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ON CONDUCTOR OVERRINGS OF A VALUATION DOMAIN
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Akira OKABE

Introduction. It is well known that every overring of a valuation domain $V$

is of the form $V_{P}$ for some prime ideal $P$ of $V$. Hence, if $I$ is an ideal of a valua-
tion domain $V$ with quotient field $K$, then the conductor overring $I;_{K}l$ is of the
form $V_{P}$ for some prime ideal $P$ of $V$. In case $I:_{K}I=V_{P}$ , is there any relation
between $I$ and $P$ ? The main purpose of this paper is to investigate this relation.
In order to give a complete answer to the question stated above, we introduce the
notion of “ recurrent closure” : If $I$ is an ideal of an integral domain $R$ with quo-
tient field $K$, then the ideal $R:_{R}(I:_{K}I)$ of $R$ is called the “ recurrent closure “ of
$I$ and is denoted by $I_{r}$ . We prove, in Theorem 13, that if $I$ is an ideal of a valua-

tion domain $V$ with quotient field $K$ such that 1: $KI\neq V$, then $I_{r}$ is always a prime
ideal of $V$ and if we set $I;_{K}I=V_{P}$ for some prime ideal $P$ of $V$, then $P$ is equal

to the recurrent closure $I_{r}$ .
In general, our terminology and notation will be the same as [3] and [6].

Throughout the paper, $V$ denotes a valuation domain, with quotient field $K$.

THEOREM 1. If $P$ is a proper prime ideal of $V$, then $P:{}_{K}P=V_{P}$ . In partic-
ular, if $M$ is the unique maximal ideal of $V$, then $M:_{K}M=V$.

PROOF. If $P=(O)$ , then (0): $K(0)=K=V_{(0)}$ ( $cf$ . $[9$ , Remark 1.2]) and hence our
assertion is trivial. Thus we may assume that $P\neq(O)$ . Then, by [3, Theorem
17.3], $P(x)=P$ for any $x\in V\backslash P$ and accordingly $1/xP\subseteq P$. Thus $1/x\in P:{}_{K}P$ for
any $x\in V\backslash P$. From this fact it follows that $V_{P}\subseteq P:{}_{K}P$. Hence, if we put $P:{}_{K}P$

$=V_{Q}$ for some prime ideal $Q$ of $V$, then we have $V_{P}\subseteq P:{}_{K}P=V_{Q}$ and so $Q\subseteq P$.
Assume now that $Q\neq P$. Then $Q;{}_{K}P$ is a nonmaximal prime ideal of $P:{}_{K}P$ by

[9, Corollary 2.4]. On the other hand, $Q=QV_{Q}$ is a maximal ideal of $V_{Q}$ by [3,

Theorem 17.6]. Since $Q\subseteq Q:{}_{K}P$, we have $Q=Q;{}_{K}P$ and therefore $Q:{}_{K}P$ is a
maximal ideal of $P:{}_{K}P$, a contradiction. Hence we must have $Q=P$, and accord-
ingly $P:{}_{K}P=V_{P}$ as desired. Thus our first assertion is proved. The second as-
sertion follows immediately from the first one.
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Before proving the next theorem, we first establish the following lemma.

LEMMA 2. Let $R$ be an integral domain with quotient field $K$ and let I be a
proper ideal of R. $lfI;_{K}I=R_{P}$ for some prime ideal $P$ of $R$ , then we have $I\subseteq P$.

PROOF. Assume the contrary. Then we can choose an element $a\in I\backslash F$ ‘. Then,

by hypothesis, $1/a\in R_{P}=I;_{K}I$ since $a\not\in P$. Therefore we have $1=a\cdot 1/a\in I(I:_{K}I)\subseteq I$,

which implies that $I=R$ . This clearly contradicts our assumption.

THEOREM 3. If $Q$ is a primary ideal of $V$, then $Q:_{K}Q=V_{\sqrt{}\tilde{Q}}$ .

