ON COMPLEX TORI WITH MANY ENDOMORPHISMS

By

Atsushi Shimizu

The endomorphism ring of a complex torus \boldsymbol{T} of dimension n is a free module of rank $\leqq 2 n^{2}$ as a \boldsymbol{Z}-module. When \boldsymbol{T} is an abelian variety it is wellknown that if the rank is equal to $2 n^{2}, \boldsymbol{T}$ is isogenous to the direct sum of n copies of an elliptic curve with complex multiplication. We will prove a similar result in a more general form, that is, let \boldsymbol{T} and \boldsymbol{T}^{\prime} be two complex tori of dimension n and n^{\prime} respectively, and if the Z-module of all homomorphisms of \boldsymbol{T} into \boldsymbol{T}^{\prime} is of rank $2 n n^{\prime}$, then \boldsymbol{T} and \boldsymbol{T}^{\prime} are isogenous to the direct sums of n and n^{\prime} copies of an elliptic curve (Theorem 1-3). Next let \boldsymbol{T} be a complex torus of dimension 2 and put $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})=\operatorname{End}(\boldsymbol{T}) \otimes_{\boldsymbol{z}} \boldsymbol{Q}$. Then using the types of $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ we will classify all \boldsymbol{T} 's with a non-trivial endomorphism ring. The result is given in the last part of $\S 4$. A complex torus \boldsymbol{T} of dimension 2 which is not simple is an abelian variety, if and only if \boldsymbol{T} is isogenous to the direct sum of two elliptic curves. On the other hand a simple torus \boldsymbol{T} of dimension 2 such that $\operatorname{End}(\boldsymbol{T})$ is not isomorphic to \boldsymbol{Z} is an abelian variety if and only if $\operatorname{End}^{Q}(\boldsymbol{T})$ contains some real quadratic field over \boldsymbol{Q}. This is proved in $\S 5$.

Notations. We denote by $\boldsymbol{Z}, \boldsymbol{Q}, \boldsymbol{R}$ and \boldsymbol{C}, respectively, the ring of rational integers, the field of rational numbers, real numbers and complex numbers. For a ring $R, M(n \times m, R)$ denotes the R-module composed of all matrices with n rows and m columns with coefficients in R. When $n=m$, it is the R-algebra of all square matrices of size n. We simply denote it by $M(n, R)$. The group of all invertible elements of $M(n, R)$ is denoted by $G L(n, R)$.

Let \boldsymbol{T} and \boldsymbol{T}^{\prime} be two complex tori. We denote by $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ the set of all homomorphisms of \boldsymbol{T} into \boldsymbol{T}^{\prime} and put $\operatorname{End}(\boldsymbol{T})=\operatorname{Hom}(\boldsymbol{T}, \boldsymbol{T})$. We put $\operatorname{Hom}^{\boldsymbol{Q}}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)=\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right) \otimes \boldsymbol{Q}$ and $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})=\operatorname{End}(\boldsymbol{T}) \otimes \boldsymbol{Q} . \quad \operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ is naturally considered as an algebra over $\boldsymbol{Q} . \quad \boldsymbol{T}$ and \boldsymbol{T}^{\prime} are called isogenous and denoted by $\boldsymbol{T} \sim \boldsymbol{T}^{\prime}$ if they are of the same dimension and there exists a homomorphism λ of the one onto the other; such a λ is called an isogeny. " \sim " is an equivalence relation. If \boldsymbol{T}_{1} and $\boldsymbol{T}_{1}^{\prime}$ are complex tori which are isogenous \boldsymbol{T} and \boldsymbol{T}^{\prime} respectively, then $\operatorname{Hom}^{Q}\left(\boldsymbol{T}_{1}, \boldsymbol{T}_{1}^{\prime}\right)$ is isomorphic to $\operatorname{Hom}^{Q}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ and $\operatorname{End}^{Q}\left(\boldsymbol{T}_{1}\right)$ is
isomorphic to $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ as a \boldsymbol{Q}-algebra.
Let \boldsymbol{G} be a lattice subgroup of \boldsymbol{C}^{n} and $\left(g_{1}, \cdots, g_{2 n}\right)$ its base. Then the matrix $G=\left(g_{1}, \cdots, g_{2 n}\right) \in M(n \times 2 n, \boldsymbol{C})$ is called the period matrix of the complex torus $\boldsymbol{C}^{n} / \boldsymbol{G}$. We shall often denoted by \boldsymbol{C}^{n} / G the complex torus $\boldsymbol{C}^{n} / \boldsymbol{G}$.

§ 1. Complex tori with endomorphism rings of the maximal rank.

Let \boldsymbol{T} and \boldsymbol{T}^{\prime} be two complex tori of dimension n and n^{\prime} respectively.
Theorem 1-1. $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ is a free abelian group whose rank is at most $2 n n^{\prime}$.

Proof. We put $\boldsymbol{T}=\boldsymbol{E} / \boldsymbol{G}$ and $\boldsymbol{T}^{\prime}=\boldsymbol{E}^{\prime} / \boldsymbol{G}^{\prime}$, where E, E^{\prime} are complex linear spaces and $\boldsymbol{G}, \boldsymbol{G}^{\prime}$ are respectively their lattice subgroups. Take a \boldsymbol{C}-base (g_{1}, \cdots, g_{n}) of \boldsymbol{E} which is also a part of a \boldsymbol{Z}-base of \boldsymbol{G} and let H_{1} the subgroup of \boldsymbol{G} generated by g_{1}, \cdots, g_{n}. If λ is an element of $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right), \lambda$ naturally induces a linear map L_{λ} of \boldsymbol{E} to \boldsymbol{E}^{\prime}. Then making correspond to λ the homomorphism of H_{1} into \boldsymbol{G}^{\prime} which maps (g_{1}, \cdots, g_{n}) to ($L_{\lambda}\left(g_{1}\right), \cdots, L_{\lambda}\left(g_{n}\right)$), we get an injective homomorphism of $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ into $\operatorname{Hom}\left(H_{1}, \boldsymbol{G}^{\prime}\right)$. Since $\operatorname{Hom}\left(H_{1}, \boldsymbol{G}^{\prime}\right)$ is a free abelian group of rank $2 n n^{\prime}, \operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ which is isomorphic to a subgroup of $\operatorname{Hom}\left(H_{1}, \boldsymbol{G}^{\prime}\right)$ is a free abelian group whose rank is at most $2 n n^{\prime}$. (q.e.d.)

Let \boldsymbol{T} and \boldsymbol{T}^{\prime} be the direct sums of r and r^{\prime} complex tori $\boldsymbol{T}_{1}, \cdots, \boldsymbol{T}_{r}$ and $\boldsymbol{T}_{1}^{\prime}, \cdots, \boldsymbol{T}_{r}^{\prime}$, respectively. Then, $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ is isomorphic to the direct sum of all $\operatorname{Hom}\left(\boldsymbol{T}_{i}, \boldsymbol{T}_{i^{\prime}}^{\prime}\right)$'s $\left(i=1,2, \cdots, r\right.$ and $\left.i^{\prime}=1,2, \cdots, r^{\prime}\right)$. If $\boldsymbol{T}=\boldsymbol{T}^{\prime}$, they are isomorphic as rings, where for two elements $\left(\lambda_{i i^{\prime}}\right),\left(\mu_{i i^{\prime}}\right)$ of $\underset{i, i^{\prime}}{\oplus} \operatorname{Hom}\left(\boldsymbol{T}_{i}, \boldsymbol{T}_{i^{\prime}}\right)\left(\lambda_{i i^{\prime}}\right.$ and $\mu_{i i^{\prime}}$ are elements of $\operatorname{Hom}\left(\boldsymbol{T}_{i}, \boldsymbol{T}_{i^{\prime}}\right)$). , we define the product of them by $\left(\sum_{j=1}^{r} \lambda_{j i^{\prime}} \circ \mu_{i j}\right) \in \oplus_{i, i^{\prime}} \operatorname{Hom}\left(\boldsymbol{T}_{i}, \boldsymbol{T}_{i^{\prime}}\right)$. Especially when $\boldsymbol{T}_{1}=\boldsymbol{T}_{2}=\cdots=\boldsymbol{T}_{r}$, $\operatorname{End}(\boldsymbol{T})$ is isomorphic to $M\left(r, \operatorname{End}\left(\boldsymbol{T}_{1}\right)\right)$.

Let C be an elliptic curve with complex multiplication, that is, complex torus of dimension 1 with an endomorphism ring of rank 2 , and let \boldsymbol{T} and \boldsymbol{T}^{\prime} be complex tori which are isogenous to the direct sums of n and n^{\prime} copies of C respectively. Then the rank of $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ is clearly $2 n n^{\prime}$. We shall prove the converse is true.

Theorem 1-2. Let \boldsymbol{T} and \boldsymbol{T}^{\prime} be complex tori of dimension n and n^{\prime} respectwvely. If the rank of $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ is $2 n n^{\prime}, \boldsymbol{T}$ and \boldsymbol{T}^{\prime} are respectively isogenous to the direct sums of n and n^{\prime} copices of an elliptic curve C with complex multiplication.

Proof. Notation being as in the proof of Theorem 1-1; choose a proper \boldsymbol{C}-base of \boldsymbol{E} and a proper \boldsymbol{Z}-base of \boldsymbol{G}, and we may assume that the period matrix of \boldsymbol{T} is $\left(1_{n}, T\right)$ where 1_{n} is the unit matrix of size n and T is an element of $M(n, \boldsymbol{C})$ such that the imaginary part of T is a regular matrix. Similarly we may assume that the period matrix of \boldsymbol{T}^{\prime} is $\left(1_{n^{\prime}}, T^{\prime}\right)$ for some matrix \boldsymbol{T}^{\prime} of size n^{\prime} which satisfies the same condition.

