Let

$\omega=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right)$ and $\Omega=(a_{c_{11}^{21}}a_{c_{21}}^{11}$
$a_{c_{22}}a_{c_{12}^{22}}^{12}$

$d_{21}^{11}d^{11}b_{21}b$ $d_{22}^{12}d^{12}b_{22}b$

be the analytic representation and the rational representation of an endomorphism

of $T_{2}$ . $\gamma=a_{21}=b_{21}=c_{21}=d_{21}=0$ by lemma 4-5. Since

$\omega\left(\begin{array}{llll}1 & 0 & z & w\\0 & 1 & 0 & z\end{array}\right)=\left(\begin{array}{llll}1 & 0 & z & w\\0 & 1 & 0 & z\end{array}\right)\Omega$ ,

we have
i) $c_{11}z^{2}+(a_{11}-d_{11})z-b_{11}=0$

ii) $c_{22}z^{2}+(a_{22}-d_{22})z-b_{22}=0$

iii) $\{(a_{11}-d_{22})+(c_{11}+c_{22})z\}w=b_{12}+(d_{12}-a_{12})z-c_{12}z^{2}$ .
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a) The case of $[Q(z):Q]\geqq 3$ .
Then i) and ii) imply that $a_{11}=d_{11},$ $a_{22}=d_{22},$ $c_{11}=b_{11}=c_{22}=b_{22}=0$, and hence

iii) implies
$(a_{11}-d_{22})w=b_{12}+(d_{12}-a_{12})z-c_{12}z^{2}$ .

If $a_{11}\neq d_{22},$ $T_{2}$ is isogenous to the direct sum of two elliptic curves. There-
fore $a_{11}=d_{22}$ and $b_{12}=c_{12}=0$ , $d_{12}=a_{12}$ . Hence the rational representation of
$End^{Q}(T_{2})$ is

$\{\left\{\begin{array}{llll}a & b & 0 & 0\\0 & a & 0 & 0\\0 & 0 & a & b\\0 & 0 & 0 & a\end{array}\right\}|a,$

$ b\in Q\int$

.

The dimension of $End^{Q}(T_{2})$ over $Q$ is 2, and the analytic representation of a
base is

$\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ , $\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right)$ .

$End^{Q}(T_{2})$ is isomorphic to $Q[X]/(X^{2})$ .
b) The case of $[Q(z):Q]=2$ .
Then we may assume that $z=\sqrt{m}$ where $m$ is a square-free integer. i) and

ii) imply $a_{11}=d_{11},$ $mc_{11}=b_{11},$ $a_{22}=d_{22},$ $mc_{22}=b_{22}$ . If $(a_{11}-d_{22})+(c_{11}+c_{22})z\neq 0,$ $w$ is
an element of $Q(z)$ and hence $T_{2}$ is isogenous to the direct sum of two elliptic
curves. Therefore $(a_{11}-d_{22})+(c_{11}+c_{22})z=0$ . This equation implies $a_{11}=d_{22}$ ,
$c_{11}+c_{22}=0$ and $b_{12}=mc_{12},$ $d_{12}=a_{12}$ . It follows that the rational representation of
$End^{Q}(T_{2})$ is

$\{(00ca$ $-bd_{c}am_{ab}o_{a}^{cd}0-mca,$ $b,$ $c,$

$d\in Q|$

.

The dimension of $End^{Q}(T)$ over $Q$ is 4 and the analytic representation of a
base is

$1_{2}=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ , $e_{1}=(\sqrt{m}-w)$ , $e_{2}=\left(\begin{array}{ll}0 & 1\\0 & 0\end{array}\right)$ , $e_{3}=(00\sqrt{nl}0)$ .

There are the following equation among those four elements;

$e_{1}1_{2}=e_{1}$ , $e_{2}1_{2}=e_{2}$ , $e_{1}^{2}=m1_{2}$ , $e_{2}^{2}=0$ , $e_{1}e_{2}=-e_{2}e_{1}=e_{3}$ .
Hence $End^{Q}(T)$ is isomorphic to $(m, 0)_{Q}$ .