PROOF. If $Q=(O)$ , then (0): $K(0)=K=V_{\sqrt{}}\overline{(0)}$ and hence our assertion is evident.
Therefore we may assume that $Q\neq(O)$ . If we set $Q;_{K}Q=V_{P}$ with some prime

ideal $P$ of $V$, then $Q\subseteq P$ and hence $\sqrt{Q}\subseteq P$. We shall next show that $\lrcorner^{D}\subseteq\sqrt{Q}$ .
By [3, Theorem 17.3], $Q(x)=Q$ for any element $x\in V\backslash \sqrt{Q}$, and accordingly $ 1/x\in$

$Q:_{K}Q$ for any $x\in V\backslash \sqrt{Q}$ . Thus we have $V_{\overline{Q}}\sqrt{}\subseteq Q;_{K}Q=V_{P}$ and hence $I^{D}\subseteq\sqrt{Q}$ ,

as required. This completes the proof.

COROLLARY 4. If $Q$ is a primary ideal of $V$, then $Q:_{K}Q=\sqrt{Q};_{K}\sqrt{Q}$

PROOF. This follows immediately from Theorem 1 and Theorem 3.

DEFINITION 5. Let $R$ be an integral domain with quotient field $K$ and let $I$

be a proper ideal of $R$ . Then the ideal $R:_{R}(I:_{K}I)$ of $R$ is called the “ recurrent
closure “ of $I$ and is denoted by $I_{r}$ . An ideal $I$ of $R$ is said to be “ $recurr_{1},nt$ in
case $I=I_{r}$ .

REMARK 6. If $I$ is a recurrent ideal of an integral domain $R$ with $C\lfloor uotient$

field $K$, then $I:_{K}I\neq R$ . For, if $I;_{K}I=R$ , then $I=I_{r}=R;_{R}(I;_{K}I)=R:_{R}l\mathfrak{i}=R$ , a
contradiction. Moreover, if $M$ is a maximal ideal of $R$ , then the converse of the
above statement also holds. In fact, if $M:_{K}M\neq R$ , then $M\subseteq R;_{R}(M:_{K}M)\subsetneqq\equiv-R$ and
hence $M=R:_{R}(M;_{K}M)$ , since $M$ is a maximal ideal of $R$ . Therefore $M$ is a re-
current ideal of $R$ as required.

REMARK 7. If $11l$ is the unique maximal ideal of $V$, then $\Lambda l$ is not recurrent.
By Theorem 1, $M;_{K}M=V$ and therefore our assertion follows from $RemaI^{\cdot}k6$ .

We first collect some facts about recurrent ideals that will be needed later.

LEMMA 8. Let $R$ be an integral domain with quotient field K. If I is an
ideal of $R$ such that $I:_{K}I\neq R$ , then $I\subseteq I_{r}$ and $I_{r}$ itself is recurrent.
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PROOF. By dellnition the containment $I\subseteq I_{r}$ is evident. Next, we shall estab-

lish the second assertion. First it should be noted that $I_{r}$ is an ideal of $I:_{K}I$ (cf.

[9, Lemma $1.1(2)$ ]). It follows from this fact that if $x\in I;_{K}I$ and $a\in I_{r}$ , then $xa\in I_{r}$ .

Thus we have $I:_{K}I\subseteq I_{r};_{K}I_{r}$ . Therefore $I_{r}=R:_{R}(I:_{K}I)\supseteq R;_{R}(I_{r}:_{K}I_{r})\supseteq I_{r}$ , whence

$I_{r}=R;_{R}(I_{r}:_{K}I_{r})=(I_{r})_{r}$ , completing the proof.

LEMMA 9. Let $R$ be an integral domain with quotient field $K$ and let I be a
proper ideal of R. Then

(1) If $P$ is a prime ideal of $R$ contained in $I$, then $I;_{K}I\subseteq P:{}_{K}P$.
(2) If I is a recurrent ideal of $R$ , then, for any prime ideal $P$ of $R,$ $P\subseteq I$ if

and only if $I;_{K}I\subseteq P:{}_{K}P$.

