ON CONDUCTOR OVERRINGS OF A VALUATION DOMAIN

By

Akira Okabe

Introduction. It is well known that every overring of a valuation domain V is of the form V_P for some prime ideal P of V. Hence, if I is an ideal of a valuation domain V with quotient field K, then the conductor overring $I:_K I$ is of the form V_P for some prime ideal P of V. In case $I:_K I=V_P$, is there any relation between I and P? The main purpose of this paper is to investigate this relation. In order to give a complete answer to the question stated above, we introduce the notion of "recurrent closure": If I is an ideal of an integral domain R with quotient field K, then the ideal $R:_R(I:_K I)$ of R is called the "recurrent closure" of I and is denoted by I_r . We prove, in Theorem 13, that if I is an ideal of a valuation domain V with quotient field K such that $I:_K I \neq V$, then I_r is always a prime ideal of V and if we set $I:_K I = V_P$ for some prime ideal P of V, then P is equal to the recurrent closure I_r .

In general, our terminology and notation will be the same as [3] and [6]. Throughout the paper, V denotes a valuation domain, with quotient field K.

THEOREM 1. If P is a proper prime ideal of V, then $P: {}_{K}P = V_{P}$. In particular, if M is the unique maximal ideal of V, then $M: {}_{K}M = V$.

PROOF. If P=(0), then $(0):_{K}(0)=K=V_{(0)}(cf. [9, Remark 1.2])$ and hence our assertion is trivial. Thus we may assume that $P\neq (0)$. Then, by [3, Theorem 17.3], P(x)=P for any $x\in V\setminus P$ and accordingly $1/xP\subseteq P$. Thus $1/x\in P:_{K}P$ for any $x\in V\setminus P$. From this fact it follows that $V_{P}\subseteq P:_{K}P$. Hence, if we put $P:_{K}P=V_{Q}$ for some prime ideal Q of V, then we have $V_{P}\subseteq P:_{K}P=V_{Q}$ and so $Q\subseteq P$. Assume now that $Q\neq P$. Then $Q:_{K}P$ is a nonmaximal prime ideal of $P:_{K}P$ by [9, Corollary 2.4]. On the other hand, $Q=QV_{Q}$ is a maximal ideal of V_{Q} by [3, Theorem 17.6]. Since $Q\subseteq Q:_{K}P$, we have $Q=Q:_{K}P$ and therefore $Q:_{K}P$ is a maximal ideal of $P:_{K}P$, a contradiction. Hence we must have Q=P, and accordingly $P:_{K}P=V_{P}$ as desired. Thus our first assertion is proved. The second assertion follows immediately from the first one.

Before proving the next theorem, we first establish the following lemma.

LEMMA 2. Let R be an integral domain with quotient field K and let I be a proper ideal of R. If $I: {}_{K}I = R_{P}$ for some prime ideal P of R, then we have $I \subseteq P$.

PROOF. Assume the contrary. Then we can choose an element $a \in I \setminus P$. Then, by hypothesis, $1/a \in R_P = I : {}_K I$ since $a \notin P$. Therefore we have $1 = a \cdot 1/a \in I(I : {}_K I) \subseteq I$, which implies that I = R. This clearly contradicts our assumption.

Theorem 3. If Q is a primary ideal of V, then $Q: {}_{K}Q = V_{\sqrt{Q}}$.

PROOF. If Q=(0), then $(0):_K(0)=K=V_{\sqrt{(0)}}$ and hence our assertion is evident. Therefore we may assume that $Q\neq (0)$. If we set $Q:_KQ=V_P$ with some prime ideal P of V, then $Q\subseteq P$ and hence $\sqrt{Q}\subseteq P$. We shall next show that $P\subseteq \sqrt{Q}$. By [3, Theorem 17.3], Q(x)=Q for any element $x\in V\setminus \sqrt{Q}$, and accordingly $1/x\in Q:_KQ$ for any $x\in V\setminus \sqrt{Q}$. Thus we have $V_{\sqrt{Q}}\subseteq Q:_KQ=V_P$ and hence $P\subseteq \sqrt{Q}$, as required. This completes the proof.

COROLLARY 4. If Q is a primary ideal of V, then $Q: {}_{K}Q = \sqrt{Q}: {}_{K}\sqrt{Q}$.

PROOF. This follows immediately from Theorem 1 and Theorem 3.

DEFINITION 5. Let R be an integral domain with quotient field K and let I be a proper ideal of R. Then the ideal $R:_R(I:_KI)$ of R is called the "recurrent closure" of I and is denoted by I_r . An ideal I of R is said to be "recurrent" in case $I=I_r$.

