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ON RESOLUTIONS FOR PAIRS OF SPACES
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1. Introduction

Let (X, $A$ ) be a pair of topological spaces, $A\subseteq X$, and let (X, $A$) $=((X_{\lambda}, A_{i}),p_{\lambda\lambda^{\prime}},$ $\Lambda$ )

be an inverse system of pairs of spaces and maps of pairs indexed by a directed
set $\Lambda$ . By a morphism $p:(X, A)\rightarrow(X, A)$ of pro-Top we mean a collection of maps
of pairs $p_{\lambda}:(X, A)\rightarrow(X_{\lambda}, A_{\lambda})$ such that

$p_{\lambda\lambda^{\prime}}p_{\lambda^{\prime}}=p_{\lambda},$
$\lambda\leq\lambda^{\prime}$ .

A resolution of (X, $A$) is a morphism $p=(p_{\lambda}):(X, A)\rightarrow(X, A)$ of $pro- Top^{2}$ , which
satisfies the following two conditions.

(R1) Let $(P, Q)$ be an ANR-pair, $i$ . $e.$ , a pair of ANR’s for metric spaces such
that $Q$ is a closed subset of $P$. Let $\mathcal{V}$ be an open covering of $P$ and let $ f:(X, A)\rightarrow$

$(P, Q)$ be a map of pairs. Then there there exists a $\lambda\in\Lambda$ and a map of pairs
$g;(X_{\lambda}, A_{\lambda})\rightarrow(P, Q)$ such that $gp_{\lambda}$ and $f$ are $\mathcal{V}$-near maps.

(R2) Let $(P, Q)$ be an ANR-pair and let $\mathcal{V}$ be an open covering of $P$. Then
these exists an open covering $\mathcal{V}^{\prime}$ of $P$ such that whenever $\lambda\in\Lambda$ and $g,$

$g^{\prime}$ : $(X_{\lambda}, A_{i})\rightarrow$

$(P, Q)$ are maps such that the maps $gp_{\lambda}$ and $g^{\prime}p_{\lambda}$ are $\mathcal{V}^{\prime}$ -near, then there exists a
$\lambda^{\prime}\geq\lambda$ such that the maps $gp_{\lambda\lambda}$ , and $g^{\prime}p_{\lambda\lambda^{l}}$ are $\mathcal{V}$-near.

If all $(X_{\lambda}, A_{l})$ are ANR-pairs (polyhedral pairs), we speak of an ANR-resolution
(polyhedral resolution) of the pair (X, $A$).

If we leave out $A,$ $A_{\lambda}$ and $Q$ , the above definition reduces to the definition of
a resolution $p:X\rightarrow X=(X_{\lambda}, p_{\lambda\lambda},, \Lambda)$ (ANR-resolution or polyhedral resolution, resp.)

of a single space $X$

The notion of resolution of a space was introduced in 1981 by the author [4]

(also see [5] and [6]). Resolutions for pairs were first considered in [6].

Resolutions can be viewed as special inverse limits. In fact, these notions
coincide for compact spaces [6]. In the non-compact case resolutions appear to be
the appropriate substitutes for inverse limits, the latter notion being only of little
value for non-compact spaces.
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The notion of resolution is basic to the recent development ([1], [3]) of strong
shape theory and Steenrod-Sitnikov homology [2] for arbitrary spaces. In order to
extend these theories also to the case of pairs of spaces, we need various results
on resolutions of pairs of spaces, not previously considered in [6]. This primarily
motivates the choice of the topics of this paper.

The main results in the paper are Theorems 2 and 6. The first theorem gives
a useful intemal characterization of resolutions of pairs and the second theorem
establishes the existence of ANR-resolutions for pairs. The analogous result for
polyhedral resolutions was proved in [6]. However, the method of proof used in
[6] could not be used here, because generally, closed subsets of an ANR fail to
have a basis of neighborhoods all of whose members are closed ANR’s.

2. Characterizing resolutions of spaces

Let $p:X\rightarrow X$ be a morphism of pro-Top. We will consider the following pro-
perties of $p$ .

(B1) For every $\lambda\in\Lambda$ and every open neighborhood $U$ of $\overline{p_{\lambda}(X)}$ in $X_{\lambda}$ there
exists a $\lambda^{\prime}\geq\lambda$ such that $p_{\lambda\lambda},(X_{\lambda},)\subseteq U$.

(B2) For every normal covering $cU$ of $X$ there is a $\lambda\in\Lambda$ and a normal cover-
ing $\mathcal{V}$ of $X_{\lambda}$ such that $(p_{I})^{-1}(\mathcal{V})$ refines $cU$

It was proved in [4] that a morphism $p:X\rightarrow X$, which has properties (B1)
and (B2) is a resolution. Conversely, if all $X_{\lambda}$ are normal spaces and $p$ is a resolu-
tion, then $p$ has properties (B1) and (B2) (for alternate proofs see [6], I, \S 6, Theorems
3, 4 and 5).