Now considering $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ to be a subgroup of $\operatorname{Hom}\left(H_{1}, \boldsymbol{G}^{\prime}\right)$, since they are of the same rank, there exists an integer λ such that $\lambda\left(\operatorname{Hom}\left(H_{1}, \boldsymbol{G}^{\prime}\right)\right) \subset$ $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$. In other words, for any $S \in M\left(2 n^{\prime} \times n, \boldsymbol{Z}\right)$ there exist $\boldsymbol{\omega} \in M\left(n^{\prime} \times n, \boldsymbol{C}\right)$ and $\Omega \in M\left(2 n^{\prime} \times 2 n, \boldsymbol{Z}\right)$ such that

$$
\omega 1_{n}=\left(1_{n^{\prime}} T^{\prime}\right) \lambda S \quad \text { and } \quad \omega\left(1_{n} T\right)=\left(1_{n^{\prime}} T^{\prime}\right) \Omega .
$$

For any $\alpha \in M\left(n^{\prime} \times n, \boldsymbol{Z}\right)$, putting $S=\binom{\alpha}{0}$, there exists $\Omega=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)(A, B, C, D \in$ $M\left(n^{\prime} \times n, \boldsymbol{Z}\right)$) such that

$$
\lambda \alpha\left(1_{n}, T\right)=\left(1_{n^{\prime}}, T^{\prime}\right) \Omega=\left(A+T^{\prime} C, B+T^{\prime} D\right),
$$

and especially $\lambda \alpha T=B+T^{\prime} D$. If we denote by $\operatorname{Im} T$ and $\operatorname{Re} T$ the imaginary part of T and the real part of T respectively, we have i) $\lambda \alpha(\operatorname{Im} T)=\left(\operatorname{Im} T^{\prime}\right) D$ and ii) $\lambda \alpha(\boldsymbol{\operatorname { e }} T)=B+\left(\boldsymbol{\operatorname { R e }} T^{\prime}\right) D$. Therefore for any element α of $M\left(n^{\prime} \times n, \boldsymbol{Z}\right)$ we have
$\left.i^{\prime}\right)\left(\operatorname{Im} T^{\prime}\right)^{-1}(\lambda \alpha)(\operatorname{Im} T) \in M\left(n^{\prime} \times n, \boldsymbol{Z}\right)$
ii') $\quad(\boldsymbol{\lambda} \alpha)(\boldsymbol{\operatorname { R e }} T)-\left(\boldsymbol{\operatorname { R e }} T^{\prime}\right)\left(\boldsymbol{\operatorname { I m }} T^{\prime}\right)^{-1}(\lambda \alpha)(\boldsymbol{I m} T) \in M\left(n^{\prime} \times n, \boldsymbol{Z}\right)$.
Put $\left(\boldsymbol{\operatorname { I m }} T^{\prime}\right)^{-1}=\left(\beta_{p r}\right), \alpha=\left(\alpha_{r s}\right), \boldsymbol{\operatorname { I m }} T=\left(a_{s r}\right)$, and $\left.\mathrm{i}^{\prime}\right)$ implies

$$
\lambda \sum_{r=1}^{n^{\prime}} \sum_{s=1}^{n} \beta_{p r} \alpha_{r s} a_{s q} \in \boldsymbol{Z}
$$

for any $p, q\left(p=1, \cdots, n^{\prime}, q=1, \cdots, n\right)$. If we put α to be the matrix whose (r, s)-component is 1 and the others are all 0 , we have $\lambda \beta_{p r} a_{s q} \in Z$ for any p, q, r, s. Especially putting $p=r=1$, we have $\lambda \beta_{11} a_{s q} \in \boldsymbol{Z}$ for any s, q. Therefore there exist a real number a_{1} which is independent of s, q and integers $a_{s q}^{*}(s, q$ $=1,2, \cdots, n)$ such that $a_{s q}=a_{1} a_{s q}^{*}$. Put $T_{1}=\left(a_{s q}^{*}\right) \in M(n, \boldsymbol{Z})$, and we have $\operatorname{Im} T=$ $a_{1} T_{1}$, where $a_{1} \neq 0$ and $\operatorname{det} T_{1} \neq 0$. Similarly there exist $b^{\prime} \in \boldsymbol{R}$ and $T_{0}^{\prime} \in M\left(n^{\prime}, \boldsymbol{Z}\right)$ such that $\left(\operatorname{Im} T^{\prime}\right)^{-1}=b^{\prime} T_{0}^{\prime}$. Putting $a_{1}^{\prime}=b^{\prime-1}\left(\operatorname{det} T_{0}^{\prime}\right)^{-1}$ and $T_{1}^{\prime}=\left(\operatorname{det} T_{0}^{\prime}\right) T_{0}^{\prime-1}$, we have $\operatorname{Im} T^{\prime}=a_{1}^{\prime} T_{1}^{\prime}$ where a_{1}^{\prime} is a real number T_{1}^{\prime} is an element of $M\left(n^{\prime}, \boldsymbol{Z}\right)$. Now we have $T=\boldsymbol{R e} T+\sqrt{-1} a_{1} T_{1}$. Considering the isogeny whose rational representation is $\left(\begin{array}{cc}1_{n} & 0 \\ 0 & T_{1}^{-1}\end{array}\right)$, we can see that \boldsymbol{T} is isogenous to $\boldsymbol{C}^{n} /\left(1_{n},(\boldsymbol{\operatorname { R e }} T) T_{1}^{-1}+\right.$ $\sqrt{-1} a_{1} 1_{n}$). So we may assume that $\operatorname{Im} T=a_{1} 1_{n}$. And similarly we may assume
that $\operatorname{Im} T^{\prime}=a_{1}^{\prime} 1_{n^{\prime}}$. Put $\mu=a_{1} a_{1}^{\prime-1} \lambda$, and we have by ii^{\prime})

$$
(\lambda \alpha)(\boldsymbol{\operatorname { R e }} T)-\mu\left(\boldsymbol{\operatorname { R e }} T^{\prime}\right) \alpha \in M\left(n^{\prime} \times n, \boldsymbol{Z}\right)
$$

for any α. If we put $\boldsymbol{\operatorname { R e }} T=\left(c_{s q}\right), \boldsymbol{\operatorname { R e }} T^{\prime}=\left(d_{p r}\right)$ and $\alpha=\left(\alpha_{r s}\right)$, we have

$$
\lambda \sum_{s=1}^{n} \alpha_{p s} c_{s q}-\mu \sum_{r=1}^{n^{\prime}} d_{p r} \alpha_{r q} \in \boldsymbol{Z}
$$

for $p=1, \cdots, n, s=1, \cdots, n^{\prime}$. Again putting α to be the matrix whose (r, q) component is 1 and the others are all 0 , we have A) $\lambda c_{s q} \in Z$, if $s \neq q$, B) $\mu d_{p r} \in Z$, if $p \neq r$, and C) $\lambda c_{s s}-\mu d_{r r} \in \boldsymbol{Z}$, for any p, q, r, s. Therefore we have $\lambda\left(c_{s q}\right)-\mu d_{11} 1_{n}$ $\in M(n, \boldsymbol{Z})$ and $\mu\left(d_{p r}\right)-\lambda c_{11} 1_{n^{\prime}} \in M\left(n^{\prime}, \boldsymbol{Z}\right)$. Put $T_{2}=\lambda\left(c_{s q}\right)-\mu d_{11} 1_{n}$ and $c=\mu d_{11}$, and we have $\boldsymbol{\operatorname { R e }} T=\lambda^{-1}\left(c 1_{2}+T_{2}\right)$. So putting $z=\lambda^{-1} c+\sqrt{-1} a_{1}$, we have $T=z 1_{n}+\lambda^{-1} T_{2}$. Consider the isogeny whose rational representation is $\left(\begin{array}{cc}1_{n} & -\lambda^{-1} T_{2} \\ 0 & 1_{n}\end{array}\right)$, and we can see that \boldsymbol{T} is isogenous to $\boldsymbol{C}^{n} /\left(1_{n}, z 1_{n}\right)$ which is clearly isogenous to the direct sum of n copies of $C=C /(1, z)$. Similarly \boldsymbol{T}^{\prime} is isogenous to the direct sum of n^{\prime} copies of some complex torus C^{\prime} of dimension 1. Since $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$ is isomorphic to the direct sum of $n n^{\prime}$ copies of $\operatorname{Hom}\left(C, C^{\prime}\right)$, the rank of $\operatorname{Hom}\left(C, C^{\prime}\right)$ is 2 , hence C is an elliptic curve with complex multiplication which is isomorphic to C^{\prime}. (q.e.d.)

§ 2. Period matrices of complex tori with many endomorphisms.

Let \boldsymbol{T} be a complex torus whose $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains a division sub-algebra D which contains \boldsymbol{Q} properly. Let Z be the center of D and K one of the maximal commutative subfields of D and denote the dimensions of the vector spaces D, K and Z over \boldsymbol{Q} by d, e and f respectively. Then we have $d / f=(e / f)^{2}$, in other words $d f=e^{2}$. On the other hand, considering a rational representation of D, the linear space $\boldsymbol{Q}^{2 n}$ can be regarded as a D-module. Since D is a division algebra, a D-module is always free, hence denoting by r the rank of the module over D, we have $r d=2 n$. Now the following theorem has been proved.

Theorem 2-1. Let D be a division algebra contained in $\operatorname{End}^{Q}(\boldsymbol{T})$. If we donote by d, e and f, respectively, the dimensions over \boldsymbol{Q} of D, one of the maximal subfield of D and the center of D, we have
i) $d f=e^{2}$
ii) $f|e| d \mid 2 n$ (where $a \mid b$ means a divides b.)

Corollary 2-2. Let n be a positive odd integer which is square-free, and \boldsymbol{T} a complex torus of dimension n. Then any division algebra which is contained in
$\operatorname{End}^{Q}(\boldsymbol{T})$ is commutative.
Proof. Notations being as in Theorem $2-1,(e / f)^{2}=d / f$ divides $2 n$. Hence $e / f=1$, that is, D is commutative. (q.e.d.)

Next we shall inquire into the period matrix of \boldsymbol{T}.
Theorem 2-3. Let $\boldsymbol{T}=\boldsymbol{E} / \boldsymbol{G}$ be a complex torus of dimension n such that $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains a division algebra D which contains \boldsymbol{Q} properly. Take any element ϕ of D which is not contained in \boldsymbol{Q}. Choosing an adequate \boldsymbol{C}-base of \boldsymbol{C}-vector space \boldsymbol{E}, the analytic representation of ϕ is a diagonal matrix

$$
\left(\begin{array}{cc}
\alpha_{1} & \\
& 0 \\
0 & \\
\alpha_{n}
\end{array}\right)
$$

where α_{i} is the image of ϕ by an isomorphism of $\boldsymbol{Q}(\phi)$ into $\boldsymbol{C}(i=1,2, \cdots, n)$.
And put $h=[\boldsymbol{Q}(\phi): \boldsymbol{Q}], s=2 n / h$ and

$$
\Phi=\left(\begin{array}{cccc}
1 & \alpha_{1} & \alpha_{1}^{2} & \cdots
\end{array} \alpha_{1}^{h-1} \begin{array}{c}
\vdots \\
\vdots
\end{array} \vdots_{n} \quad \alpha_{n}^{2} \cdots \alpha_{n}^{i \cdot-1}\right) \in M(n \times h, C) .
$$

And put

$$
G\left(g_{i j}\right)=\left(\left(\begin{array}{cc}
g_{11} & 0 \\
0 & \ddots
\end{array}\right) \Phi\left(\begin{array}{cc}
g_{21} & 0 \\
0 & \ddots
\end{array}\right) \Phi \ldots\left(\begin{array}{cc}
g_{s 1} & 0 \\
0 & \\
0 & g_{2 n}
\end{array}\right) \Phi\right)
$$

where $g_{i j}(i=1, \cdots, s, j=1, \cdots, n)$ are somd given complex numbers. Then there exists ns complex numbers $g_{i j}$ such that \boldsymbol{T} is isogenous to the complex torus $\boldsymbol{T}\left(g_{i j}\right)$ whose period matrix is $G\left(g_{i j}\right)$.