REMARK 6. If I is a recurrent ideal of an integral domain R with quotient field K, then $I: {}_KI \neq R$. For, if $I: {}_KI = R$, then $I = I_r = R: {}_R(I: {}_KI) = R: {}_RR = R$, a contradiction. Moreover, if M is a maximal ideal of R, then the converse of the above statement also holds. In fact, if $M: {}_KM \neq R$, then $M \subseteq R: {}_R(M: {}_KM) \subseteq R$ and hence $M = R: {}_R(M: {}_KM)$, since M is a maximal ideal of R. Therefore M is a recurrent ideal of R as required.

REMARK 7. If M is the unique maximal ideal of V, then M is not recurrent. By Theorem 1, $M:_K M = V$ and therefore our assertion follows from Remark 6.

We first collect some facts about recurrent ideals that will be needed later.

LEMMA 8. Let R be an integral domain with quotient field K. If I is an ideal of R such that $I: {}_{K}I \neq R$, then $I \subseteq I_{r}$ and I_{r} itself is recurrent.

PROOF. By definition the containment $I \subseteq I_r$ is evident. Next, we shall establish the second assertion. First it should be noted that I_r is an ideal of $I:_K I$ (cf. [9, Lemma 1.1(2)]). It follows from this fact that if $x \in I:_K I$ and $a \in I_r$, then $xa \in I_r$. Thus we have $I:_K I \subseteq I_r:_K I_r$. Therefore $I_r = R:_R (I:_K I) \supseteq R:_R (I_r:_K I_r) \supseteq I_r$, whence $I_r = R:_R (I_r:_K I_r) = (I_r)_r$, completing the proof.

Lemma 9. Let R be an integral domain with quotient field K and let I be a proper ideal of R. Then

- (1) If P is a prime ideal of R contained in I, then $I: {}_{\kappa}I \subseteq P: {}_{\kappa}P$.
- (2) If I is a recurrent ideal of R, then, for any prime ideal P of R, $P \subseteq I$ if and only if $I: {}_{K}I \subseteq P: {}_{K}P$.
- PROOF. (1) Let $x \in I : {}_{K}I$ and $p \in P$. Since $x^{2} \in I : {}_{K}I$ and $p \in I$, $x^{2}p \in (I : {}_{K}I)I \subseteq I$, and accordingly $(xp)^{2} = (x^{2}p)p \in IP \subseteq P$, which implies that $xp \in P$ because $xp \in I \subset R$. Thus $(I : {}_{K}I)P \subseteq P$ and hence $I : {}_{K}I \subseteq P : {}_{K}P$ as required.
- (2) The "only if" half is proved in (1). Conversely, assume that $I: {}_{\kappa}I \subseteq P: {}_{\kappa}P$. Then P is an ideal of $I: {}_{\kappa}I$, since $P(I: {}_{\kappa}I) \subseteq P(P: {}_{\kappa}P) \subseteq P$. Hence, by [9, Lemma 1.1 (4)], $P \subseteq R: {}_{R}(I: {}_{\kappa}I) = I_{r}$. Then we have $P \subseteq I_{r} = I$ because I is, by hypothesis, recurrent. This completes the proof.

REMARK 10. The part (1) of Lemma 9 is also found in [1, Lemma 2.2] or in [2, Lemma 3.7].

LEMMA 11. Let R be an integral domain with quotient field K and let I be a proper ideal of R. If P is a recurrent prime ideal of R properly contained in I, then $I: {}_{K}I \subseteq P: {}_{K}P$.

PROOF. By part (1) of Lemma 9, we have $I:_{\kappa}I\subseteq P:_{\kappa}P$. Hence, it suffices to show that $I:_{\kappa}I\neq P:_{\kappa}P$. Assume that $I:_{\kappa}I=P:_{\kappa}P$. Then I is an ideal of $P:_{\kappa}P$ and therefore, by [9, Lemma 1.1 (4)], $I\subseteq P_r$. By hypothesis, $P_r=P$ and hence $I\subseteq P$, the desired contradiction. This completes the proof.

In the proof of Lemma 8, we showed that if I is an ideal of an integral domain R with quotient field K, then $I: {}_{K}I \subseteq I_{r}: {}_{K}I_{r}$. If P is a prime ideal of R, then it can be shown that $P: {}_{K}P = P_{r}: {}_{K}P_{r}$.

THEOREM 12. Let R be an integral domain with quotient field K. If P is a prime ideal of R, then we have $P:_{K}P=P_{r}:_{K}P_{r}$.

PROOF. We have already shown in Lemma 8 that $P: {}_{\kappa}P \subseteq P_r: {}_{\kappa}P_r$. Hence,

we need only prove the reverse containment $P_r: {}_{\kappa}P_r \subseteq P: {}_{\kappa}P$. If $P = P_r$, then there is nothing to prove. Therefore we may assume that $P \neq P_r$. If we choose $t \in P_r \setminus P$, then, for any $x \in P_r: {}_{\kappa}P_r$, we have $xt \in P_r \subset R$. Then we have $xt p \in P$ for any $p \in P$. But, since $xp \in (P_r: {}_{\kappa}P_r)P \subseteq P_r \subset R$ and $t \in R \setminus P$, $(xp)t \in P$ implies that $xp \in P$. Thus $P_r: {}_{\kappa}P_r \subseteq P: {}_{\kappa}P$ as desired and our proof is complete.