(3) The case that $T$ is isogenous to the direct sum of two elliptic curves.
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There is no difficulty in this case. We may assume that $T=T^{\prime}\oplus T^{\prime\prime}$ for
some elliptic curves $T^{\prime}$ and $T$ “. If $T^{\prime}$ is isogenous to $T^{\prime\prime}$ , $End^{Q}(T)\cong$

$M(2, End^{Q}(T^{\prime}))$ . And if $T^{\prime}$ is not isogenous to $T^{\prime\prime},$ $End^{Q}(T)\cong End^{Q}(T^{\prime})\oplus End^{Q}(T$ “
$)$ .

Now we will summarize the facts we have seen in this section. Let $m,$
$m^{\prime}$

be integers which are square-free and $z,$
$z^{\prime}$ complex numbers which are not

contained in $R$ nor any quadratic field over $Q$ . Consider complex tori of the
following types.

I)

$T^{\prime}(\zeta, \xi)=C^{2}/\left(\begin{array}{llll}1 & \zeta & \zeta^{2} & \zeta^{3}\\1 & \xi & \xi^{2} & \xi^{3}\end{array}\right)$

where $\zeta,$ $\xi$ are algebraic numbers of degree 4 over $Q$ such that $\{\zeta, \xi,\overline{\zeta},\overline{\xi}\}$ is
the set of all conjugates of $\zeta$ over $Q$ . Moreover if we consider the Galois group
$G^{*}$ of $F=Q(\zeta, \xi,\overline{\zeta},\overline{\xi})$ to be a subgroup of $S_{4}$ by the correspondence $ 1-\zeta$ ,
$2-\xi,$ $3\leftarrow\div\overline{\zeta},$ $4-\overline{\xi},$ $G$ is not $V_{4}$ nor $V_{4}\cup(12)V_{4}$ .
11) (complex tori of quatenion types)

$T_{1}(m;b, d)=C^{2}/\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)$

where $b,$ $d$ are complex numbers which are not contained in $Q(\sqrt{m})$ , and $bd=q$

is a rational number which is not contained in $N(Q(\sqrt{m}))$ . And there is no
element $\alpha$ of $Q(\sqrt{m})$ but zero such that $\alpha b+\alpha^{\sigma}d$ is a rational number. Moreover
if $m>0,$ $b,$ $d$ are not real number, and if $m<0,$ $b\neq\overline{d}$ .
m) Simple complex tori of the following type

$T_{1}(77l;b, d)=C^{2}/\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)$

which are not isogenous to any complex torus of the type (I) nor the type (II).

If $m>0,$ $b,$ $d$ are not contained in $R$, and if $m<0,$ $b\neq\overline{d}$ .

IV)

$T_{2}(\sqrt{m} ; w)=C^{2}/(01\sqrt{m}001\sqrt{m}w)$

where $m<0$ , and $w$ is not contained in $Q(\sqrt{m})$ .

V)

$T_{2}(z;w)=C^{2}/\left(\begin{array}{llll}1 & z & 0 & w\\0 & 0 & 1 & z\end{array}\right)$

where $w$ is not contained in $Q+Qz+Qz^{2}$ .
VI) $T_{3}(\sqrt{m}, \sqrt{m})=C/(1\sqrt{m})\oplus C/(1\sqrt{m})$
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where $m<0$ .

$blI)$ $T_{3}(\sqrt{m}, \sqrt{m^{\prime}})=C/(1\sqrt{m})\oplus C/(1\sqrt{m}^{\prime})$

where $m,$ $77l^{\prime}<0$ and $m\neq m^{\prime}$ .
$11\mathbb{I})$ $T_{3}(\sqrt{m}, z)=C/(1\sqrt{m})\oplus C/(1z)$

where $m<0$ .
K) $T_{3}(z, z)=C/(1z)\oplus C/(1z)$ .
X) $T_{3}(z, z^{\prime})=C/(1z)\oplus C/(1z^{\prime})$

where $z^{\prime}\not\in Q(z)$ .

Then a complex torus $T$ of dimension 2 is isogenous to a complex torus of
one of the above types if and only if $End^{Q}(T)$ is isomorphic to a Q-algebra of
the following corresponding type.