Proof. Let ω be an analytic representation of ϕ and Ω a rational representation. Since the minimal polynomial f of Ω is also the minimal polynomial of ϕ when $\boldsymbol{Q}(\phi)$ is regarded as an algebraic field over \boldsymbol{Q}, f is irreducible. Clearly $f(\omega)=0$, so that the minimal polynomial of ω has no multiple root. Here choosing an adequate \boldsymbol{C}-base of \boldsymbol{E},

$$
\omega=\left(\begin{array}{ccc}
\alpha_{1} & & 0 \\
0 & \ddots & \\
0 & \alpha_{n}
\end{array}\right)
$$

where $\alpha_{1}, \cdots, \alpha_{n}$ are roots of the algebraic equation $f(x)=0$. On the other hand the characteristic polynomial F of Ω is s-th power of f. Therefore if we consider Ω to be a linear transformation on $\boldsymbol{Q}^{2 n}$, there exists an element P of $G L(2 n, \boldsymbol{Q}) \cap M(2 n, \boldsymbol{Z})$ such that
where

$$
\begin{gathered}
P^{-1} \Omega P=\left(\begin{array}{ccc}
A_{1} & 0 \\
0 & \ddots & A_{s}
\end{array}\right) \\
A_{1}=A_{2}=\cdots=A_{s}=\left(\begin{array}{ccccc}
0 & \cdots \cdots \cdots & 0 & -a_{0} \\
\ddots & \ddots & \vdots & -a_{1} \\
1 & \ddots & \ddots & \vdots \\
0 & \ddots & \vdots \\
\vdots & \ddots & \vdots & \vdots \\
0 & & 0 & 1 & \vdots \\
a_{n-1}
\end{array}\right) \in G L(h, \boldsymbol{Q}),
\end{gathered}
$$

and $f(x)=x^{h}+a_{h-1} x^{h-1}+\cdots+a_{0}$. Considering the isogeny whose rational representation is P, we may assume that the analytic representation ω of ϕ is a diagonal matrix $\left(\begin{array}{ccc}\alpha_{1} & & 0 \\ 0 & & \alpha_{n}\end{array}\right)$ and the rational representation Ω of ϕ is $\left(\begin{array}{ccc}A_{1} & 0 \\ 0 & \ddots & A_{s}\end{array}\right)$. Then let G be the period matrix, and we have $\omega G=G \Omega$. We only have to compare each component of ωG with the corresponding component of $G \Omega$ to complete the proof. (q.e.d.)

Conversely suppose complex numbers $\left\{g_{i j}\right\}$ are given. Is $G\left(g_{i j}\right)$ the period matrix of some complex torus ? Since $\left(\begin{array}{cc}\omega & 0 \\ 0 & \bar{\omega}\end{array}\right)\binom{G}{\bar{G}}=\binom{G}{\bar{G}} \Omega, \alpha_{1}, \cdots, \alpha_{n}$ have to satisfy the following condition (\#);
(\#) the image of ϕ by any isomorphism of $\boldsymbol{Q}(\phi)$ into \boldsymbol{C} appears just s times in $\alpha_{1}, \cdots, \alpha_{n}, \bar{\alpha}_{1}, \cdots, \bar{\alpha}_{n}$ (where $\bar{\alpha}$ means the complex conjugate of α).

Theorem 2-4. We assume $\alpha_{1}, \cdots, \alpha_{n}$ satisfy the condition (\#). Then if $g_{i j}$ ($i=1, \cdots, s, j=1, \cdots, n$) are generally given, $G\left(g_{i_{j}}\right)$ is the period matrix of some complex torus. (That is, the subset in $\boldsymbol{C}^{s n}$ composed of all $\left\{g_{i j}\right\}$ such that $G\left(g_{i j}\right)$ is a period matrix is open dense in $\boldsymbol{C}^{s n}$.)

Proof. Let $X_{i j}(i=1, \cdots, s, j=1, \cdots n)$ be $n s$ variables, and we only have to prove that $\operatorname{det}\left(\frac{G\left(X_{i j}\right)}{G\left(X_{i j}\right)}\right)=0$ is a non-trivial equation. Let $\phi_{1}, \cdots, \phi_{r}$ be the images of ϕ by all the isomorphisms of $\boldsymbol{Q}(\boldsymbol{\phi})$ into \boldsymbol{C}, and put

$$
\Phi=\left(\begin{array}{cccc}
1 & \phi_{1} & \cdots & \phi_{1}^{h-1} \\
\vdots & \vdots & \vdots \\
1 & \dot{\phi}_{n} & \cdots & \phi_{n}^{i-1}
\end{array}\right) .
$$

Then we have

$$
\operatorname{det}\left(\frac{G\left(X_{i j}\right)}{G\left(X_{i j}\right)}\right)=\left|\begin{array}{ccc}
X_{11}^{*} \Phi & \cdots & X_{1 s}^{*} \Phi \\
\vdots \\
X_{s 1}^{*} \Phi & \cdots & X_{s s}^{*} \Phi
\end{array}\right|=\left|\begin{array}{ccc}
X_{11}^{*} & \cdots & X_{1 s}^{*} \\
\vdots \\
\vdots \\
X_{s 1}^{*} & \cdots & X_{s s}^{*}
\end{array}\right|(\operatorname{det} \Phi)^{s}
$$

where $X_{i j}^{*}(i, j=1,2, \cdots, s)$ are diagonal matrices such that all $X_{i j}$ and all $\bar{X}_{i j}$ appear once and only once in their diagonal components. Since $\operatorname{det} \Phi \neq 0$, we
only have to prove the following lemma to complete the proof.
Lemma 2-5. Let $f\left(x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}\right)$ be a polynomial of $2 m$ variables $x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{m}$ with coefficients in \boldsymbol{C}. If $f\left(z_{1}, \cdots z_{m}, \bar{z}_{1}, \cdots, \bar{z}_{m}\right)=0$ for any m complex numbers z_{1}, \cdots, z_{m}, then $f=0$ as a polynomial.

Proof. It is easily seen that we may assume $m=1$. Put $f(x, y)=F_{p}(x) y^{p}$ $+\cdots+F_{0}(x)$. If $f(z, \bar{z})=0, \bar{z}$ is a root of the algebraic equation $F_{p}(z) y^{p}+\cdots+$ $F_{0}(z)=0$ with an unknown y. If $p>0, \bar{z}$ is locally a holomorphic function of z on an open subset in \boldsymbol{C}. That is a contradiction. Therefore $p=0$. Then it is clear that $f=0$ since $F_{0}(z)=0$ for any z. (q. e.d.)

§ 3. Invariant subtori.

Let \boldsymbol{T} be a complex torus and \boldsymbol{T}^{\prime} its subtorus. We call \boldsymbol{T}^{\prime} invariant throughout this paper if the image of \boldsymbol{T}^{\prime} by any endomorphism of \boldsymbol{T} is contained in \boldsymbol{T}^{\prime}. Of course \boldsymbol{T} itself and $\{0\}$ are invariant subtori. We call each of them a trivial invariant subtorus.

THEOREM 3-1. If a complex torus \boldsymbol{T} has no non-trivial invariant subtorus. Then \boldsymbol{T} is isogenous to the direct sum of some copies of a simple torus. (A complex torus is called simple if it has no subtorus but itself and $\{0\}$.

Proof. Let \boldsymbol{T}^{\prime} be a simple subtorus which is not $\{0\}$. The set $\Lambda=$ $\left\{\lambda\left(\boldsymbol{T}^{\prime}\right) \mid \lambda \in \operatorname{End}(\boldsymbol{T})\right\}$ is a finite set. In fact, since any $\lambda\left(\boldsymbol{T}^{\prime}\right)$ is simple, if $\Lambda^{\prime}=$ $\left\{\lambda_{1}\left(\boldsymbol{T}^{\prime}\right), \cdots, \lambda_{m}\left(\boldsymbol{T}^{\prime}\right)\right\}$ be a subset of $\Lambda\left(\lambda_{i}\left(\boldsymbol{T}^{\prime}\right) \neq \lambda_{j}\left(\boldsymbol{T}^{\prime}\right)\right.$ if $\left.i \neq j\right), T_{0}=\lambda_{1}\left(\boldsymbol{T}^{\prime}\right)+\cdots+$ $\lambda_{m}\left(\boldsymbol{T}^{\prime}\right)$ is isogenous to the direct sum $\lambda_{1}\left(\boldsymbol{T}^{\prime}\right) \oplus \cdots \oplus \lambda_{m}\left(\boldsymbol{T}^{\prime}\right)$ which is isogenous to the direct sum of m copies of \boldsymbol{T}^{\prime}. So Λ is a finite set. Put $\Lambda^{\prime}=\Lambda$ especially, and $\boldsymbol{T}_{0}=\lambda_{1}\left(\boldsymbol{T}^{\prime}\right)+\cdots+\lambda_{m}\left(\boldsymbol{T}^{\prime}\right)$ is an invariant subtorus which is not $\{0\}$. Therefore $\boldsymbol{T}_{0}=\boldsymbol{T}$, that is, \boldsymbol{T} is isogenous to the direct sum of m copies of a simple subtorus \boldsymbol{T}^{\prime}. (q.e.d.)

Theorem 3-2. Let \boldsymbol{T}^{\prime} be an invariant subtorus of a complex torus \boldsymbol{T}. Then we have
i) $\operatorname{rank}_{\boldsymbol{z}} \operatorname{End}(\boldsymbol{T}) \leqq \operatorname{rank}_{\boldsymbol{z}} \operatorname{End}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}\right)+\operatorname{rank}_{\boldsymbol{z}} \operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}^{\prime}\right)$
ii) $\operatorname{rank}_{z} \operatorname{End}(\boldsymbol{T}) \leqq \operatorname{rank}_{z} \operatorname{End}\left(\boldsymbol{T}^{\prime}\right)+\operatorname{rank}_{\boldsymbol{z}} \operatorname{Hom}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}, \boldsymbol{T}\right)$.

Proof. We define an homomorphism $\Phi: \operatorname{End}(\boldsymbol{T}) \rightarrow \operatorname{End}\left(\boldsymbol{T}^{\prime}\right)$ by the natural restriction. It is clear that the kernel of Φ can be considered to be a subset of $\operatorname{Hom}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}, \boldsymbol{T}\right)$, so ii) is proved. Considering similarly the natural homomorphism
$\Phi^{\prime}: \operatorname{End}(\boldsymbol{T}) \rightarrow \operatorname{End}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}\right)$, we have i). (q.e.d.)
Corollary 3-3. Let \boldsymbol{T} be a complex torus of dimension n. If $\operatorname{rank}_{\boldsymbol{z}} \operatorname{End}(\boldsymbol{T})$ $>2 n^{2}-2 n+2$, there exists an integer $m>1$ such that \boldsymbol{T} is isogenous to the direct sum of m copies of a simple torus.

Proof. Let \boldsymbol{T}^{\prime} be an invariant subtorus and k its dimension. By ii) we have $2 n^{2}-2 n+2<\operatorname{rank}_{\boldsymbol{z}} \operatorname{End}(\boldsymbol{T}) \leqq \operatorname{rank}_{\boldsymbol{z}} \operatorname{End}\left(\boldsymbol{T}^{\prime}\right)+\operatorname{rank}_{\boldsymbol{z}} \operatorname{Hom}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}, \boldsymbol{T}\right) \leqq 2 k^{2}+2(n-k) n$. So we have $k=0$ or n. On the other hand if T is simple, $\operatorname{rank}_{z} \operatorname{End}(\boldsymbol{T}) \leqq 2 n$. Therefore \boldsymbol{T} is isogenous to the direct sum of m copies of a simple torus for some $m>1$. (q.e.d.)

We will use the corollary to prove the following proposition which is a special case of Theorem 1-2

Proposition. Let \boldsymbol{T} be complex torus of dimension n. If the rank of $\operatorname{End}(\boldsymbol{T})$ is $2 n^{2}, \boldsymbol{T}$ is isogenous to the direct sum of n copies of an elliptic curve C with complex multiplication.

