QF-3' RINGS AND MORITA DUALITY

By

R. R. Colby and K. R. Fuller

In [2] we proved that a one-sided artinian ring is QF-3 if and only if its double dual functors preserve monomorphisms. Here with the aid of [3] we prove that the double dual functor over an arbitrary ring preserves monomorphisms of left modules if and only if it is a left $\mathrm{QF}-3^{\prime}$ ring. In view of this theorem results in [3] and [4] provide an analogue for $\mathrm{QF}-3^{\prime}$ rings of the Morita-Tachikawa representation theorem for QF-3 rings ([9], Chapter 5). Also we apply it to obtain a characterization of Morita duality between Grothendieck categories that serves to generalize Onodera's theorem [7] that cogenerator rings are self injective, by showing that injectivity is redundant in the classical bimodule characterization of Morita duality for categories of modules.

We denote both the dual functors $\operatorname{Hom}_{R}\left(\ldots, R_{R}\right)$ and $\operatorname{Hom}_{R}\left(\ldots,{ }_{R} R\right)$ by ($)^{*}$. Recall that there is a natural transformation $\sigma: 1_{R-M o d} \longrightarrow()^{* *}$, defined via the usual evaluation maps $\sigma_{M}: M \longrightarrow M^{* *}$. An R-module M is called R-reflexive ($R-$ torsionless) in case σ_{M} is an isomorphism (a monomorphism). Also recall that R is left $\mathrm{QF}-3^{\prime}$ if the injective envelope $E\left({ }_{R} R\right)$ of ${ }_{R} R$ is R-torsionless.

1. Theorem. For any ring R, the following are equivalent:
(a) R is left $\mathrm{QF}-3^{\prime}$;
(b) The double dual functor ()** preserves monomorphisms in R-Mod;
(c) If $\mathrm{i}: R \longrightarrow E$ is the inclusion of R into its injective envelope E in $R-\mathrm{Mod}$, then $\mathrm{i}^{* *}$ is a monomorphism.

Proof. That (b) implies (c) is immediate, and (c) implies (a) is easy (see [3], Proposition 1.2). Assume that R is a left $\mathrm{QF}-3^{\prime}$ ring. Since $E=E\left({ }_{R} R\right)$ is torsionless there is a sequence

$$
R \xrightarrow{i} E \xrightarrow{j} R^{x}
$$

for some set X where i is the inclusion and j is a monomorphism.
Let $p_{x}: R^{x} \longrightarrow R$ be the canonical projections and let $b_{x}=p_{x} \circ j \circ i(1) \in R$ for each
$x \in X$. Then if $K=\sum\left\{b_{x} R: x \in X\right\}$ it follows that the left annihilator of K in R is zero. Now suppose $\alpha: M \longrightarrow N$ is a monomorphism in R-Mod and consider the induced sequence

$$
N^{*} \xrightarrow{\alpha^{*}} M^{*} \xrightarrow{\beta} \operatorname{Coker} \alpha^{*} \longrightarrow 0 .
$$

If $f \in M^{*}$, then since E is injective there exists $\bar{f} \in \operatorname{Hom}_{R}(N, E)$ such that $\bar{f} \circ \alpha=i \circ f$. Then considering the diagram

it follows easily that

$$
\alpha^{*}\left(p_{x} \circ j \circ \bar{f}\right)=p_{x} \circ j \circ \bar{f} \circ \alpha=p_{x} \circ j \circ i \circ f=f b_{x} .
$$

Hence $M^{*} K \subseteq \operatorname{Im} \alpha^{*}$ so $\left(\operatorname{Coker} \alpha^{*}\right) K=\beta\left(M^{*}\right) K=\beta\left(M^{*} K\right)=0$. Thus if $\phi \in\left(\text { Coker } \alpha^{*}\right)^{*}$ we have $\phi\left(\right.$ Coker $\left.\alpha^{*}\right) K=\phi\left(\left(\right.\right.$ Coker $\left.\left.\alpha^{*}\right) K\right)=0$ so, since the left annihilator of K is zero, $\phi=0$. But then since $\left(\text { Coker } \alpha^{*}\right)^{*}=0$ we see that $M^{* *} \xrightarrow{\alpha^{* *}} N^{* *}$ is monic.