PROOF. (1) Let $x\in I;_{K}l$ and $p\in P$. Since $x^{2}\in I:_{K}I$ and $p\in 1,$ $x^{2}p\in(I:_{K}I)I\subseteq I$,

and accordingly $(xp)^{2}=(x^{2}p)p\in IP\subseteq P$, which implies that $xp\in P$ because $xp\in I\subset R$ .
Thus (I: $KI$ ) $P\subseteq P$ and hence $I;_{K}I\subseteq P:{}_{K}P$ as required.

(2) The “ only if “ half is proved in (1). Conversely, assume that $I:_{K}I\subseteq P:{}_{K}P$.
Then $P$ is an ideal of $I;_{K}l$, since $P(I;_{K}I)\subseteq P(P:{}_{K}P)\subseteq P$. Hence, by [9, Lemma

1.1 (4)], $P\subseteq R;_{R}(I:_{K}I)=l_{r}$ . Then we have $P\subseteq l_{r}=l$ because $I$ is, by hypothesis,

recurrent. This completes the proof.

REMARK 10. The part (1) of Lemma 9 is also found in [1, Lemma 2.21 or in

[2, Lemma 3.7].

LEMMA 11. Let $R$ be an integral domain with quotient field $K$ and let I be a
$p\gamma oper$ ideal of R. If $P$ is a recurrent prime ideal of $R$ properly contained in $I$,

then $I:_{K}I\subsetneqq P:{}_{K}P$.

PROOF. By part (1) of Lemma 9, we have $I;_{K}l\subseteq P:{}_{K}P$. Hence, it suffices to

show that $I:_{K}I\neq P:{}_{K}P$. Assume that $I:_{K}I=P:{}_{K}P$. Then $I$ is an ideal of $P:{}_{K}P$

and therefore, by [9, Lemma 1. 1 (4)], $I\subseteq P_{r}$ . By hypothesis, $P_{r}=P$ and hence $I\subseteq P$,

the desired contradiction. This completes the proof.

In the proof of Lemma 8, we showed that if $I$ is an ideal of an integral do-

main $R$ with quotient field $K$, then 1: $KI\subseteq I_{r};_{K}l_{r}$ . If $P$ is a prime ideal of $R$ , then

it can be shown that $P:{}_{K}P=P_{r}$ : ${}_{K}P_{r}$ .

THEOREM 12. Let $R$ be an integral domain with quotient field K. If $P$ is a
prime ideal of $R$ , then we have $P:{}_{K}P=P_{r}$ : ${}_{K}P_{r}$ .

PROOF. We have already shown in Lemma 8 that $P:{}_{K}P\subseteq P_{r}$ : ${}_{K}P_{r}$ . Hence,
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we need only prove the reverse containment $P_{r}$ : ${}_{K}P_{r}\subseteq P:{}_{K}P$. If $P=P_{r}$ , tben there
is nothing to prove. Therefore we may assume that $P\neq P_{r}$ . If we choose $t\in P_{r}\backslash P$,
then, for any $x\in P_{r}$ : ${}_{K}P_{r}$ , we have $xt\in P_{r}\subset R$ . Then we have $xtp\in P$ for \v{c}my $p\in P$.
But, since $xP\in(P_{r} : {}_{K}P_{r})P\subseteq P_{r}\subset R$ and $t\in R\backslash P,$ $(xp)t\in P$ implies that $xp\in l^{\supset}$. Thus
$P_{r}$ : ${}_{K}P_{r}\subseteq P:{}_{K}P$ as desired and our proof is complete.

We are now in a position to prove the main theorem of this paper.

THEOREM 13. Let $V$ be a valuation domain with quotient field K. Then

(1) Every nonmaximal prime ideal $P$ of $V$ is recurrent.
(2) If I is an ideal of $V$ such that $I:_{K}I\neq V$, then $I_{r}$ is a prime $ide|xl$ of $V$

and we have $I;_{K}I=V_{I_{r}}$ .
(3) If I is an ideal of $V$ such that $I:_{K}I\neq V$, then $\sqrt{I}\subseteq I_{r}$ .
(4) If $Q$ is a primary ideal of $V$ such that $\sqrt{Q}$ is not the unique maximal

ideal $M$ of $V$, then $\sqrt{Q}=Q_{r}$ .