1) Algebraic fields $Q(\zeta)$ of degree 4 over $Q$ .
1) Quatenions $(m, q)_{Q}$ such that $q$ is not contained in $N(Q(\sqrt{m}))$ .
m) Quadratic fields $Q(\sqrt{m})$ .
IV) Quatenions $(m, 0)_{Q}$ .
V) $Q[X]/(X^{2})$ .
VI) $M(2, Q(\sqrt{m}))$ where $m<0$ .
$V\mathbb{I})$ $Q(\sqrt{m})\oplus Q(\sqrt{|7l^{\prime}})$ where $\eta t,$ $m^{\prime}<0,$ $m\neq m^{\prime}$ .
$V\mathbb{I})$ $Q(\sqrt{t?l})\oplus Q$ where $m<0$ .
IX) $M(2, Q)$ .
X) $Q\oplus Q$ .

\S 5. Abelian varietis of dimension 2.

A complex torus $T$ is called an abelian variety if $T$ can be embedded in
some projective space, in other words, if there exists an ample Riemann form
on $T$. A complex torus of dimension 2 of the type VI), VII), $\backslash |m$ ), IX) or X) is
an abelian variety. And a complex torus of the type IV) or V) is not an abelian
variety. Then we will study complex tori of types I), $\Pi$ ) and m), that is,
simple tori.

Let $T=E/G$ be a complex torus of dimension $n$ where $E$ is C-vector space
and $G$ is its lattice subgroup. Fix bases of $E$ and $G$ , and let $G$ be the period

matrix of $T$ with respect to those bases. Put $(C\overline{C})=(\frac{G}{G})^{-1}$ where $ C\in$

$\Lambda I(2n\times n, C)$ . There exists a one-to-one correspondence between the set of
hermitian forms on $T$ (namely the set of hermitian forms $H$ on $E\times E$ such
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that $H(g, g^{\prime})$ is integral for any $g,$ $g^{\prime}\in G$ ) and the set of skew-symmetric

matrices $M$ of degree $2n$ with coefficients in $Z$ which satisfy

(1) ${}^{t}CMC=0$ .
In this correspondence an ample Riemann form on $T$ corresponds to an $M$ which
satisfies (1) and

(2) $\sqrt{-1}{}^{t}\overline{C}MC>0$ (namely $\sqrt{-1}{}^{t}\overline{C}MC$ is positive definite.)

$T$ is an abelian variety if and only if there exists a skew-symmetric matrix $M$

which satisfies (1) and (2). If $G=(1_{n}T),$ $C=\left(\begin{array}{l}-T\\1_{n}\end{array}\right)(T-\overline{T})^{-1}$ . Put $M=\left(\begin{array}{ll}A & B\\{}^{t}B & D\end{array}\right)$

where $A,$ $B,$ $D\in M(n, Z)$ and ${}^{t}A=-A,{}^{t}D=-D$ . Then (1), (2) imply respec-
tively

(1’) ${}^{t}TAT-{}^{t}TB+{}^{t}BT+D=0$ ,

(2’) $\sqrt{-1}({}^{t}TA\overline{T}-{}^{t}TB+{}^{t}B\overline{T}+D)>0$ .
When (1) is satisfied, (2) is equivalent to the following condition;

(2’) $\sqrt{-1}({}^{t}TA+{}^{t}B)(\overline{T}-T)>0$ .

When $n=2$ , put $T=\left(\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right),$
$A=\left(\begin{array}{ll}0 & x\\-x & 0\end{array}\right),$ $B=\left(\begin{array}{ll}p & q\\r & s\end{array}\right)$ and $D=\left(\begin{array}{ll}0 & y\\-y & 0\end{array}\right)$ , and (1)

implies

i) $x(\alpha\delta-\gamma\beta)-(q\alpha+s\gamma)+(p\beta+r\delta)+y=0$

and $(2^{\prime\prime})$ implies

$\sqrt{-1}\left(\begin{array}{ll}p-x\gamma & r+x\alpha\\ q-x\delta & s+x\beta\end{array}\right)\left(\begin{array}{ll}\overline{\alpha}-\alpha & \beta-\beta\\\overline{\gamma}-\gamma & \overline{\delta}-\delta\end{array}\right)>0$ ,

which is equivalent to the following two conditions;

a) $\sqrt{-1}\{p(\overline{\alpha}-\alpha)+q(\overline{\gamma}-\gamma)+x(\alpha\overline{\gamma}-\overline{\alpha}\gamma)\}>0$ ,

b) $(-1)\{(p-x\gamma)(s+x\beta)-(r+x\alpha)(q-x\delta)\}\{(\overline{\alpha}-\alpha)(\overline{\grave{o}}-\delta)-(\overline{\gamma}-\gamma)(\overline{\beta}-\beta)\}>0$ .

