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ON CONDUCTOR OVERRINGS OF A VALUATION DOMAIN

By

Akira OKABE

Introduction. It is well known that every overring of a valuation domain V
is of the form Vp for some prime ideal P of V. Hence, if [ is an ideal of a valua-
tion domain V with quotient field K, then the conductor overring I:xl is of the
form Vp for some prime ideal P of V. In case I:x[=Vp, is there any relation
between I and P? The main purpose of this paper is to investigate this relation.
In order to give a complete answer to the question stated above, we introduce the
notion of “recurrvent closure’ : If I is an ideal of an integral domain R with quo-
tient field K, then the ideal R: z(/: xI) of R is called the ‘“recurrent closure’ of
I and is denoted by I,. We prove, in Theorem 13, that if 7 is an ideal of a valua-
tion domain V with quotient field K such that 7:xI=V, then I, is always a prime
ideal of V and if we set I:xI=Vp for some prime ideal P of V, then P is equal
to the recurrent closure I,.

In general, our terminology and notation will be the same as [3] and [6]
Throughout the paper, V denotes a valuation domain, with quotient field K.

THEOREM 1. If P is a proper prime ideal of V, then P:xP=Vp. In partic-
ular, if M is the unique maximal ideal of V, then M:xM=1V.

Proor. If P=(0), then (0): x(0)=K= V(,(cf. [9, Remark 1.2]) and hence our
assertion is trivial. Thus we may assume that P+(0). Then, by [3, Theorem
17.3], P(z)=P for any x€ V\ P and accordingly 1/xPcP. Thus 1/zeP:xP for
any z€ V\P. From this fact it follows that VpS P:xP. Hence, if we put P:xP
=V, for some prime ideal @ of V, then we have VpSP:ixP=V, and so QCP.
Assume now that Q+P. Then Q:xP is a nonmaximal prime ideal of P:xP by
[9, Corollary 2.4]. On the other hand, Q=QV, is a maximal ideal of V, by [3,
Theorem 17.6]. Since QCQ:xP, we have Q=Q:xP and therefore Q:xP is a
maximal ideal of P: kP, a contradiction. Hence we must have Q@=PF, and accord-
ingly P: xP="Vp as desired. Thus our first assertion is proved. The second as-
sertion follows immediately from the first one.
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Before proving the next theorem, we first establish the following lemma.

LEMMA 2. Let R be an integral domain with quotient field K and let I be a
proper ideal of R. If I:xI=Rp for some prime ideal P of R, then we have ICP.

Proor. Assume the contrary. Then we can choose an element ae/\ F. Then,
by hypothesis, 1/ac Rp=1I: I since a¢P. Therefore we have 1=a-1/acl(l:xI)<S],
which implies that /=R. This clearly contradicts our assumption.

THEOREM 3. If Q is a primary ideal of V, then Q:xQ=1V ,5.

Proor. If Q=(0), then (0):x(0)=K=1V,; and hence our assertion is evident.
Therefore we may assume that Q+(0). If we set Q:xQ=7Vp with some prime
ideal P of V, then QC P and hence ~/ Q< P. We shall next show that PC+ Q.
By [3, Theorem 17.3), Q(z)=Q for any element z€ V\ v Q, and accordingly 1/ze
Q: xQ for any xe V\~V Q. Thus we have V.5CQ:xQ=Vp and hence PC+ Q,
as required. This completes the proof.

COROLLARY 4. If Q is a primary ideal of V, then Q:xQ=+v Q:xVQ.
Proor. This follows immediately from Theorem 1 and Theorem 3.

DEerFINITION 5. Let R be an integral domain with quotient field K and let 7
be a proper ideal of R. Then the ideal R: r(/:kI) of R is called the *“recurrent
closure” of I and is denoted by 7,. An ideal I of R is said to be “recurrent” in

case I=1,.

ReEMARK 6. If 7 is a recurrent ideal of an integral domain R with cuotient
field K, then I:xl#+R. For, if I:xI=R, then I=[,=R:r([:xl)=R:rR=R, a
contradiction. Moreover, if M is a maximal ideal of R, then the converse of the
above statement also holds. In fact, if M: xM+R, then MCR: z(M:xM)S:R and
hence M=R: r(M: M), since M is a maximal ideal of R. Therefore M is a re-

current ideal of R as required.

REMARK 7. If M is the unique maximal ideal of V, then M is not recurrent.
By Theorem 1, M: M=V and therefore our assertion follows from Remark 6.

We lirst collect some facts about recurrent ideals that will be needed later.