Proof. We may assume $n>1$. Then since $\operatorname{rank}_{z} \operatorname{End}(\boldsymbol{T})=2 n^{2}>2 n^{2}-2 n-2$, \boldsymbol{T} is isogenous to the direct sum of some copies of a simple torus \boldsymbol{T}^{\prime}. Let r be the dimension of \boldsymbol{T}^{\prime}, and $\operatorname{rank}_{\boldsymbol{z}} \operatorname{End}(\boldsymbol{T})=\operatorname{rank}_{\boldsymbol{z}} M\left(n / r, \operatorname{End}\left(\boldsymbol{T}^{\prime}\right)\right)$, therefore $2 n^{2}$ $\leqq(n / r)^{2}(2 r)=2 n^{2} / r$. So $r=1$ and $\operatorname{rank}_{z} \operatorname{End}\left(\boldsymbol{T}^{\prime}\right)=2$. (q. e. d.)

Remark. Let \boldsymbol{T} and \boldsymbol{T}_{1} be two complex tori and \boldsymbol{T}^{\prime} and $\boldsymbol{T}_{1}^{\prime}$ their subtori respectively. We call the pair $\left(\boldsymbol{T}^{\prime}, \boldsymbol{T}_{1}^{\prime}\right)$ I-pair if the image of \boldsymbol{T}^{\prime} by any homomorphism of \boldsymbol{T} into \boldsymbol{T}_{1} is contained in $\boldsymbol{T}_{1}^{\prime}$. If \boldsymbol{T} and \boldsymbol{T}_{1} have no non-trivial I-pair, \boldsymbol{T}_{1} is isogenous to the direct sum of copies of a simple torus. And we have equations which are similar to i) and ii) in Theorem 3-2. Therefore if $\operatorname{Hom}\left(\boldsymbol{T}, \boldsymbol{T}_{1}\right)$ is of the maximal rank, \boldsymbol{T}_{1} is isogenous to the direct sum of copies of an elliptic curve. Considering dual tori, we can see that \boldsymbol{T} is also isogenous to the direct sum of copies of an elliptic curve. Thus Theorem 1-2 itself can be proved.

Now let \boldsymbol{T} be a complex torus such that a division algebra D is contained in $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ as a subalgebra. If \boldsymbol{T}^{\prime} is a non-trivial invariant subtorus, Φ and Φ^{\prime} in the proof of Theorem 3-2 induce the following \boldsymbol{Q}-algebra homomorphisms;

$$
\begin{aligned}
& \Phi^{Q}: \operatorname{End}^{Q}(\boldsymbol{T}) \rightarrow \operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}^{\prime}\right) \\
& \Phi^{\prime \boldsymbol{Q}}: \operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T}) \rightarrow \operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}\right) .
\end{aligned}
$$

Φ^{Q} is injective on D. In fact, if not, there exists an element of D such that $\Phi^{Q}(\phi)=0$ then $\phi\left(\boldsymbol{T}^{\prime}\right)=\{0\}$. But such a ϕ cannot be an isogeny. Similarly $\Phi^{\prime \boldsymbol{\theta}}$ is injective on D, too. Hence we may consider D a subalgebra of $\operatorname{End}^{Q}\left(\boldsymbol{T}^{\prime}\right)$ and $\operatorname{End}^{Q}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}\right)$.

Theorem 3-3. Let \boldsymbol{T} be a complex torus of dimension n. If $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains a division algebra of dimension $2 n$ as a \boldsymbol{Q}-vector space, \boldsymbol{T} is isogenous to the direct sum of some copies of a simple torus.

Proof. If \boldsymbol{T} has a non-trivial invariant subtorus $\boldsymbol{T}^{\prime}, \operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}^{\prime \prime}\right)$ contains a division algebra of dimension $2 n$. But this is impossible. Hence \boldsymbol{T} has no nontrivial invariant subtorus, so that, by theorem $3-1, \boldsymbol{T}$ is isogenous to the direct sum of some copies of a simple torus. (q.e.d.)

§4. Complex tori of dimension 2.

Throughout this section \boldsymbol{T} will denote a complex torus of dimension 2. In this section we will study the structure of $\operatorname{End}^{Q}(\boldsymbol{T})$.
(1) The case that \boldsymbol{T} is simple.

If \boldsymbol{T} is simple any endomorphism is an isogeny, so $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ is a division algebra. Let K be one of the maximal commutative subfields of $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ and d its degree over \boldsymbol{Q}, and d divides 4 , so $d=1,2$ or 4. If $d=1, \operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})=\boldsymbol{Q}$.
a) The case of $d=4$.

In this case $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})=K$ is isomorphic to a quartic field $\boldsymbol{Q}[X] /(f(X))$ over \boldsymbol{Q} where $f(X)$ is an irreducible polynomial of degree 4. By Theorem 2-3, there exist complex numbers ζ, ξ such that $\{\zeta, \xi, \bar{\zeta}, \bar{\xi}\}$ is the set of all roots of the equation $f(X)=0$ and \boldsymbol{T} is isogenous to

$$
\boldsymbol{T}^{\prime}(\zeta, \xi)=\boldsymbol{C}^{2} /\left(\begin{array}{llll}
1 & \zeta & \zeta^{2} & \zeta^{3} \\
1 & \xi & \xi^{2} & \xi^{3}
\end{array}\right) .
$$

Conversely let $f(X)$ be an irreducible polynomial of degree 4 and ζ, ξ two complex numbers such that $\{\zeta, \xi, \bar{\zeta}, \bar{\xi}\}$ is the set of all roots of the equation $f(X)=0$. Then $\boldsymbol{T}^{\prime}(\zeta, \xi)$ is a complex torus such that $\operatorname{End}^{Q}\left(\boldsymbol{T}^{\prime}(\zeta, \xi)\right)$ contains a division algebra $\boldsymbol{Q}(\zeta)$ of dimension 4. If $\boldsymbol{T}^{\prime}(\zeta, \xi)$ is not simple, by Theorems 3-3, $\boldsymbol{T}^{\prime}(\zeta, \xi)$ is isogenous to the direct sum of two copies of an eliptic curve $C=\boldsymbol{C} /(1, z)$. In other words there exist $\omega \in G L(2, \boldsymbol{C})$ and $\Omega \in G L(4, \boldsymbol{Q})$ such that

$$
\left(\begin{array}{cccc}
1 & \zeta & \zeta^{2} & \zeta^{3} \tag{1}\\
1 & \xi & \xi^{2} & \xi^{3}
\end{array}\right) \Omega=\omega\left(\begin{array}{cccc}
1 & z & 0 & 0 \\
0 & 0 & 1 & z
\end{array}\right)
$$

Let F be the minimal Galois extension of \boldsymbol{Q} containing $\boldsymbol{Q}(\zeta), G^{*}$ its Galois group
and σ one of elements of G^{*} such that $\zeta^{\sigma}=\xi$. Put $\omega=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ and (1) implies that $\alpha, \beta, \alpha z$ and βz are all contained in $\boldsymbol{Q}(\zeta)$ and $\gamma, \delta, \gamma z$ and δz are in $\boldsymbol{Q}(\xi)$ and moreover $\alpha^{\sigma}=\gamma,(\alpha z)^{\sigma}=\gamma z, \beta^{\sigma}=\hat{\delta},(\beta z)^{\sigma}=\delta z$. So z is contained in both $\boldsymbol{Q}(\zeta)$ and $\boldsymbol{Q}(\xi)$, and $z^{\sigma}=z$. We put $K^{\prime}=\boldsymbol{Q}(z)$, then $\boldsymbol{Q}(\zeta)$ is a quadratic extension of K^{\prime} and ξ is the conjugate of ζ over K^{\prime}. Therefore $\boldsymbol{Q}(\zeta)=\boldsymbol{Q}(\xi)$ and $\boldsymbol{Q}(\bar{\zeta})=\boldsymbol{Q}(\bar{\xi})$. By the way there exist only four distinct elements in all $\zeta^{\rho}\left(\rho \in G^{*}\right)$, and there exist at most two elements ρ of G^{*} such that $\zeta^{\rho}=\zeta$. In fact if $\zeta^{\rho}=\zeta$, $\xi^{\rho}=\xi$, so $\bar{\zeta}^{\rho}$ must be $\bar{\zeta}$ or $\bar{\xi}$. Hence the order of G^{*} is 4 or 8. Making $\zeta, \xi, \bar{\zeta}, \bar{\xi}$ correspond to $1,2,3,4$ respectively we consider G^{*} to be a subgroup of the symmetric group S_{4}. Then $G^{*}=V_{4}=\{i d,(12)(34),(13)(23),(14)(23)\} \quad$ or $\quad G^{*}=V_{4} \cup(12) V_{4}=\{i d,(12)$, (12)(34), (34), (13)(24), (1423), (1324), (14)(23)\} where "id" means the unit element of the group.

Conversely if G^{*} is one of those subgroups, putting $z=\zeta+\xi$, it is easily seen that $\boldsymbol{T}^{\prime}(\zeta, \xi)$ is not simple.
b) The case of $d=2$.

In this case K is isomorphic to a quadratic field $\boldsymbol{Q}(\sqrt{m})$ where m is a square-free integer. By Theorem 2-3 \boldsymbol{T} is isogenous to

$$
\boldsymbol{C}^{2} /\left(\begin{array}{llll}
a & \sqrt{m} a & b & \sqrt{m} b \\
c & \sqrt{m} c & d & \sqrt{m} d
\end{array}\right) \text { or } \quad \boldsymbol{C}^{2} /\left(\begin{array}{rrrr}
a & \sqrt{m} a & b & \sqrt{m} b \\
c & -\sqrt{m} c & d & -\sqrt{m} d
\end{array}\right)
$$

for some complex numbers a, b, c, d. Since \boldsymbol{T} is simple, $a b c d \neq 0$, so we may assume $a=c=1$. But $\left(\begin{array}{llll}1 & \sqrt{m} & b & \sqrt{m} b \\ 1 & \sqrt{m} & d & \sqrt{m} d\end{array}\right)$ cannot be a period matrix of a simple torus. Hence \boldsymbol{T} is isogenous to a complex torus

$$
\boldsymbol{T}_{1}(m ; b, d)=\boldsymbol{C}^{2} /\left(\begin{array}{rrrr}
1 & \sqrt{m} & b & b \sqrt{m} \\
1 & -\sqrt{m} & d & -d \sqrt{m}
\end{array}\right)
$$

where b, d are complex numbers such that $b, d \in \boldsymbol{R}$ if $m>0$ and $b \neq \bar{d}$ if $m<0$. Conversely if such m, b, d are given, $\left(\begin{array}{rrrr}1 & \sqrt{m} & b & b \sqrt{m} \\ 1 & -\sqrt{m} & d & -d \sqrt{m}\end{array}\right)$ is certainly a period matrix of some complex torus $\boldsymbol{T}_{1}(m ; b, d)$.