The following theorem follows immediately from ([3], Theorem 1.4) and Theorem 1 .
2. Theorem. For any ring R, the following are equivalent:
(1) R is left $\mathrm{QF}-3^{\prime}$ and its own maximal left quotient ring;
(2) The double dual functor ($)^{* *}$ is left exact on R-Mod;
(3) If $0 \longrightarrow R \xrightarrow{R} \xrightarrow{i} E_{1} \xrightarrow[j^{* *}]{j} E_{2}$ is exact with E_{1} and E_{2} injective in $R-\mathrm{Mod}$ then $0 \longrightarrow R \xrightarrow{i^{* *}} E_{1} * * \xrightarrow{j^{* *}} E_{2}{ }^{* *}$ is also exact.

Let $D: a \rightleftarrows \mathfrak{a}^{\prime}: D^{\prime}$ be a pair of contravariant functors between abelian categories \mathfrak{a} and \mathfrak{a}^{\prime} that are adjoint on the right, i. e., there are isomorphisms

$$
\eta_{A, A^{\prime}}: \operatorname{Hom}_{\mathfrak{a}}\left(A, D^{\prime}\left(A^{\prime}\right)\right) \longrightarrow \operatorname{Hom}_{a^{\prime}}\left(A^{\prime}, D(A)\right),
$$

natural in $A \in|\mathfrak{a}|$ and $A^{\prime} \in\left|\mathfrak{a}^{\prime}\right|$. Associated with η_{A}, A^{\prime}, are the arrows of right adjunction $\tau: 1_{a} \longrightarrow D^{\prime} D$ and $\tau^{\prime}: 1_{a^{\prime}} \longrightarrow D D^{\prime}$ defined by $\tau_{A}=\eta^{-1}{ }_{A}, D(A)\left(1_{D(A)}\right)$ and $\tau^{\prime} A^{\prime}$ $=\eta_{D^{\prime}\left(A^{\prime}\right), A^{\prime}}\left(1_{D^{\prime}\left(A^{\prime}\right)}\right)$, respectively. These satisfy, for each $A \in|a|, A^{\prime} \in\left|\mathfrak{a}^{\prime}\right|$,

$$
D\left(\tau_{A}\right) \circ \tau^{\prime}{ }_{D(A)}=1_{D(A)} \text { and } D^{\prime}\left(\tau^{\prime} A^{\prime}\right) \circ \tau_{D^{\prime}\left(A^{\prime}\right)}=1_{D^{\prime}\left(A^{\prime}\right)} .
$$

We recall that any pair of such functors $D: \mathfrak{a} \leftrightarrows \mathfrak{a}^{\prime}: D^{\prime}$ which are adjoint on the right are left exact ([8], Corollary 3.2.3).

We call an object A of a (A^{\prime} of \mathfrak{a}^{\prime}) reflexive (respectively, torsionless) in case $\tau_{A}\left(\tau_{A}^{\prime}\right)$ is an isomorphism (respectively, a monomorphism); and we note that (as in [1], Section 23) D and D^{\prime} define a duality between the full subcategories of
reflexive objects $\mathfrak{a}_{0} \subseteq \mathfrak{a}$ and $\mathfrak{a}^{\prime}{ }_{0} \subseteq \mathfrak{a}^{\prime}$. Then as in [3] we say that the pair $D: \mathfrak{a} \rightleftarrows \mathfrak{a}^{\prime}$: D^{\prime} defines a Morita duality in case D and D^{\prime} are exact and the subcategories $\mathfrak{a}_{0} \subseteq \mathfrak{a}$ and $\mathfrak{a}_{0}{ }^{\prime} \subseteq \mathfrak{a}$, are closed under subobjects and quotient objects and contain sets of generators for \mathfrak{a} and \mathfrak{a}^{\prime}, respectively.