LEMMA 8. Let R be an integral domain with quotient field K. If I is an
ideal of R such that I:gI+R, then ICI, and I, itself is recurrent.



On conductor overrings of a valuation domain 127

Proor. By denmition the containment /<7, is evident. Next, we shall estab-
lish the second assertion. First it should be noted that /, is an ideal of I: &/ (cf.
[9, Lemma 1.1(2)]). It follows from this fact that if zel: kIl and a€l,, then zael,.
Thus we have I:xICI, :xI,. Therefore I,=R:z([:xI)2R: r(I;: xl;)21,, whence
I,=R: r(,: xI,)=,),, completing the proof.

LEMMA 9. Let R be an integral domain with quotient field K and let I be a
proper ideal of R. Then

(1) If P is a prime ideal of R contained in I, then I: gl c P: kP
(2) If I is a recurrent ideal of R, then, for any prime ideal P of R, P<I if
and only if 1. xICP:kP.

Proor. (1) Let zel:xl and peP. Since z*el:xl and pel, zpe(l: g)IC],
and accordingly (xp)*=(x*p)peIP< P, which implies that zpeP because zpelCR.
Thus (/: xI)P< P and hence I:xICP: xP as required.

(2) The “only if” half is proved in (1). Conversely, assume that /: kIS P: xP.
Then P is an ideal of I:xl, since P(I:xI)SP(P:xP)cP. Hence, by [9, Lemma
1.1 (4], P€R: s :xI)=1,. Then we have P<I,=I because [ is, by hypothesis,
recurrent. This completes the proof.

REMARK 10. The part (1) of Lemma 9 is also found in [1, Lemma 2.2]} or in
(2, Lemma 3.7].

LEMMA 11. Let R be an integral domain with quotient field K and let I be a
proper ideal of R. If P is a recurvent prime ideal of R properly contained in I,
then I'KI%PKP

Proor. By part (1) of Lemma 9, we have I:x/SP:xP. Hence, it suffices to
show that I:xI#P:xP. Assume that I:x/=P:xP. Then I is an ideal of P:xP
and therefore, by [9, Lemma 1.1 (4)], /& P,. By hypothesis, P,=P and hence IC P,
the desired contradiction. This completes the proof.

In the proof of Lemma 8, we showed that if I is an ideal of an integral do-
main R with quotient field K, then I:xICI,:xl,. 1f P is a prime ideal of R, then
it can be shown that P: xP=P,: kP,.

THEOREM 12. Let R be an integral domain with quotient field K. If P is a
prime ideal of R, then we have P:xP=P,:gP,.

Proor. We have already shown in Lemma 8 that P:xP<P,:xP,. Hence,
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we need only prove the reverse containment P,: xP,CP: xP. If P=P,, then there
is nothing to prove. Therefore we may assume that P+P,. If we choose te P\ P,
then, for any x€P,: xP,, we have zteP,cR. Then we have xtpeP for any pelP.
But, since zpe(P,: xkP,)PCP,cR and teR\ P, (xp)tcP implies that xzpeP. Thus
P,:xP,CP: kP as desired and our proof is complete.

We are now in a position to prove the main theorem of this paper.

THEOREM 13. Let V be a valuation domain with quotient field K. Then

(1) Every nonmaximal prime ideal P of V is recurrent.

(2) If Iis an ideal of V such that I:xI+#V, then I, is a prime ideal of V
and we have I .xkI=V,.

(3) If Iis an ideal of V such that I:xI+V, then ¥ 1 CI,.

(4) If Q is a primary ideal of V such that v/ Q is not the unique maximal
ideal M of V, then v Q=Q,.

Proor. (1) First, by Theorem 1, P:xP=Vps+V. Hence we get P,=V:
v(P:xP)# V. Indeed, if P,=V then 1¢P, and so P:xPZ V, a contradiction. Thus
we get PCP,+V. Next, by [9, Lemma 1.1 (2)], P, is an ideal of P:xP=V, and
therefore P, PVp=P. Accordingly, P=P,, which implies that P is recurrent.

(2) By hypothesis, I:xI is a proper overring of V and so we can write
I:xI=Vp with some nonmaximal prime ideal P of V. Since, by Theorem 1,
Ve=P: kP, it follows that I:x[= P:xP. Then we have I,=V:,(I:x[)=: Vip(P:
xP)=P, since P is recurrent by (1). Thus, I, is a prime ideal of V and raoreover
I:xI=V;, as required. ‘

(3) Since ICI,, we always have VI c+/1,. If I:xI+#V, then, by (2), I, is
prime and therefore v I €+ I,=1I, as wanted.