PROOF. (1) First, by Theorem 1, $P:{}_{K}P=V_{P}\neq V$. Hence we get $P_{r}=V$ :
$v(P:{}_{K}P)\neq V$. Indeed, if $P_{r}=V$ then $1\in P_{r}$ and so $P:{}_{K}P\subseteq V$, a contradiction. Thus
we get $P\subseteq P_{r}\neq V$. Next, by [9, Lemma 1. 1 (2)], $P_{r}$ is an ideal of $P:{}_{K}P=:V_{P}$ and
therefore $P_{r}\subseteq P\nabla_{P}=P$. Accordingly, $P=P_{r}$ , which implies that $P$ is recurrent.

(2) By hypothesis, $I;_{K}I$ is a proper overring of $V$ and so we cam write
$I;_{K}l=V_{P}$ with some nonmaximal prime ideal $P$ of $V$. Since, by Th.orem 1,
$V_{P}=P:{}_{K}P$, it follows that $I;_{K}I=P:{}_{K}P$. Then we have $I_{r}=V;_{V}(I;_{K}I)=-- V;_{v}(P$ :
${}_{K}P)=P$, since $P$ is recurrent by (1). Thus, $I_{r}$ is a prime ideal of $V$ and rnoreover
$I;_{K}I=V_{I_{r}}$ as required.

(3) Since $I\subseteq I_{r}$ , we always have $\sqrt{I}\subseteq\sqrt{l_{r}}$ . If $I:_{K}I\neq V$, then, by (2), $I_{r}$ is
prime and therefore $\sqrt{I}\subseteq\sqrt{l_{r}}=I_{r}$ as wanted.

(4) First, by Theorem 3, $Q:_{K}Q=V_{\sqrt{}\overline{Q}}$ . Moreover, $Q;_{K}Q\neq V$, since $\sqrt{Q}$ is
not maximal. Hence, by (2), $Q_{r}$ is prime and $Q;_{K}Q=V_{Q_{r}}$ . Thus $V_{\sqrt{}\overline{Q}}=1^{\gamma_{Q_{r}}}’$ , and
accordingly $\sqrt{}\overline{Q}=Q_{r}$ , completing the proof.

REMARK 14. Let $R$ be an integral domain with quotient field $K$ and let
$P\subset I$ be ideals of $R$ with $P$ prime. Then we cannot in general expect that $P$ is
also prime in 1: $KI$. To show this, we shall give the following example.

EXAMPLE 15. Let $R=Z[2X, X^{2}, X^{8}]$ be the subdomain of $T=Z[X]$ , where $X$

is an indeterminate over $Z$. Then $K=Q(X)$ is the quotient field of $R$ . If we set
$M=2ZR+2XR+X^{2}R+X^{3}R$ , then $R/M=Z/2Z$ is a field and so $M$ is a maximal
ideal of $R$ . Moreover, it is easy to see that $M;_{K}M=Z[X]$ . If we put $P=2XR$
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$+X^{2}R+X^{3}R$ , then, since $R/P=Z,$ $P$ is a prime ideal of $R$ properly contained in
$M$. But $P$ is not a prime ideal of $M;_{K}M$, because $3X\in Z[X]\backslash P$, but $(3X)^{2}\in P$.

COROLLARY 16. If $P\subset I$ are ideals of $V$ with $P$ prime, then $P$ is also prime

in $I;_{K}I$ and $P=P;_{K}I$.

PROOF. If 1: $KI=V$, then there is nothing to prove. Hence we may assume
that $I:_{K}I\neq V$. Then, by Theorem 13 (2), $l;_{K}l=V_{I_{r}}$ and $I_{r}$ is a prime ideal of $V$.
Hence, by [3, Theorem 17.6 $(b)$ ], $P=PV_{I_{r}}$ is a prime ideal of $V_{I_{r}}$ , since $P\subset I\subseteq I_{r}$ .
Thus, $P$ is a prime ideal of $I;_{K}I$. Our second assertion follows then from [9,

Corollary 1.5].

We close this paper with a characterization of primary ideals $Q$ of $V$ such

that $Q:_{K}Q\neq V$.
We first prepare the following two lemmas.