According to [3], Proposition 2.3) the functors D and D^{\prime} of a Morita duality are faithful as well as exact. We shall now show that these conditions imply the closure condition for reflexive objects (as is well known if \mathfrak{a} and \mathfrak{a}^{\prime} are module categories).
3. Lemma. Let $D: \mathfrak{a} \leftrightarrows \mathfrak{a}^{\prime}: D$ be a right adjoint pair of contravariant functors between abelian categories. Then D and D^{\prime} are faithful if and only if all objects in \mathfrak{a} and \mathfrak{a}^{\prime} are torsionless.

Proof. If D is faithful and $0 \longrightarrow K \xrightarrow{f} A \xrightarrow{\tau_{A}} D^{\prime} D(A)$ is exact, then since $D\left(\tau_{A}\right) \circ \tau^{\prime}{ }_{D(A)}=1_{D(A)}, D(f)=0$ so $f=0$ also. On the other hand, if all objects of A are torsionless and $f \in \operatorname{Hom}_{a}(A, B), f \neq 0$, then $D^{\prime} D(f) \circ \tau_{A}=\tau_{B} \circ f \neq 0$ so $D^{\prime} D(f) \neq 0$, hence $D(f) \neq 0$, so D is faithful.
4. Proposition. A right adjoint pair of contravariant functors $D: a \rightleftarrows \mathfrak{a}^{\prime}: D^{\prime}$ between abelian categories defines a Morita duality if and only if \mathfrak{a} and \mathfrak{a}^{\prime} contain generating sets of reflexive objects and D and D^{\prime} are faithful and exact.

Proof. From Lemma 3 and exactness we obtain a commutative diagram

with exact rows and columns when B_{0} is reflexive. Thus the Five Lemma apples.
We don't know whether, in the presence of reflexive generating sets, the closure properties for \mathfrak{a}_{0} and $\mathfrak{a}_{0}{ }^{\prime}$ imply that D and D^{\prime} are exact and faithful. Of course they do if \mathfrak{a} and \mathfrak{a}^{\prime} are the categories of modules over a pair of rings (or even if they are functor categories [10]].

We now turn to the general setting of contravariant functors $D: a \rightleftarrows a^{\prime}: D^{\prime}$, adjoint on the right, where \mathfrak{a} and \mathfrak{a}^{\prime} are Grothendieck categories. With \mathfrak{a}_{0} and $\mathfrak{a}_{0}{ }^{\prime}$ as above we assume that these contain generators $V \in \mathfrak{a}_{0}, V^{\prime} \in \mathfrak{a}_{0}{ }^{\prime}$. Then
letting $U=V \oplus D^{\prime} V^{\prime}$ and $U^{\prime}=V^{\prime} \oplus D V$ (so that $D U \cong U^{\prime}$ and $D^{\prime} U^{\prime} \cong U$), $R=\operatorname{Find}_{a}(U)$ $\left(\cong \operatorname{End}_{a^{\prime}}\left(U^{\prime}\right)^{\text {op }}\right), S=\operatorname{Hom}_{\mathfrak{a}}(U,-)$ and $S^{\prime}=\operatorname{Hom}_{a^{\prime}}\left(U^{\prime},-\right)$, we have, as in ([6], Theorem 8.1) and [3], Theorem 3.1), functors

$$
R-\operatorname{Mod} \underset{S}{\stackrel{T}{\leftrightarrows}} \mathfrak{a}
$$