When i) is satisfied b) is equivalent to the following;

c) $\{-xy+(ps-rq)\}\{(\overline{\alpha}-\alpha)(\overline{\delta}-\delta)-(\overline{\gamma}-\gamma)(\overline{\beta}-\beta)\}<0$ .

Now let $T$ be a simple torus of dimension 2 with non-trivial endomorphisms.

First we prove that if $T$ is an abelian variety $End^{Q}(T)$ contains some quadratic

field over $Q$ . In fact, if it does not, $T$ is isogenous to a complex torus of the
type

$C^{2}/\left(\begin{array}{llll}1 & \zeta & \zeta^{2} & \zeta^{3}\\1 & \xi & \xi^{2} & \xi^{3}\end{array}\right)$
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where the Galois group $G^{*}$ of $Q(\zeta, \xi,\overline{\zeta},\overline{\xi})$ over $Q$ is isomorphic to the alterna-
tive group $A_{4}$ or the symmetric group $S_{4}$ . $T$ is isogenous to

$T^{\prime}=C^{2}/\left(\begin{array}{llll}1 & 0 & -\xi\zeta & -\xi\zeta(\xi+\zeta)\\0 & 1 & \xi+\zeta & \xi^{2}+\xi\zeta+\zeta^{2}\end{array}\right)$ .

If $T$ is an abelian variety, so is $T^{\prime}$ , hence there exist integers $x,$ $y,$ $p,$ $q,$ $r,$ $s$

which are not all zero and satisfy i), that is,

$0=x(\zeta^{2}\xi^{2})-\{q(-\xi\zeta)+s(\zeta+\xi)\}+\{p(-\xi\zeta(\zeta+\xi))+r(\xi^{2}+\xi\zeta+\zeta^{2})\}+y$

$=(x\xi^{2}-p\xi+r)\zeta^{2}+(-p\xi^{2}+q\xi+r\xi-s)\zeta+(r\xi^{2}-s\xi+y)$ .
But if $G^{*}=A_{4}$ or $S_{4}$ , this is impossible. Therefore if $T$ is an abelian variety,
$End^{Q}(T)$ contains a quadratic field $Q(\sqrt{m})$ . Then $T$ is isogenous to a complex
torus

$T_{1}(m;b, d)=C^{2}/\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)$

for some complex numbers $b,$ $d$ . Since this is isomorphism to

$T_{1}^{\prime}=C^{2}/\left(\begin{array}{llll}1 & 0 & u & mv\\0 & 1 & v & u\end{array}\right)$

where $u=(b+d)/2$ and $v=(b-d)/2\sqrt{m},$ $T$ is an abelian variety if and only if
there exist integers $x,$ $y,$ $p,$ $q,$ $r,$ $s$ which satisfy the following $i^{\prime}$ ), $a^{\prime}$ ) and $c^{\prime}$ ).

$i^{\prime})$ $bdx+zb+z^{\sigma}d+y=0$ (where $z=z_{1}+z_{2}/\sqrt{m},$ $z_{1}=(r-q)/2$ and $z=(pm-s)/2.$ )

$a^{\prime})$ $\sqrt{-1}\{p(u-\overline{u})+q(v-\overline{v})+x(u\overline{v}-v\overline{u})\}>0$

$c^{\prime})$ $\{-xy+(ps-rq)\}F(b, d)<0(whereF(b, d)=\{\frac{d^{\overline}}{b}$ $ififm<0m>0.)$

LEMMA 5-1. If $m>0$ , there exist $x,$ $y,$ $p,$ $q,$ $r,$ $s$ which satisfy $i^{\prime}$ ) and $a^{\prime}$ ), $c^{\prime}$ ).