We are now in a position to prove the main theorem of this paper.

THEOREM 13. Let V be a valuation domain with quotient field K. Then

- (1) Every nonmaximal prime ideal P of V is recurrent.
- (2) If I is an ideal of V such that $I: {}_{K}I \neq V$, then I_r is a prime ideal of V and we have $I: {}_{K}I = V_{I_r}$.
 - (3) If I is an ideal of V such that $I: {}_{K}I \neq V$, then $\sqrt{I} \subseteq I_{r}$.
- (4) If Q is a primary ideal of V such that \sqrt{Q} is not the unique maximal ideal M of V, then $\sqrt{Q}=Q_r$.
- PROOF. (1) First, by Theorem 1, $P: {}_KP = V_P \neq V$. Hence we get $P_r = V: {}_V(P: {}_KP) \neq V$. Indeed, if $P_r = V$ then $1 \in P_r$ and so $P: {}_KP \subseteq V$, a contradiction. Thus we get $P \subseteq P_r \neq V$. Next, by [9, Lemma 1.1 (2)], P_r is an ideal of $P: {}_KP = V_P$ and therefore $P_r \subseteq PV_P = P$. Accordingly, $P = P_r$, which implies that P is recurrent.
- (2) By hypothesis, $I:_{K}I$ is a proper overring of V and so we can write $I:_{K}I = V_{P}$ with some nonmaximal prime ideal P of V. Since, by Theorem 1, $V_{P}=P:_{K}P$, it follows that $I:_{K}I=P:_{K}P$. Then we have $I_{r}=V:_{V}(I:_{K}I)=:_{V}V:_{V}(P:_{K}P)=P$, since P is recurrent by (1). Thus, I_{r} is a prime ideal of V and moreover $I:_{K}I=V_{I_{r}}$ as required.
- (3) Since $I \subseteq I_r$, we always have $\sqrt{I} \subseteq \sqrt{I_r}$. If $I: {}_K I \neq V$, then, by (2), I_r is prime and therefore $\sqrt{I} \subseteq \sqrt{I_r} = I_r$ as wanted.
- (4) First, by Theorem 3, $Q: {}_{K}Q = V_{\sqrt{Q}}$. Moreover, $Q: {}_{K}Q \neq V$, since \sqrt{Q} is not maximal. Hence, by (2), Q_r is prime and $Q: {}_{K}Q = V_{Q_r}$. Thus $V_{\sqrt{Q}} = V_{Q_r}$, and accordingly $\sqrt{Q} = Q_r$, completing the proof.
- REMARK 14. Let R be an integral domain with quotient field K and let $P \subset I$ be ideals of R with P prime. Then we cannot in general expect that P is also prime in $I:_K I$. To show this, we shall give the following example.

EXAMPLE 15. Let $R = \mathbb{Z}[2X, X^2, X^3]$ be the subdomain of $T = \mathbb{Z}[X]$, where X is an indeterminate over \mathbb{Z} . Then $K = \mathbb{Q}(X)$ is the quotient field of R. If we set $M = 2\mathbb{Z}R + 2XR + X^2R + X^3R$, then $R/M = \mathbb{Z}/2\mathbb{Z}$ is a field and so M is a maximal ideal of R. Moreover, it is easy to see that $M: {}_{K}M = \mathbb{Z}[X]$. If we put P = 2XR

 $+X^2R+X^3R$, then, since $R/P=\mathbb{Z}$, P is a prime ideal of R properly contained in M. But P is not a prime ideal of $M: {}_{\kappa}M$, because $3X \in \mathbb{Z}[X] \setminus P$, but $(3X)^2 \in P$.

COROLLARY 16. If $P \subset I$ are ideals of V with P prime, then P is also prime in $I: {}_{\kappa}I$ and $P = P: {}_{\kappa}I$.

PROOF. If $I: {}_{K}I = V$, then there is nothing to prove. Hence we may assume that $I: {}_{K}I \neq V$. Then, by Theorem 13 (2), $I: {}_{K}I = V_{I_r}$ and I_r is a prime ideal of V. Hence, by [3, Theorem 17.6 (b)], $P = PV_{I_r}$ is a prime ideal of V_{I_r} , since $P \subset I \subseteq I_r$. Thus, P is a prime ideal of $I: {}_{K}I$. Our second assertion follows then from [9, Corollary 1.5].