() ${ }^{*}\left\|\uparrow()^{*} D\right\| \uparrow D^{\prime}$
$\operatorname{Mod}-R \underset{S^{\prime}}{\stackrel{T^{\prime}}{\leftrightarrows}} \mathfrak{a}^{\prime}$
where $T\left(T^{\prime}\right)$ is a left adjoint of $S\left(S^{\prime}\right), T$ and T^{\prime} are exact, and $T S$ and $T^{\prime} S^{\prime}$ are equivalent to the identity functors on a and a^{\prime}, respectively. Also, as in [3], Theorem 3.1), $S^{\prime} \circ D \circ T \cong()^{*}$ and $S \circ D^{\prime} \circ T^{\prime} \cong()^{*}$ so $D \circ T \cong T^{\prime} \circ()^{*}$ and $D^{\prime} \circ T^{\prime} \cong T \circ$ ()*. Thus $\operatorname{Ker} T^{\prime} \subseteq \operatorname{Ker}()^{*}$ and $\operatorname{Ker} T \subseteq \operatorname{Ker}()^{*}$.
5. Lemma. Let $D, D^{\prime}, \mathfrak{a}, a^{\prime}, U, U^{\prime}$ and R be as above. Then the following are equivalent:
(a) D and D^{\prime} are faithful;
(b) U and U^{\prime} are cogenerators in \mathfrak{a} and \mathfrak{a}^{\prime}, respectively;
(c) $\operatorname{Ker} T=\operatorname{Ker}()^{*}$ and $\operatorname{Ker} T^{\prime}=\operatorname{Ker}(\quad)^{*}$.

Proof. If $\alpha \in \operatorname{Hom}_{\mathfrak{a}}(A, B)$, we have a commutative square

$$
\begin{aligned}
& \operatorname{Hom}_{\mathfrak{a}}(A, U) \cong \\
& \operatorname{Hom}(\alpha, U) \uparrow \operatorname{Hom}_{a^{\prime}}\left(U^{\prime}, D A\right) \\
& \operatorname{Hom}_{a}(B, U) \cong \\
& \cong \uparrow \operatorname{Hom}\left(U^{\prime}, D(\alpha)\right) \\
& \operatorname{Hom}_{\mathfrak{a}^{\prime}}\left(U^{\prime}, D B\right)
\end{aligned}
$$

Now $D(\alpha) \neq 0$ if and only if $\operatorname{Hom}\left(U^{\prime}, D(\alpha)\right) \neq 0$ (since U^{\prime} is a generator) if ard only if $\operatorname{Hom}(\alpha, U) \neq 0$. It follows that (a) and (b) are equivalent. Now since $D \circ T \cong T^{\prime}$ 。 ($)^{*}$, and $D^{\prime} \circ T^{\prime} \cong T^{\circ}()^{*}$, it is clear that if D and D^{\prime} are faithful, then $\operatorname{Ker} T$ $=\operatorname{Ker} D \circ T=\operatorname{Ker} T^{\prime} \circ(\quad)^{*} \subseteq \operatorname{Ker}(\quad)^{*}$ and similarly $\operatorname{Ker} T^{\prime} \subseteq \operatorname{Ker}(\quad)^{*}$. Thus (a) implies (c). Suppose Ker $T=\operatorname{Ker}()^{*}$. If $\alpha \in \operatorname{Hom}_{a}(A, B)$ and $D(\alpha)=0$, then $(S(\alpha))^{*} \cong S^{\prime} \operatorname{DTS}(\alpha)$ $\cong S^{\prime} D(\alpha)=0$ so $\alpha \cong T S(\alpha)=0$, also. Thus (c) implies (a).

We denote the full subcategories of R-Mod and Mod- R whose objects are the torsion modules, i. e., those modules M with $M^{*}=0$, by R-Tors and Tors- R, respectively. Then, if R is $\mathrm{QF}-3^{\prime}$, an R-module M is torsion if and cnly if $\operatorname{Hom}(M, E(R))=0$, and R-Tors and Tors- R are then localizing subcategories of R-Mod and Mod- R, respectively (see [3], Proposition 1.1).
6. Theorem. Every right adjoint pair of contravariant faithful fu:nctors
$D: a \rightleftarrows \mathfrak{a}^{\prime}: D^{\prime}$ between Grothendieck categories with reflexive generators defines a Morita duality.