(4) First, by Theorem 3, Q:xQ=V,5. Moreover, Q:xQ+V, since vV @ is
not maximal. Hence, by (2), Q- is prime and Q: xQ="V,,. Thus V,jg=Vg, and
accordingly v Q=Q,, completing the proof.

ReEmARk 14. Let R be an integral domain with quotient field K and let
PclI be ideals of R with P prime. Then we cannot in general expect that P is
also prime in /:xJ. To show this, we shall give the following example.

ExampLE 15. Let R=Z[2X, X? X*®] be the subdomain of T=Z[X], where X
is an indeterminate over Z. Then K=@Q(X) is the quotient field of R. If we set
M=2ZR+2XR+X*R+ X*R, then RIM=Z/2Z is a field and so M is a maximal
ideal of R. Moreover, it is easy to see that M: xM=Z[X]. If we put P=2XR
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+X®R+ X®R, then, since R/P=Z, P is a prime ideal of R properly contained in
M. But P is not a prime ideal of M: kM, because 3XeZ[XI\ P, but 3X)*eP.

CoROLLARY 16. If PcI are ideals of V with P prime, then P is also prime
in I:xl and P=P: kl

Proor. If I:xI=7V, then there is nothing to prove. Hence we may assume
that I: xI-+V. Then, by Theorem 13 (2), /:xI=V;, and I, is a prime ideal of V.
Hence, by [3, Theorem 17.6 (b)], P=PV;, is a prime ideal of V;,, since PCIC],.
Thus, P is a prime ideal of I:xl. Our second assertion follows then from [9,
Corollary 1.5]. '

We close this paper with a characterization of primary ideals @ of V such

that Q: xkQ+V.
We first prepare the following two lemmas.

LEMMA 17. Let Q be a primary ideal of V. Then Q:xQ+V if and only if

«/5 is no! the unique maximal ideal of V.

Proor. Let M be the unique maximal ideal of V. First, suppose that v/ Q=M.
Then, by Theorem 3, Q:xQ@=V ,5=Vy=V. Thus, the “only if” half is proved.
Conversely, suppose that @ : x@=7V. Then, also by Theorem 3, V=Q:xQ=V s,
and so v/ Q=M. Hence, the “if” half is also proved.

LeEMMA 18. Let I be a nonzero ideal of an integral domain R with quotient
field K. Then, for any x€l:xl, x is a unit of 1:x[ if and only if xI=1.

Proor. First, assume that x is a unit of [:xl. Then there is an element
yel: &I such that wy=1. Then, I=(zy)=a(yl)cxI<I, and so I=zl, as we re-
quired. Conversely, suppose that /=xI. Since I#(0), x is a nonzero element of
K, and so z ‘e K. Hence, by hypothesis, z ' I=x"'(xl)=(x'2)I=1, and so x7'el: kl,
which implies that z is a unit of /:x/. This completes the proof.

THEOREM 19. Let I be an ideal of V such that I:xl+V. Then I is a primary
ideal of V if and only if v 1 =I,.

Proor. The “only if ” half is proved in part (4) of Theorem 13. To prove
the “if ” half, suppose that 7 is not a primary ideal of V. By part (2) of Theorem
13, I:xI=7V,,, and therefore, to prove that T 1, it suffices to show that
I:x1-+V,;. Now, since I is not primary, there exist «, b€ V' such that a¢l, bév'T,
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but abel. Then bév Iimplies that Ic(b), since V is a valuation domain. Then,
since (b) is invertible, there exists an ideal / of V such that 7=J(). Therefore,
by hypothesis, abel=J(b), and so ae/. Since ae/\UJ,I=J(b)cJ and therefore
bI=(b)I=](b*)cJ(b)=1. Thus, bIcl and therefore it follows from Lemma 18 that
b is not a unit of I:xI. On the other hand, b is a unit of V7, since bé+ 1.
Therefore I:xI+V 7, as we wanted and hence our proof is complete.

ReEMARK 20. If 7 is an ideal of V such that /:x/#V, then ~ I is a0t max-
imal in V. For, if ~/ T is maximal, then, by part (3) of Theorem 13, 7, is also
maximal in V and therefore, by part (2) of Theorem 13, I: x/=V; =V, a contra-
diction.

CoROLLARY 21. Let I be an ideal of V' such that I:xI+V. Then I is re-
current if and only if I is prime.

Proor. First, assume that [ is prime in V. Then it follows from ‘Theorem
1 that 7 is not maximal in V, since I:xl+V. Therefore the “if” half follows
from part (1) of Theorem 13. Furthermore, the “only if ” half follows immediately
from part (2) of Theorem 13.
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