Lemma 4-1. $\quad \boldsymbol{T}_{1}(m ; b, d)$ defined above is not simple if and only if the following condition i^{*}) is satisfied.
i^{*}) There exist rational numbers x, y and an element z of $\boldsymbol{Q}(\sqrt{ } \bar{m})$ with are not all zero and satisfy
(\dagger) $2 x b d+z b+z^{\sigma} d+2 y=0$ (where z^{σ} means the conjugate of z).
($\dagger \dagger) \quad N(z / 2)+x y \in N(\boldsymbol{Q}(\sqrt{m}))$ (where $N(z)=z z^{\sigma}$ for $z \in \boldsymbol{Q}(\sqrt{m})$).
Proof. Let $x, y, z_{1}, z_{2}, b_{1}, b_{2}, b_{3}, b_{4}$ are given rational numbers such that
$\left(x, y, z_{1}, z_{2}\right) \neq(0,0,0,0)$ and $\left(b_{1}, b_{2}, b_{3}, b_{4}\right) \neq(0,0,0,0)$ and consider simultaneous equations with unknowns $X_{1}, X_{2}, X_{3}, X_{4}$,

$$
\left\{\begin{array}{l}
x=b_{3} X_{4}-b_{4} X_{3} \tag{1}\\
y=b_{1} X_{2}-b_{2} X_{1} \\
z_{1}=b_{1} X_{4}-b_{2} X_{3}-b_{4} X_{1}+b_{3} X_{2} \\
z_{2}=b_{1} X_{3}-m b_{2} X_{4}-b_{3} X_{1}+m b_{4} X_{2}
\end{array}\right.
$$

that is,

$$
\left(\begin{array}{cccc}
0 & 0 & -b_{4} & b_{3} \\
-b_{2} & b_{1} & 0 & 0 \\
-b_{4} & b_{3} & -b_{2} & b_{1} \\
-b_{3} & m b_{4} & b_{1} & -m b_{2}
\end{array}\right)\left(\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3} \\
X_{4}
\end{array}\right)=\left(\begin{array}{c}
x \\
y \\
z_{1} \\
z_{2}
\end{array}\right) .
$$

Put $z=z_{1}+\sqrt{m}^{-1} z_{2}$. If x, y, z satisfy (\dagger) and (1) has a solution $X_{i}=a_{i}(i=1,2$, $3,4), \boldsymbol{T}_{1}(m ; b, d)$ is not simple. In fact let Ω be an element of $G L(4, \boldsymbol{Q})$ such that

$$
\Omega=\left(\begin{array}{lll}
a_{1} & b_{1} & \\
a_{2} & b_{2} & \\
a_{3} & b_{3} & \\
a_{4} & b_{4} &
\end{array}\right)
$$

and ω an element of $G L(2, \boldsymbol{C})$ such that

$$
\omega=\left(\begin{array}{cc}
-\alpha & \beta \\
* & *
\end{array}\right)
$$

where $\alpha=b_{1}-b_{2} \sqrt{m}+b_{3} d-b_{4} d \sqrt{m}, \beta=b_{1}+b_{2} \sqrt{m}+b_{3} b+b_{4} b \sqrt{m}$. Then we have by (1) and (\dagger)

$$
\omega\left(\begin{array}{rrrr}
1 & \sqrt{m} & b & b \sqrt{m} \\
1 & -\sqrt{m} & d & -d \sqrt{m}
\end{array}\right) \Omega=\left(\begin{array}{cccc}
0 & 0 & * & * \\
* & * & * & *
\end{array}\right) .
$$

Conversely if $\boldsymbol{T}_{1}(m ; b, d)$ is not simple, there exist such an ω and an Ω. Therefore there exist x, y, z which satisfy (\dagger) and $b_{1}, b_{2}, b_{3}, b_{4}$ such that (1) has a solution.

On the other hand (1) has a solution if and only if

$$
\operatorname{rank}\left(\begin{array}{ccccc}
0 & 0 & -b_{4} & b_{3} & x \\
-b_{2} & b_{1} & 0 & 0 & y \\
-b_{4} & b_{3} & -b_{2} & b_{1} & z_{1} \\
-b_{3} & m b_{4} & b_{1} & -m b_{2} & z_{2}
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cccc}
0 & 0 & -b_{4} & b_{3} \\
-b_{2} & b_{1} & 0 & 0 \\
-b_{4} & b_{3} & -b_{2} & b_{1} \\
-b_{3} & m b_{4} & b_{1} & -m b_{2}
\end{array}\right) .
$$

It is easily seen that this equation is equivalent to the following equation (2);

$$
\begin{equation*}
x\left(b_{1}^{2}-m b_{2}^{2}\right)+y\left(b_{3}^{2}-m b_{4}^{2}\right)+z_{2}\left(b_{1} b_{4}-b_{2} b_{3}\right)-z_{1}\left(b_{1} b_{3}-m b_{2} b_{4}\right)=0 . \tag{2}
\end{equation*}
$$

Put $\varepsilon=b_{1}+\sqrt{m} b_{2}$ and $\eta=b_{3}+\sqrt{m} b_{4}$, and (2) implies

$$
\begin{equation*}
\varepsilon \varepsilon^{\sigma} x+\eta \eta^{\sigma} y-\left(\varepsilon \eta^{\sigma} z+\varepsilon^{\sigma} \eta z^{\sigma}\right) / 2=0 . \tag{3}
\end{equation*}
$$

There exist ε and η which are not both zero and satisfy (3) if and only if ($\dagger \dagger$), is satisfied. In fact, put $\nu=2 y \eta-z \varepsilon$, and (3) implies

$$
(N(z / 2)-x y) \varepsilon \varepsilon^{\sigma}=\nu \nu^{\sigma} / 4 \in N(\boldsymbol{Q}(\sqrt{m})) .
$$

Hence the proof is completed.
Let R be a commutative ring and α, β elements of R. We denote by $(\alpha, \beta)_{R}$ the quatenion over R which is generated as a R-module by $\left\{1, e_{1}, e_{2}, e_{3}\right\}$ where 1 is the unit and $e_{1}^{2}=\alpha, e_{2}^{2}=\beta, e_{1} e_{2}=-e_{2} e_{1}=e_{3}$.

We will call a complex torus of dimension 2 which is isogenous to $\boldsymbol{T}_{1}(m ; b, d)$ such that there exist x, y, z which satisfy (\dagger) but there exist no x, y, z which satisfy both (\dagger) and ($\dagger \dagger$) of a quatenion type. By the above lemma a complex torus of a quatenion type is simple.

Theokem 4-2. Let \boldsymbol{T} be a simple complex torus of dimension 2. $\operatorname{End}(\boldsymbol{T})$ is a non-commutative ring of rank 4 if and only if \boldsymbol{T} is of a quatenion type. In this case, \boldsymbol{T} is isogenous to $\boldsymbol{T}_{1}(m ; b, d)$ such that $b d=q$ is a rational number and $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ is isomorphic to $(m, q)_{\boldsymbol{Q}}$.

Proof. First assume that \boldsymbol{T} is of a quatenion type. Then we may assume that $\boldsymbol{T}=\boldsymbol{T}_{1}(m ; b, d)$ and there exist x, y, z such that $2 x b d+z b+z^{\sigma} d+2 y=0$. Since ($\dagger \dagger$) is not satisfied, $x y \neq 0$ and we may assume $x=1$. If we put $b^{\prime}=b-z^{\sigma}, d^{\prime}=$ $d-z$ and $q=z z^{\sigma}-y \in \boldsymbol{Q}$, then $b^{\prime} d^{\prime}=q$ and $\boldsymbol{T}=\boldsymbol{T}_{1}(m ; b, d)$ is isogenous to $\boldsymbol{T}_{1}(m$; b^{\prime}, d^{\prime}) by an isogeny the rational representation of which is

$$
M\left(\begin{array}{cccc}
1 & 0 & -z_{1} & m z_{2} \\
0 & 1 & z_{2} & -z_{1} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $z=z_{1}+z_{2} \sqrt{m}$ and M is an integer which is large enough to make coefficients integral. It can be easily seen that $\operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}_{\mathbf{1}}\left(m ; b^{\prime}, d^{\prime}\right)\right)$ is a quatenion generated as a \boldsymbol{Q}-module by four elements whose analytic representations are

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\sqrt{m} & 0 \\
0 & -\sqrt{m}
\end{array}\right),\left(\begin{array}{cc}
0 & b^{\prime} \\
d^{\prime} & 0
\end{array}\right),\left(\begin{array}{cc}
0 & \sqrt{m} b^{\prime} \\
-\sqrt{m} d^{\prime} & 0
\end{array}\right) .
$$

That implies the "if" part of the theorem, so we next prove the "only if" part of the theorem. If $\operatorname{End}(\boldsymbol{T})$ is a non-commutative ring of rank 4, \boldsymbol{T} is clearly isogenous to $\boldsymbol{T}_{1}(m ; b, d)$ for some complex numbers b, d, and we may assume that $\boldsymbol{T}=\boldsymbol{T}_{1}(m ; b, d)$. We denote by ϕ the endomorphism whose analytic representation is $\left(\begin{array}{cc}\sqrt{m} & 0 \\ 0 & -\sqrt{m}\end{array}\right)$. Let ψ be an endomorphism which is not commutative with ϕ and $\left(\begin{array}{ll}s & u \\ v & t\end{array}\right)$ its analytic representation. Since

$$
\left(\begin{array}{cc}
\sqrt{m} & 0 \\
0 & -\sqrt{m}
\end{array}\right)\left(\begin{array}{cc}
s & u \\
v & t
\end{array}\right)\left(\begin{array}{cc}
\sqrt{m} & 0 \\
0 & -\sqrt{m}
\end{array}\right)^{-1}-\left(\begin{array}{ll}
s & u \\
v & t
\end{array}\right)=\left(\begin{array}{cc}
0 & -2 u \\
-2 v & 0
\end{array}\right),
$$

There exists an endomorphism ψ^{\prime} whose rational representation is $\left(\begin{array}{cc}0 & u^{\prime} \\ v^{\prime} & 0\end{array}\right)$ for some u^{\prime}, v^{\prime}. Since $\operatorname{End}(\boldsymbol{T})$ is not commutative, the degree of ψ^{\prime} over Q is 2, so there exist rational numbers a_{1}, a_{2} such that $\psi^{\prime 2}+a_{1} \psi^{\prime}+a_{2}=0$. Hence

$$
\left(\begin{array}{cc}
u^{\prime} v^{\prime} & 0 \\
0 & u^{\prime} v^{\prime}
\end{array}\right)+a_{1}\left(\begin{array}{cc}
0 & u^{\prime} \\
v^{\prime} & 0
\end{array}\right)+a_{2}=0
$$

That implies $a_{1}=0$ and $u^{\prime} v^{\prime}$ is a rational number. Let $\Omega=\left(\Omega_{i j}\right)$ be the rational representation of ψ^{\prime}, and

$$
\left(\begin{array}{cc}
0 & u^{\prime} \\
v^{\prime} & 0
\end{array}\right)\left(\begin{array}{rrr}
1 & \sqrt{m} & b \\
1 & -\sqrt{m} & b \\
d & -d \sqrt{m}
\end{array}\right)=\left(\begin{array}{rrrr}
1 & \sqrt{m} & b & b \sqrt{m} \\
1 & -\sqrt{m} & d & -d \sqrt{m}
\end{array}\right)\left(\begin{array}{llll}
\Omega_{11} & \Omega_{12} & \Omega_{13} & \Omega_{14} \\
\Omega_{21} & \Omega_{22} & \Omega_{23} & \Omega_{24} \\
\Omega_{31} & \Omega_{32} & \Omega_{33} & \Omega_{34} \\
\Omega_{41} & \Omega_{42} & \Omega_{43} & \Omega_{44}
\end{array}\right)
$$

Put $\alpha_{1}=\Omega_{11}+\sqrt{m} \Omega_{21}$ and $\alpha_{2}=\Omega_{31}+\sqrt{m} \Omega_{41}$, and $u^{\prime}=\alpha_{1}+b \alpha_{2}$ and $v^{\prime}=\alpha_{1}^{\sigma}+d \alpha_{2}^{\sigma}$ where α_{1} and α_{2} are not both zero. Since $u^{\prime} v^{\prime}$ is a rational number, putting $x=\alpha_{2} \alpha_{2}^{\sigma} / 2, y=\left(\alpha_{1} \alpha_{1}^{\sigma}-u^{\prime} v^{\prime}\right) / 2$ and $z=\alpha_{2} \alpha_{2}^{\sigma}$, the equation (\dagger) is satisfied. In fact

$$
0=\left(\alpha_{1}+b \alpha_{2}\right)\left(\alpha_{1}^{\sigma}+d \alpha_{2}^{\sigma}\right)-u^{\prime} v^{\prime}=\alpha_{2} \alpha_{2}^{\sigma} b d+\alpha_{2} \alpha_{1}^{\sigma} b+\alpha_{2}^{\sigma} \alpha_{1} d+\alpha_{1} \alpha_{1}^{\sigma}-u^{\prime} v^{\prime} . \quad \text { (q. e. d.) }
$$

(2) The case that \boldsymbol{T} is not simple nor isogenous to the direct sum of two elliptic curves.