Proof. Suppose that $D: a \rightleftarrows \mathfrak{a}^{\prime}: D^{\prime}, U, U^{\prime}, R, T$, and T^{\prime} are as in Lemma 5 and that D and D^{\prime} are faithful. Then by Lemma $5, U$ and U^{\prime} are generatorcogenerators, so by Morita's ([6], Theorems 8.3 and 5.6) R is $\mathrm{QF}-3^{\prime}$ and its own maximal quotient ring. (See also [8], Theorem 4.13.4 or [5], Proposition 4.3.1). Thus by Theorem 2 the R-double duals are left exact. But by Lemma 5 we also have $\operatorname{Ker} T=\operatorname{Ker}()^{*}$ so by [8], Theorem 4.4.9) we may identify $T: R$-Mod \longrightarrow \mathfrak{a}^{\prime} and $T^{\prime}:$ Mod- $R \longrightarrow \mathfrak{a}^{\prime}$ with the canonical functors $T: R$-Mod $\longrightarrow R$-Mod $/ R$-Tors and $T^{\prime}:$ Mod $-R \longrightarrow$ Mod- $R /$ Tors- R and conclude that $\left(D, D^{\prime}\right)$ define a Morita duality by ([3], Theorem 2.6).

Specializing Theorem 6 to the case of module categories yields the following generalization of Onodera's theorem that cogenerator rings are injective [7] and provides a new characterization of Morita duality between categories of modules.
7. Corollary. If R and S are rings and ${ }_{R} U_{S}$ is a bimodule with $S=\operatorname{End}\left({ }_{R} U\right)$ and $R=\operatorname{End}\left(U_{S}\right)$ and if ${ }_{R} U$ and U_{S} are cogenerators, then ${ }_{R} U$ and U_{S} are injective.

Proof. Apply Theorem 6 to the functors $D=\operatorname{Hom}_{R}(-, U)$ and $D^{\prime}=\operatorname{Hom}_{S}(-, U)$.

8. Remarks.

(1) One can apply the technique used to prove Theorem 1 to the sequence $U \xrightarrow{i} E\left({ }_{R} U\right) \xrightarrow{j} U^{X}$ to give a direct proof that if ${ }_{R} U_{S}$ a balanced bimodule and ${ }_{R} U$ and U_{S} are cogenerators, then ${ }_{R} U$ is injective.
(2) In ([4], Theorem 1), conditions (i) and (ii) and the last part of (iii) easily imply that R is $\mathrm{QF}-3^{\prime}$ so by Theorem 1, as we speculated in (4], Remark (a)), we can delete the first part of condition (iii) from the statement of that theorem; in view of Theorems 1 and 2 and ([3], Theorem 3.1) it now becomes an analogue for $\mathrm{QF}-3^{\prime}$ rings of the Morita-Tachikawa representation theorems for $\mathrm{QF}-3$ rings ([9], Theorems 5.3 and 5.8).

References

[1] Anderson, F. W. and Fuller, K. R., Rings and Categories of Modules, New York-Heiderberg-Berlin: Springer-Verlag, 1974.
[2] Colby, R. R. and Fuller, K. R., Exactness of the double dual, Proc. Amer. Math. Soc. 82 (1981), 521-526.
[3] Colby, R. R. and Fuller, K. R., Exactness of the double dual and Morita duality for Grothendieck categories, J. Algebra 82 (1983), 546-558.
[4] Colby, R. R. and Fuller, K. R., On rings whose double dual functors preserve monomorphisms, J. Pure Appl. Algebra 28 (1983), 223-234.
[5] Lambek, J., Lectures on Rings and Modules, Waltham-Toronto-London: Gin/Elaisdell, 1966.
[6] Morita, K., Localization in categories of modules I, Math. Z. 114 (1970), 121-144.
[7] Onodera, T., Uber Kogeneratoren, Arch. Math. 19 (1968), 402-410
[8] Popescu, N., Abelian Categories with Applications to Rings and Modules, New YorkLondon: Academic Press, 1973.
[9] Tachikawa, H., Quasi-Frobenius Rings and Generalizations, Springer-Verlag Lecture Notes in Math., 351 (1973).
[10] Yamagata, K., On Morita duality for additive group-valued functors, Comm. in Algebra 7 (1979), 367-392.

The University of Hawaii
Honolulu, Hawaii 96822 IJ. S. A.
The University of Iowa
Iowa City, Iowa 52242 L゙. S. A.