Therefore $T$ is an abelian variety.

PROOF. Put $x=y=0,$ $r=q,$ $s=mp$ , and $i^{\prime}$ ) is of course satisfied and $a^{\prime}$ ), $c^{\prime}$ )

imply

$a^{\prime\prime})$ $\sqrt{-1}\{(p+q/\sqrt{m})(b-\overline{b})+(p-q/\sqrt{m})(d-\overline{d})\}>0$

$c^{\prime})$ $(mp^{2}-q^{2})(b-\overline{b})(d-\overline{d})<0$ .
Put $X=(p+q/\sqrt{m})\sqrt{-1}(b-\overline{b})$ , $Y=(p-q/\sqrt{m})\sqrt{-1}(d-\overline{d})$ , and $a^{\prime\prime}$ ), $c^{\prime\prime}$ ) imply
$X+Y>0$ and $XY>0$ . We only have to take $p,$ $q$ which make $X$ and $Y$ positive.
$(q.e.d.)$

LEMMA 5-2. If $m<0$ and $T$ is not of a quatenion type, $T$ is not an abelian
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variety.

PROOF. Since $T$ is not quatenion type, $x,$ $y,$ $z$ which satisfy $i^{\prime}$ ) are all zero,

so $x=y=0,$ $mp=s,$ $r=q$ . Then if $m<0,$ $c^{\prime}$ ) implies

$(mp^{2}-q^{2})(b-\overline{d})(d-\overline{b})=-(mp^{2}-q^{2})|b-\overline{d}|^{2}<0$ .

But since $m<0$ , this is impossible. Hence $T$ cannot be an abelian variety. $(q. e.d.)$

Now we assume that $T$ is of a quatenion type. There exist an integer $q_{0}$

which is not contained in $N(Q(\sqrt{m}))$ such that $T$ is isogenous to

$T^{\prime\prime}=C^{2}/\left(\begin{array}{llll}1 & \sqrt{m} & b & b\sqrt{m}\\1 & -\sqrt{m} & d & -d\sqrt{m}\end{array}\right)$

where $bd=q_{0}$ . If $m>0$ or $q_{0}>0,$ $T^{\prime\prime}$ is an abelian variety by Lemma 5-1. So
we assume $m<0$ and $q_{0}<0$ . If there exists an element $z$ of $Q(\sqrt{m})$ such that
$zb+z^{\sigma}d$ is a rational number $r_{0}$ , putting $x=0,$ $y=-r_{0}$ , the condition $i^{*}$ ) of Lemma
4-1 is satisfied. Therefore since $bd=q_{0}$ is a rational number, there exists no $z$

but zero which satisfies $i^{\prime}$ ) with some $x,$ $y$ . Hence if $T^{\prime}$ is an abelian variety,
$y=-x_{0},$ $r=q,$ $s=pm$ and

$-(x^{2}q_{0}+mp^{2}-q^{2})|b-\overline{d}|^{2}<0$ .

But this is impossible. Therefore we have proved the following lemma.

LEMMA 5-3. Let $T$ be a complex torus of a quatenion type such that $End^{Q}(T)$

$\cong(m, q)_{Q}$ . If $m>0$ or $q>0,$ $T$ is an abelian variety. If $m<0$ and $q<0,$ $T$ is not

abelian variety.

And the following theorem has been proved.

THEOREM 5-4. Let $T$ be a simple complex torus of dimension 2 with non-
trivial endomorphisms. Then $T$ is an abelian variety if and only if $End^{Q}(T)$

contains a real quadratic field over $Q$ as a sub-Q-algebra.

REMARK. Let $\rho(T)$ be the rank of the additive group of all hermitian forms
on $T$, which is equal to the Picard number of $T$ . When $T$ is a simple torus of
dimension 2 such that End $(T)\neq Z$ , we have seen above that if $End^{Q}(T)$ contains
no quadratic field over $Q,$ $\rho(T)=0$ , if $End^{Q}(T)$ contains a quadratic field but $T$

is not of a quatenion type, $\rho(T)=2$ , and if $T$ is of a quatenion type, $\rho(T)=3$ .
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