If \boldsymbol{T} has a subtorus of dimension 1 , we may assume the period matrix of T is

$$
\left(\begin{array}{cccc}
1 & z_{1} & 0 & w \\
0 & 0 & 1 & z_{2}
\end{array}\right)
$$

for some complex numbers z_{1}, z_{2}, w.
Lemma 4-3. The complex torus $\boldsymbol{T}=\boldsymbol{C}^{2} /\left(\begin{array}{cccc}1 & z_{1} & 0 & w \\ 0 & 0 & 1 & z_{2}\end{array}\right)$ is isogenous to the direct sum of two elliptic curves if and only if $w=q_{0}+q_{1} z_{1}+q_{2} z_{2}+q_{3} z_{1} z_{2}$ for some rational
numbers $q_{0}, q_{1}, q_{2}, q_{3}$.
PRoof. If $w=q_{0}+q_{1} z_{1}+q_{2} z_{2}+q_{3} z_{1} z_{2}$, it is easy to transform $\left(\begin{array}{cccc}1 & z_{1} & 0 & w \\ 0 & 0 & 1 & z_{2}\end{array}\right)$ by some isogeny into $\left(\begin{array}{cccc}1 & z_{1} & 0 & 0 \\ 0 & 0 & 1 & z_{2}\end{array}\right)$. Conversely if \boldsymbol{T} is isogenous to the direct sum -of elliptic curves, there exist an element $\omega=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ of $G L(2, C)$ and an element $\Omega=\left(a_{i j}\right)$ of $G L(4, \boldsymbol{Q})$ and complex numbers x, y such that

$$
\omega\left(\begin{array}{cccc}
1 & z_{1} & 0 & w \\
0 & 0 & 1 & z_{2}
\end{array}\right)=\left(\begin{array}{cccc}
1 & x & 0 & 0 \\
0 & 0 & 1 & y
\end{array}\right) \Omega,
$$

that is,

$$
\left(\begin{array}{llll}
a & a z_{1} & b & a w+b z_{2} \\
c & c z_{1} & d & c w+d z_{2}
\end{array}\right)=\left(\begin{array}{llll}
a_{11}+a_{21} x & a_{12}+a_{22} x & a_{13}+a_{23} x & a_{14}+a_{24} x \\
a_{31}+a_{41} y & a_{32}+a_{42} y & a_{33}+a_{43} y & a_{34}+a_{44} y
\end{array}\right) .
$$

Eliminating x from the equation of the first line, we have

$$
\begin{aligned}
\left(a_{11} a_{22}-a_{21} a_{12}\right) w= & \left(a_{22} a_{14}-a_{24} a_{11}\right)+\left(a_{24} a_{11}-a_{12} a_{21}\right) z_{1}+\left(a_{12} a_{23}-a_{22} a_{13}\right) z_{2} \\
& +\left(a_{21} a_{13}-a_{23} a_{11}\right) z_{1} z_{2} .
\end{aligned}
$$

Considering the second line, if necessary, we may assume $a=a_{11}+a_{21} x \neq 0$. Since z_{1} is not a rational number, $a=a_{11}+a_{21} x$ and $a z_{1}=a_{12}+a_{22} x$ are linearly independent over \boldsymbol{Q}, hence $a_{11} a_{22}-a_{21} a_{12} \neq 0$. Therefore w is a linear combination of 1 , $z_{1}, z_{2}, z_{1} z_{2}$ with coefficients in \boldsymbol{Q}. (q. e. d.)

LEmMA 4-4. Let T be a complex torus which is not simple nor isogenous to the direct sum of two elliptic curves. Then \boldsymbol{T} has the unique subtorus \boldsymbol{T}^{\prime} of dimension 1, which is invariant. If $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T}) \neq \boldsymbol{Q}, \boldsymbol{T}^{\prime}$ is isogenous to the factor torus $\boldsymbol{T} / \boldsymbol{T}^{\prime}$. Therefore \boldsymbol{T} is isogenous to a complex torus of the following type;

$$
\boldsymbol{T}_{2}(z ; w)=\boldsymbol{C}^{2} /\left(\begin{array}{llll}
1 & z & 0 & w \\
0 & 0 & 1 & z
\end{array}\right) .
$$

Proof. Of course \boldsymbol{T} has a subtorus \boldsymbol{T}^{\prime} of dimension 1. If there exists another subtorus $\boldsymbol{T}^{\prime \prime}$ of dimension $1, \boldsymbol{T}$ is isogenous to $\boldsymbol{T}^{\prime} \oplus \boldsymbol{T}^{\prime \prime}$. Hence \boldsymbol{T}^{\prime} is the unique subtorus of dimension 1. Now assume that $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T}) \neq \boldsymbol{Q}$. If there exists an endomorphism ϕ such that $\phi(\boldsymbol{T})=\boldsymbol{T}^{\prime}, \boldsymbol{T}^{\prime}$ is contained in the kernel of ϕ, so ϕ induces an isogeny of $\boldsymbol{T} / \boldsymbol{T}^{\prime}$ to \boldsymbol{T}^{\prime}. If there does not exist such a ϕ, $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ is division algebra. We have seen in $\S 3$ that $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ is considered to be a subalgebra of $\operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}^{\prime}\right)$ and of $\operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}\right)$. Since $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T}) \neq \boldsymbol{Q}$, we have $\operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}^{\prime}\right) \cong \operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T}) \cong \operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T} / \boldsymbol{T}^{\prime}\right)$. So \boldsymbol{T}^{\prime} is isogenous to $\boldsymbol{T} / \boldsymbol{T}^{\prime}$. (q.e.d.)

Now to study the endomorphism ring of $\boldsymbol{T}_{2}(z ; w)$ we prepare a lemma.

Lemma 4-5. Let $\boldsymbol{T}=\boldsymbol{E} / \boldsymbol{G}$ be a complex torus of dimension n and \boldsymbol{T}^{\prime} an invariant subtorus of dimension r. If $\left(1_{r} T^{\prime}\right)$ and $\left(1_{s} T^{\prime \prime}\right)$ are the period matrices of \boldsymbol{T}^{\prime} and $\boldsymbol{T} / \boldsymbol{T}^{\prime}$ respectively where $r+s=n$, then we can choose a \boldsymbol{C}-base of \boldsymbol{E} and a \boldsymbol{Z}-base of \boldsymbol{G} such that the period matrix is of the following type;

$$
\left(\begin{array}{cccc}
1_{r} & 0 & T^{\prime} & * \\
0 & 1_{s} & 0 & T^{\prime \prime}
\end{array}\right) .
$$

Then the analytic representation ω and the rational representation Ω of any element of $\operatorname{End}^{Q}(\boldsymbol{T})$ are matrices of the following types;

Proof. Putting $\boldsymbol{T}=\boldsymbol{E} / \boldsymbol{G}, \boldsymbol{T}^{\prime}=\boldsymbol{E}^{\prime} / \boldsymbol{G}^{\prime}\left(\boldsymbol{E} \subset \boldsymbol{E}^{\prime}\right), \boldsymbol{E}^{\prime}$ is invariant by the linear extension of any endomorphism. The lemma follows immediately.

We now pass on to the consideration on a complex torus

$$
\boldsymbol{T}_{2}=\boldsymbol{T}_{2}(z ; w)=\boldsymbol{C}^{2} /\left(\begin{array}{cccc}
1 & 0 & z & w \\
0 & 1 & 0 & z
\end{array}\right)
$$

and $\operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}_{2}\right)$. Let

$$
\omega=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \text { and } \Omega=\left(\begin{array}{llll}
a_{11} & a_{12} & b_{11} & b_{12} \\
a_{21} & a_{22} & b_{21} & b_{22} \\
c_{11} & c_{12} & d_{11} & d_{12} \\
c_{21} & c_{22} & d_{21} & d_{22}
\end{array}\right)
$$

be the analytic representation and the rational representation of an endomorphism of $\boldsymbol{T}_{2} . \gamma=a_{21}=b_{21}=c_{21}=d_{21}=0$ by lemma 4-5. Since

$$
\omega\left(\begin{array}{cccc}
1 & 0 & z & w \\
0 & 1 & 0 & z
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & z & w \\
0 & 1 & 0 & z
\end{array}\right) \Omega,
$$

we have
i) $c_{11} z^{2}+\left(a_{11}-d_{11}\right) z-b_{11}=0$
ii) $\quad c_{22} z^{2}+\left(a_{22}-d_{22}\right) z-b_{22}=0$
iii) $\left\{\left(a_{11}-d_{22}\right)+\left(c_{11}+c_{22}\right) z\right\} w=b_{12}+\left(d_{12}-a_{12}\right) z-c_{12} z^{2}$.
a) The case of $[\boldsymbol{Q}(z): \boldsymbol{Q}] \geqq 3$.

Then i) and ii) imply that $a_{11}=d_{11}, a_{22}=d_{22}, c_{11}=b_{11}=c_{22}=b_{22}=0$, and hence iii) implies

$$
\left(a_{11}-d_{22}\right) w=b_{12}+\left(d_{12}-a_{12}\right) z-c_{12} z^{2} .
$$

If $a_{11} \neq d_{22}, \boldsymbol{T}_{2}$ is isogenous to the direct sum of two elliptic curves. Therefore $a_{11}=d_{22}$ and $b_{12}=c_{12}=0, d_{12}=a_{12}$. Hence the rational representation of $\operatorname{End}^{Q}\left(\boldsymbol{T}_{2}\right)$ is

$$
\left\{\left.\left(\begin{array}{cccc}
a & b & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & 0 & a
\end{array}\right) \right\rvert\, a, b \in \boldsymbol{Q}\right\} .
$$

The dimension of $\operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}_{2}\right)$ over \boldsymbol{Q} is 2, and the analytic representation of a base is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

$\operatorname{End}^{Q}\left(\boldsymbol{T}_{2}\right)$ is isomorphic to $\boldsymbol{Q}[X] /\left(X^{2}\right)$.
b) The case of $[\boldsymbol{Q}(z): \boldsymbol{Q}]=2$.