We close this paper with a characterization of primary ideals Q of V such that $Q: {}_{K}Q \neq V$.

We first prepare the following two lemmas.

LEMMA 17. Let Q be a primary ideal of V. Then $Q: {}_{K}Q \neq V$ if and only if \sqrt{Q} is not the unique maximal ideal of V.

PROOF. Let M be the unique maximal ideal of V. First, suppose that $\sqrt{Q} = M$. Then, by Theorem 3, $Q:_{K}Q = V_{\sqrt{Q}} = V_{M} = V$. Thus, the "only if" half is proved. Conversely, suppose that $Q:_{K}Q = V$. Then, also by Theorem 3, $V=Q:_{K}Q = V_{\sqrt{Q}}$, and so $\sqrt{Q} = M$. Hence, the "if" half is also proved.

LEMMA 18. Let I be a nonzero ideal of an integral domain R with quotient field K. Then, for any $x \in I : {}_{K}I$, x is a unit of $I : {}_{K}I$ if and only if xI = I.

PROOF. First, assume that x is a unit of $I:_KI$. Then there is an element $y \in I:_KI$ such that xy=1. Then, $I=(xy)I=x(yI)\subseteq xI\subseteq I$, and so I=xI, as we required. Conversely, suppose that I=xI. Since $I\neq (0)$, x is a nonzero element of K, and so $x^{-1}\in K$. Hence, by hypothesis, $x^{-1}I=x^{-1}(xI)=(x^{-1}x)I=I$, and so $x^{-1}\in I:_KI$, which implies that x is a unit of $I:_KI$. This completes the proof.

THEOREM 19. Let I be an ideal of V such that $I: {}_{K}I \neq V$. Then I is a primary ideal of V if and only if $\sqrt{I} = I_r$.

PROOF. The "only if" half is proved in part (4) of Theorem 13. To prove the "if" half, suppose that I is not a primary ideal of V. By part (2) of Theorem 13, $I: {}_{K}I = V_{I_r}$, and therefore, to prove that $\sqrt{I} \neq I_r$, it suffices to show that $I: {}_{K}I \neq V_{\sqrt{I}}$. Now, since I is not primary, there exist $a, b \in V$ such that $a \notin I, b \notin \sqrt{I}$,

but $ab \in I$. Then $b \notin \sqrt{I}$ implies that $I \subset (b)$, since V is a valuation domain. Then, since (b) is invertible, there exists an ideal I of V such that I = I(b). Therefore, by hypothesis, $ab \in I = I(b)$, and so $a \in I$. Since $a \in I \setminus I$, $I = I(b) \subset I$ and therefore $bI = (b)I = I(b^2) \subset I(b) = I$. Thus, $bI \subset I$ and therefore it follows from Lemma 18 that b is not a unit of $I:_K I$. On the other hand, b is a unit of $V_{\sqrt{I}}$, since $b \notin \sqrt{I}$. Therefore $I:_K I \neq V_{\sqrt{I}}$, as we wanted and hence our proof is complete.

REMARK 20. If I is an ideal of V such that $I: {}_{K}I \neq V$, then \sqrt{I} is not maximal in V. For, if \sqrt{I} is maximal, then, by part (3) of Theorem 13, I_r is also maximal in V and therefore, by part (2) of Theorem 13, $I: {}_{K}I = V_{I_r} = V$, a contradiction.

COROLLARY 21. Let I be an ideal of V such that $I: {}_{K}I \neq V$. Then I is recurrent if and only if I is prime.

PROOF. First, assume that I is prime in V. Then it follows from Theorem 1 that I is not maximal in V, since $I: {}_{K}I \neq V$. Therefore the "if" half follows from part (1) of Theorem 13. Furthermore, the "only if" half follows immediately from part (2) of Theorem 13.

References

- [1] Anderson, D. F., Comparability of ideals and valuation overrings, Houston J. Math., 5 (1979), 451-463.
- [2] Fossum, R. M., The Divisor Class Group of a Krull domain, Springer-Verlag New York, 1973.
- [3] Gilmer, R., Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
- [4] ——, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, No. 12, Queen's Univ. Press, Kingston, Ontario, 1968.
- [5] Huckaba, J. A. and Papick, I. J., When the dual of an ideal is a ring, Manuscripta Math., 37 (1982), 67-85.
- [6] Kaplansky, I., Commutative Rings, Allyn. and Bacon, Inc., Boston, 1970.
- [7] Larsen, M.D. and McCarthy, P.J., Multiplicative thory of ideals, Academic Press, New York and London, 1971.
- [8] Nagata, M., A treatise on the 14-th problem of Hilbert, Mem. Coll. Sci. Univ. Kyoto Ser. A Math., 30 (1956-57), 57-70.
- [9] Okabe, A., On conductor overrings of an integral domain, preprint.