LEMMA 17. Let $Q$ be a primary ideal of V. Then $Q:_{K}Q\neq V$ if and only if
$\sqrt{}\overline{Q}$ is not the unique maximal ideal of $V$.

PROOF. Let $M$ be the unique maximal ideal of $V$. First, suppose that $\sqrt{Q}=M$

Then, by Theorem 3, $Q;_{K}Q=V_{\sqrt{}\overline{Q}}=V_{M}=V$. Thus, the “ only if “ half is proved.
Conversely, suppose that $Q;_{K}Q=V$. Then, also by Theorem 3, $V=Q;_{K}Q=V_{\sqrt{}\overline{Q}}$ ,

and so $\sqrt{Q}=M$ Hence, the “ if” half is also proved,

LEMMA 18. Let I be a nonzero ideal of an integral domain $R$ with quotient

field K Then, for any $x\in l:_{K}I,$ $x$ is a unit of 1: $KI$ if and only if $xl=l$ .

PROOF. First, assume that $x$ is a unit of $I;_{K}I$. Then there is an element
$y\in l;_{K}I$ such that $xy=1$ . Then, $I=(xy)l=x(yI)\subseteq xI\subseteq I$, and so $I=xI$, as we re-
quired. Conversely, suppose that $I=xl$ . Since $I\neq(O),$ $x$ is a nonzero element of
$K$, and so $x^{-1}\in K$. Hence, by hypothesis, $x^{-1}I=x^{-1}(xl)=(x^{-1}x)I=I$, and so $x^{-1}\in I;_{K}l$ ,

which implies that $x$ is a unit of 1: $KI$. This completes the proof.

THEOREM 19. Let I be an ideal of $V$ such that $I:_{K}l\neq V$. Then 1 is a primary

ideal of $V$ if and only if $\sqrt{1}=I_{r}$ .

PROOF. The ” only if” half is proved in part (4) of Theorem 13. To prove
the “ if” half, suppose that $I$ is not a primary ideal of $V$. By part (2) of Theorem
13, $I:_{K}I=V_{I_{r}}$ , and therefore, to prove that $\sqrt{I}\neq I_{r}$ , it suffices to show that
$I;_{K}l\neq V_{\sqrt{}\overline{I}}$ . Now, since $I$ is not primary, there exist $a,$ $b\in V$ such that $a\not\in I,$ $b\not\in\sqrt{l}$ ,
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but $ab\in I$. Then $b\not\in\sqrt{I}$ implies that $I\subset(b)$ , since $V$ is a valuation domain. Then,
since $(b)$ is invertible, there exists an ideal $J$ of $V$ such that $I=J(b)$ . Therefore,
by hypothesis, $ab\in I=J(b)$ , and so $a\in J$. Since $a\in J\backslash I,$ $l=J(b)\subset J$ and ;herefore

$bI=(b)l=J(b^{2})\subset J(b)=I$. Thus, $bI\subset l$ and therefore it follows from Lemma 18 that
$b$ is not a unit of 1: $KI$. On the other hand, $b$ is a unit of $V_{\overline{\sqrt I}},$ sinc. $b\not\in\sqrt{l}$ .
Therefore $I;_{K}l\neq V_{\sqrt{}\overline{I}}$ , as we wanted and hence our proof is complete.

REMARK 20. If 1 is an ideal of $V$ such that $I;_{K}l\neq V$, then $\sqrt{1}$ is not max-
imal in $V$. For, if $\sqrt{I}$ is maximal, then, by part (3) of Theorem 13, $I_{l}$ is also
maximal in $V$ and therefore, by part (2) of Theorem 13, $I;_{K}I=V_{I_{r}}=V$, a contra-
diction.

COROLLARY 21. Let I be an ideal of $V$ such that $I;_{K}I\neq V$ Then 1 is re-
current if and only if I is prime.

PROOF. First, assume that $I$ is prime in $V$. Then it follows from ’rheorem
1 that 1 is not maximal in $V$, since $I;_{K}I\neq V$. Therefore the ” if” half follows
from part (1) of Theorem 13. Furthermore, the “ only if” half follows imniediately
from part (2) of Theorem 13.
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