Then we may assume that $z=\sqrt{m}$ where m is a square-free integer. i) and ii) imply $a_{11}=d_{11}, m c_{11}=b_{11}, a_{22}=d_{22}, m c_{22}=b_{22}$. If $\left(a_{11}-d_{22}\right)+\left(c_{11}+c_{22}\right) z \neq 0, w$ is an element of $\boldsymbol{Q}(z)$ and hence \boldsymbol{T}_{2} is isogenous to the direct sum of two elliptic curves. Therefore $\left(a_{11}-d_{22}\right)+\left(c_{11}+c_{22}\right) z=0$. This equation implies $a_{11}=d_{22}$, $c_{11}+c_{22}=0$ and $b_{12}=m c_{12}, d_{12}=a_{12}$. It follows that the rational representation of $\operatorname{End}^{Q}\left(T_{2}\right)$ is

$$
\left\{\left.\left(\begin{array}{cccc}
a & b & m c & d \\
0 & a & 0 & -m c \\
c & d & a & b \\
0 & -c & 0 & a
\end{array}\right) \right\rvert\, a, b, c, d \in \boldsymbol{Q}\right\}
$$

The dimension of $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ over \boldsymbol{Q} is 4 and the analytic representation of a base is

$$
1_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad e_{1}=\left(\begin{array}{c}
\sqrt{m}-w \\
0
\end{array}-\sqrt{m}\right), \quad e_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad e_{3}=\left(\begin{array}{cc}
0 & \sqrt{m} \\
0 & 0
\end{array}\right) .
$$

There are the following equation among those four elements;

$$
e_{1} 1_{2}=e_{1}, \quad e_{2} 1_{2}=e_{2}, \quad e_{1}^{2}=m 1_{2}, \quad e_{2}^{2}=0, \quad e_{1} e_{2}=-e_{2} e_{1}=e_{3} .
$$

Hence $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ is isomorphic to $(m, 0)_{\boldsymbol{Q}}$.
(3) The case that \boldsymbol{T} is isogenous to the direct sum of two elliptic curves.

There is no difficulty in this case. We may assume that $\boldsymbol{T}=\boldsymbol{T}^{\prime} \oplus \boldsymbol{T}^{\prime \prime}$ for some elliptic curves \boldsymbol{T}^{\prime} and $\boldsymbol{T}^{\prime \prime}$. If \boldsymbol{T}^{\prime} is isogenous to $\boldsymbol{T}^{\prime \prime}$, $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T}) \cong$ $M\left(2, \operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}^{\prime}\right)\right)$. And if \boldsymbol{T}^{\prime} is not isogenous to $\boldsymbol{T}^{\prime \prime}, \operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T}) \cong \operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}^{\prime}\right) \oplus \operatorname{End}^{\boldsymbol{Q}}\left(\boldsymbol{T}^{\prime \prime}\right)$.

Now we will summarize the facts we have seen in this section. Let m, m^{\prime} be integers which are square-free and z, z^{\prime} complex numbers which are not contained in \boldsymbol{R} nor any quadratic field over \boldsymbol{Q}. Consider complex tori of the following types.
I)

$$
T^{\prime}(\zeta, \xi)=C^{2} /\left(\begin{array}{lll}
1 & \zeta & \zeta^{2} \\
1 & \zeta^{3} \\
1 & \xi & \xi^{2}
\end{array} \xi^{3}\right)
$$

where ζ, ξ are algebraic numbers of degree 4 over \boldsymbol{Q} such that $\{\zeta, \boldsymbol{\xi}, \bar{\zeta}, \bar{\xi}\}$ is the set of all conjugates of ζ over \boldsymbol{Q}. Moreover if we consider the Galois group G^{*} of $F=\boldsymbol{Q}(\zeta, \xi, \bar{\zeta}, \bar{\xi})$ to be a subgroup of S_{4} by the correspondence $1 \longleftrightarrow \zeta$, $2 \longleftrightarrow \xi, 3 \longleftrightarrow \bar{\zeta}, 4 \longleftrightarrow \bar{\xi}, G$ is not V_{4} nor $V_{4} \cup(12) V_{4}$.
II) (complex tori of quatenion types)

$$
\boldsymbol{T}_{1}(m ; b, d)=\boldsymbol{C}^{2} /\left(\begin{array}{rrr}
1 & \sqrt{m} & b \\
1 & -\sqrt{m} & b \sqrt{m} \\
d & -d \sqrt{m}
\end{array}\right)
$$

where b, d are complex numbers which are not contained in $\boldsymbol{Q}(\sqrt{m})$, and $b d=q$ is a rational number which is not contained in $N(\boldsymbol{Q}(\sqrt{m}))$. And there is no element α of $\boldsymbol{Q}(\sqrt{m})$ but zero such that $\alpha b+\alpha^{\sigma} d$ is a rational number. Moreover if $m>0, b, d$ are not real number, and if $m<0, b \neq \bar{d}$.
III) Simple complex tori of the following type

$$
\boldsymbol{T}_{1}(m ; b, d)=\boldsymbol{C}^{2} /\left(\begin{array}{rrr}
1 & \sqrt{m} & b \\
1 & -\sqrt{m} & b \sqrt{m} \\
d & -d \sqrt{m}
\end{array}\right)
$$

which are not isogenous to any complex torus of the type (I) nor the type (II). If $m>0, b, d$ are not contained in \boldsymbol{R}, and if $m<0, b \neq \bar{d}$.
IV)

$$
\boldsymbol{T}_{2}(\sqrt{m} ; w)=\boldsymbol{C}^{2} /\left(\begin{array}{cccc}
1 & \sqrt{m} & 0 & w \\
0 & 0 & 1 & \sqrt{m}
\end{array}\right)
$$

where $m<0$, and w is not contained in $\boldsymbol{Q}(\sqrt{ } \bar{m})$.
V)

$$
\boldsymbol{T}_{2}(z ; w)=\boldsymbol{C}^{2} /\left(\begin{array}{llll}
1 & z & 0 & w \\
0 & 0 & 1 & z
\end{array}\right)
$$

where w is not contained in $\boldsymbol{Q}+\boldsymbol{Q} z+\boldsymbol{Q} z^{2}$.

$$
\boldsymbol{T}_{3}(\sqrt{m}, \sqrt{m})=\boldsymbol{C} /(1 \sqrt{m}) \oplus \boldsymbol{C} /(1 \sqrt{m})
$$

where $m<0$.

$$
\boldsymbol{T}_{3}\left(\sqrt{m}, \sqrt{m^{\prime}}\right)=\boldsymbol{C} /(1 \sqrt{m}) \oplus \boldsymbol{C} /\left(1 \sqrt{m^{\prime}}\right)
$$

where $m, m^{\prime}<0$ and $m \neq m^{\prime}$.

$$
\boldsymbol{T}_{3}(\sqrt{m}, z)=\boldsymbol{C} /(1 \quad \sqrt{m}) \oplus \boldsymbol{C} /(1 z)
$$

where $m<0$.
IN)

$$
\boldsymbol{T}_{3}(z, z)=\boldsymbol{C} /(1 z) \oplus \boldsymbol{C} /(1 z) .
$$

X)

$$
\boldsymbol{T}_{3}\left(z, z^{\prime}\right)=\boldsymbol{C} /(1 \quad z) \oplus \boldsymbol{C} /\left(1 z^{\prime}\right)
$$

where $z^{\prime} \in \boldsymbol{Q}(z)$.
Then a complex torus \boldsymbol{T} of dimension 2 is isogenous to a complex torus of one of the above types if and only if $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ is isomorphic to a \boldsymbol{Q}-algebra of the following corresponding type.
I) Algebraic fields $\boldsymbol{Q}(\zeta)$ of degree 4 over \boldsymbol{Q}.
II) Quatenions ($m, q)_{\boldsymbol{Q}}$ such that q is not contained in $N(\boldsymbol{Q}(\sqrt{m}))$.
III) Quadratic fields $\boldsymbol{Q}(\sqrt{m})$.
IV) Quatenions $(m, 0)_{\mathbf{Q}}$.
V) $\boldsymbol{Q}[X] /\left(X^{2}\right)$.
V) $M(2, \boldsymbol{Q}(\sqrt{m})) \quad$ where $m<0$.
VII) $\boldsymbol{Q}(\sqrt{m}) \oplus \boldsymbol{Q}\left(\sqrt{m^{\prime}}\right)$ where $m, m^{\prime}<0, m \neq m^{\prime}$.
VIII) $\boldsymbol{Q}(\sqrt{m}) \oplus \boldsymbol{Q}$ where $m<0$.
IX) $M(2, \boldsymbol{Q})$.
X) $\boldsymbol{Q} \oplus \boldsymbol{Q}$.

§ 5. Abelian varietis of dimension 2.

A complex torus \boldsymbol{T} is called an abelian variety if \boldsymbol{T} can be embedded in some projective space, in other words, if there exists an ample Riemann form on \boldsymbol{T}. A complex torus of dimension 2 of the type VI), VII), VIII), IX) or X) is an abelian variety. And a complex torus of the type IV) or V) is not an abelian variety. Then we will study complex tori of types I), II) and III), that is, simple tori.

Let $\boldsymbol{T}=\boldsymbol{E} / \boldsymbol{G}$ be a complex torus of dimension n where \boldsymbol{E} is \boldsymbol{C}-vector space and \boldsymbol{G} is its lattice subgroup. Fix bases of \boldsymbol{E} and \boldsymbol{G}, and let G be the period matrix of \boldsymbol{T} with respect to those bases. Put $(C \bar{C})=\binom{G}{\bar{G}}^{-1}$ where $C \in$ $M(2 n \times n, \boldsymbol{C})$. There exists a one-to-one correspondence between the set of hermitian forms on \boldsymbol{T} (namely the set of hermitian forms H on $\boldsymbol{E} \times \boldsymbol{E}$ such
that $H\left(g, g^{\prime}\right)$ is integral for any $\left.g, g^{\prime} \in \boldsymbol{G}\right)$ and the set of skew-symmetric matrices M of degree $2 n$ with coefficients in \boldsymbol{Z} which satisfy
(1) ${ }^{t} C M C=0$.

In this correspondence an ample Riemann form on \boldsymbol{T} corresponds to an M which satisfies (1) and
(2) $\sqrt{-1}^{t} \bar{C} M C>0$ (namely $\sqrt{-1}^{t} \bar{C} M C$ is positive definite.)
\boldsymbol{T} is an abelian variety if and only if there exists a skew-symmetric matrix M which satisfies (1) and (2). If $G=\left(1_{n} T\right), C=\binom{-\bar{T}}{1_{n}}(T-\bar{T})^{-1}$. Put $M=\left(\begin{array}{cc}A & B \\ t_{B} & D\end{array}\right)$ where $A, B, D \in M(n, \boldsymbol{Z})$ and ${ }^{t} A=-A,{ }^{t} D=-D$. Then (1), (2) imply respectively
(1') ${ }^{t} T A T-{ }^{t} T B+{ }^{t} B T+D=0$,
(2') $\sqrt{-1}\left({ }^{t} T A \bar{T}-{ }^{t} T B+{ }^{t} B \bar{T}+D\right)>0$.
When (1^{\prime}) is satisfied, $\left(2^{\prime}\right)$ is equivalent to the following condition;
(2") $\sqrt{-1}\left({ }^{t} T A+{ }^{t} B\right)(\bar{T}-T)>0$.
When $n=2$, put $T=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right), \quad A=\left(\begin{array}{cc}0 & x \\ -x & 0\end{array}\right), \quad B=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$ and $D=\left(\begin{array}{cc}0 & y \\ -y & 0\end{array}\right)$, and $\left(1^{\prime}\right)$ implies
i) $x(\alpha \delta-\gamma \beta)-(q \alpha+s \gamma)+(p \beta+r \delta)+y=0$
and ($2^{\prime \prime}$) implies

$$
\sqrt{-1}\left(\begin{array}{ll}
p-x \gamma & r+x \alpha \\
q-x \delta & s+x \beta
\end{array}\right)\left(\begin{array}{cc}
\bar{\alpha}-\alpha & \bar{\beta}-\beta \\
\bar{\gamma}-\gamma & \bar{\delta}-\delta
\end{array}\right)>0,
$$

which is equivalent to the following two conditions;
a) $\sqrt{-1}\{p(\bar{\alpha}-\alpha)+q(\bar{\gamma}-\gamma)+x(\alpha \bar{\gamma}-\bar{\alpha} \gamma)\}>0$,
b) $(-1)\{(p-x \gamma)(s+x \beta)-(r+x \alpha)(q-x \delta)\}\{(\bar{\alpha}-\alpha)(\bar{\delta}-\delta)-(\bar{\gamma}-\gamma)(\bar{\beta}-\beta)\}>0$.

When i) is satisfied b) is equivalent to the following;
c) $\{-x y+(p s-r q)\}\{(\bar{\alpha}-\alpha)(\bar{\delta}-\delta)-(\bar{\gamma}-\gamma)(\bar{\beta}-\beta)\}<0$.

Now let \boldsymbol{T} be a simple torus of dimension 2 with non-trivial endomorphisms. First we prove that if \boldsymbol{T} is an abelian variety $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains some quadratic field over \boldsymbol{Q}. In fact, if it does not, \boldsymbol{T} is isogenous to a complex torus of the type

$$
\boldsymbol{C}^{2} /\left(\begin{array}{llll}
1 & \zeta & \zeta^{2} & \zeta^{3} \\
1 & \xi & \xi^{2} & \xi^{3}
\end{array}\right)
$$

where the Galois group G^{*} of $\boldsymbol{Q}(\zeta, \xi, \bar{\zeta}, \bar{\xi})$ over \boldsymbol{Q} is isomorphic to the alternative group A_{4} or the symmetric group $S_{4} . \quad \boldsymbol{T}$ is isogenous to

$$
\boldsymbol{T}^{\prime}=\boldsymbol{C}^{2} /\left(\begin{array}{llll}
1 & 0 & -\xi \zeta & -\xi \zeta(\xi+\zeta) \\
0 & 1 & \xi+\zeta & \xi^{2}+\xi \zeta+\zeta^{2}
\end{array}\right)
$$

If \boldsymbol{T} is an abelian variety, so is \boldsymbol{T}^{\prime}, hence there exist integers x, y, p, q, r, s which are not all zero and satisfy i), that is,

$$
\begin{aligned}
0 & =x\left(\zeta^{2} \xi^{2}\right)-\{q(-\xi \zeta)+s(\zeta+\xi)\}+\left\{p(-\xi \zeta(\zeta+\xi))+r\left(\xi^{2}+\xi \zeta+\zeta^{2}\right)\right\}+y \\
& =\left(x \xi^{2}-p \xi+r\right) \zeta^{2}+\left(-p \xi^{2}+q \xi+r \xi-s\right) \zeta+\left(r \xi^{2}-s \xi+y\right) .
\end{aligned}
$$

But if $G^{*}=A_{4}$ or S_{4}, this is impossible. Therefore if \boldsymbol{T} is an abelian variety, $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains a quadratic field $\boldsymbol{Q}(\sqrt{m})$. Then \boldsymbol{T} is isogenous to a complex torus

$$
\boldsymbol{T}_{1}(m ; b, d)=\boldsymbol{C}^{2} /\left(\begin{array}{rrrr}
1 & \sqrt{m} & b & b \sqrt{m} \\
1 & -\sqrt{m} & d & -d \sqrt{m}
\end{array}\right)
$$

for some complex numbers b, d. Since this is isomorphism to

$$
\boldsymbol{T}_{1}^{\prime}=\boldsymbol{C}^{2} /\left(\begin{array}{llcc}
1 & 0 & u & m v \\
0 & 1 & v & u
\end{array}\right)
$$

where $u=(b+d) / 2$ and $v=(b-d) / 2 \sqrt{m}, \boldsymbol{T}$ is an abelian variety if and only if there exist integers x, y, p, q, r, s which satisfy the following i^{\prime}), a^{\prime}) and $\left.\mathrm{c}^{\prime}\right)$.
$\left.\mathrm{i}^{\prime}\right) \quad b d x+z b+z^{\sigma} d+y=0\left(\right.$ where $z=z_{1}+z_{2} / \sqrt{m}, z_{1}=(r-q) / 2$ and $z=(p m-s) / 2$.)
$\left.\mathrm{a}^{\prime}\right) \sqrt{-1}\{p(u-\bar{u})+q(v-\bar{v})+x(u \bar{v}-v \bar{u})\}>0$
$\left.c^{\prime}\right) \quad\{-x y+(p s-r q)\} F(b, d)<0 \quad\left(\right.$ where $F(b, d)=\left\{\begin{array}{ll}(b-\bar{b})(d-\bar{d}) & \text { if } m>0 \\ (b-\bar{d})(d-\bar{b}) & \text { if } m<0 .\end{array}\right)$
Lemma 5-1. If $m>0$, there exist x, y, p, q, r, s which satisfy $\left.\mathrm{i}^{\prime}\right)$ and $\left.\mathrm{a}^{\prime}\right), \mathrm{c}^{\prime}$). Therefore \boldsymbol{T} is an abelian variety.

Proof. Put $x=y=0, r=q, s=m p$, and i^{\prime}) is of course satisfied and a^{\prime}), c^{\prime}) imply
$\left.\mathrm{a}^{\prime \prime}\right) \sqrt{-1}\{(p+q / \sqrt{m})(b-\bar{b})+(p-q / \sqrt{m})(d-\bar{d})\}>0$
$\left.c^{\prime \prime}\right) \quad\left(m p^{2}-q^{2}\right)(b-\bar{b})(d-\bar{d})<0$.
Put $X=(p+q / \sqrt{m}) \sqrt{-1}(b-\bar{b}), \quad Y=(p-q / \sqrt{m}) \sqrt{-1}(d-\bar{d})$, and $\left.\mathrm{a}^{\prime \prime}\right)$, $\mathrm{c}^{\prime \prime}$) imply $X+Y>0$ and $X Y>0$. We only have to take p, q which make X and Y positive. (q.e.d.)

Lemma 5-2. If $m<0$ and \boldsymbol{T} is not of a quatenion type, \boldsymbol{T} is not an abelian
variety.
Proof. Since \boldsymbol{T} is not quatenion type, x, y, z which satisfy i^{\prime}) are all zero, so $x=y=0, m p=s, r=q$. Then if $m<0, \mathrm{c}^{\prime}$) implies

$$
\left(m p^{2}-q^{2}\right)(b-\bar{d})(d-\bar{b})=-\left(m p^{2}-q^{2}\right)|b-\bar{d}|^{2}<0
$$

But since $m<0$, this is impossible. Hence \boldsymbol{T} cannot be an abelian variety. (q.e.d.)
Now we assume that \boldsymbol{T} is of a quatenion type. There exist an integer q_{0} which is not contained in $N(\boldsymbol{Q}(\sqrt{m}))$ such that \boldsymbol{T} is isogenous to

$$
\boldsymbol{T}^{\prime \prime}=\boldsymbol{C}^{2} /\left(\begin{array}{rrr}
1 & \sqrt{m} & b \\
1 & -\sqrt{m} & b \sqrt{m} \\
d & -d \sqrt{m}
\end{array}\right)
$$

where $b d=q_{0}$. If $m>0$ or $q_{0}>0, T^{\prime \prime}$ is an abelian variety by Lemma 5-1. So we assume $m<0$ and $q_{0}<0$. If there exists an element z of $\boldsymbol{Q}(\sqrt{m})$ such that $z b+z^{\sigma} d$ is a rational number r_{0}, putting $x=0, y=-r_{0}$, the condition i^{*}) of Lemma $4-1$ is satisfied. Therefore since $b d=q_{0}$ is a rational number, there exists no z but zero which satisfies i^{\prime}) with some x, y. Hence if T^{\prime} is an abelian variety, $y=-x_{0}, r=q, s=p m$ and

$$
-\left(x^{2} q_{0}+m p^{2}-q^{2}\right)|b-\bar{d}|^{2}<0 .
$$

But this is impossible. Therefore we have proved the following lemma.
Lemma 5-3. Let \boldsymbol{T} be a complex torus of a quatenion type such that $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ $\cong(m, q)_{\boldsymbol{Q}}$. If $m>0$ or $q>0, \boldsymbol{T}$ is an abelian variety. If $m<0$ and $q<0, \boldsymbol{T}$ is not abelian variety.

And the following theorem has been proved.
Theorem 5-4. Let \boldsymbol{T} be a simple complex torus of dimension 2 with nontrivial endomorphisms. Then \boldsymbol{T} is an abelian variety if and only if $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains a real quadratic field over \boldsymbol{Q} as a sub- \boldsymbol{Q}-algebra.

Remark. Let $\rho(\boldsymbol{T})$ be the rank of the additive group of all hermitian forms on \boldsymbol{T}, which is equal to the Picard number of \boldsymbol{T}. When \boldsymbol{T} is a simple torus of dimension 2 such that $\operatorname{End}(\boldsymbol{T}) \neq \boldsymbol{Z}$, we have seen above that if $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains no quadratic field over $\boldsymbol{Q}, \boldsymbol{\rho}(\boldsymbol{T})=0$, if $\operatorname{End}^{\boldsymbol{Q}}(\boldsymbol{T})$ contains a quadratic field but \boldsymbol{T} is not of a quatenion type, $\rho(\boldsymbol{T})=2$, and if \boldsymbol{T} is of a quatenion type, $\rho(\boldsymbol{T})=3$.

References

[1] Albert, A. A., A solution of the principal problem in the theory of Riemann matrices. Ann. Math., 35 (1934), 500-515.
[2] -, On the construction of Riemann matrices, I, II, Ann. Math., 35 (1934), 1-28, 36 (1935), 376-394.
[3] Koizumi S., Theta function (in Japanese), Kinokuniya, Tokyo (1982).
[4] Munford, D., Abelian varieties, Tata Inst. Studies in Math., Oxford Univ. press, London and New York (1961).
[5] Shimura, G. \& Taniyama, Y., Complex multiplication of abelian varieties, Math. Soc. Japan (1961).
[6] Yoshihara, H., Structure of complex thri with the endomorphisms of maximal degree, Tsukuba J. Math. 4 (1980), 303-311.