Recently, T. Watanabe [7] has introduced the following property $(B1)^{*}$ (he

denotes it by (B4))

(Bl)* For every $\lambda\in\Lambda$ and every normal covering $cU$ of $X_{\lambda}$ there exists a $\lambda^{\prime}\geq\lambda$

such that

(1) $p_{\lambda i},(X_{\lambda},)\subseteq St(p_{\lambda}(X)^{c}U)$ .

Modifying the proofs given in [4], Watanabe has obtained the following
characterization theorem.

THEOREM 1. (Watanabe). A morphism $p:X\rightarrow X$ of pro-Top is a resolution if
and only if $p$ has properties (Bl)*and (B2).

The value of Watanabe’s theorem is that it holds without any restrictions to
the spaces $X_{\lambda}$ , and condition (Bl)*is more natural than (B1). However, Watanabe
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has shown that in the case of normal spaces $X_{\lambda}$ the properties (B1) and (Bl)*are

equivalent.

For the sake of completness we give here an alternate and somewhat simpler
proof of Watanabe’s theorem based on the corresponding proofs in [6].

Proof. Let us assume that $p$ is a resolution. We will first show that $p$ has
property (Bl)*.

Let $\lambda\epsilon\Lambda$ and let $cU$ be a normal covering of $X_{\lambda}$ . By definition, this means that
there exists a metric space $M$, an open covering $\mathcal{V}$ of $M$ and a map $g;X_{\lambda}\rightarrow M$

such that $(g^{-1})(\mathcal{V})$ refines $cU$ Clearly,

(2) $g^{-1}(St(gp_{\lambda}(X), \mathcal{V}))\subseteq St(p_{\lambda}(X)^{c}U)$ ,

(3) $\overline{gp_{\lambda}(X}$ ) $\subseteq St(gp_{\lambda}(X), \mathcal{V})$ .

Let $h:M\rightarrow I=[0,1]$ be a map such that

(4) $h|\overline{qp_{\lambda}(X}$) $=0$

(5) $h|M\backslash St(gp_{\lambda}(X), \mathcal{V})=1$ .

We now put $f=hg:X_{\lambda}\rightarrow I,$ $f^{\prime}=0:X_{\lambda}\rightarrow I$. By (4), $fp_{\lambda}=f^{\prime}p_{\lambda}=0$ . Therefore, by
(R2), there is a $\lambda^{\prime}\geq\lambda$ such that $fp_{\lambda\lambda}$ , and $f^{\prime}p_{\lambda\lambda},$ $=0$ are $cW$-near, where $cW$ is
the covering of $I$, which consists of the open sets $[0,1$ ) and $(0,1$ ]. Consequently,
$fp_{I\lambda},(X_{\lambda},)\subseteq[0,1)$ , and thus, by (5),

(6) $gp_{\lambda\lambda},(X_{\lambda},)\subseteq St(gp_{\lambda}(X), \mathcal{V})$ .
Now (2) yields the desired relation (1).

In order to show that $p$ also has property (B2) we need this simple Lemma.

LEMMA 1. Let $cU$ be a normal covering of a space $X$. Then there exists an ANR
$P$, an open covering $cW$ of $P$ and a map $h:X\rightarrow P$ such that $h^{-1}(cW)$ refines $P$.

Proof of Lemma 1. By definition there exists a metric space $M$, an open
covering $\mathcal{V}$ of $M$ and a map $f:X\rightarrow M$ such that $f^{-1}(\mathcal{V})$ refines $cU$ By the
Wojdislawski-Kuratowski embedding theorem ([6], I, \S 3.1, Theorem 2), one can
assume that $M$ is a closed subset of a convex set $P$ of a normed vector space.
For every $V\in \mathcal{V}$ there exists an open set $W_{V}$ of $P$ such that $V=W_{V}\cap M$ There-
fore, $\subset W=(W_{V}, V\in \mathcal{V})\cup\{P\backslash M\}$ is an open covering of $M$. If we take for $h$ the
composition of $f$ with the inclusion $M\rightarrow P$, then $h^{-1}(\mathcal{V})=f^{-1}(\mathcal{V})\cup\{O\}$ refines $cU$

Moreover, $P$ is an AR by the Dugundji extension theorem ([6], I, \S 3.1. Theorem 3).
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Proof of property (B2). Let $cU$ be a normal covering of $X$. We choose $P^{c}W$

and $h$ as in Lemma 1. Let $cW^{\prime}$ be a star-refinement of ’Iff. By (R1), there is a
$\lambda\in\Lambda$ and a map $f:X_{\lambda}\rightarrow P$ such that the maps $fp_{\lambda}$ and $h$ are $cW^{\prime}$ -near. Let us put
$\mathcal{V}=f^{-1}(cW^{\prime})$ . We chaim that $p_{i}^{-1}(\mathcal{V})$ refines $cU$ . Indeed, let $V=f^{-1}(W^{\prime}),$ $W^{\prime}\in cW^{\prime}$ .
Let $W\in cW$ be such that

$St(W^{\prime c}W^{\prime})\subseteq W$ .

It suffices to show that

$(p_{\lambda})^{-1}(V)\subseteq h^{-1}(W)$ .

If $x\in(p_{\lambda})^{-1}(V)$ , then there is a $W_{1}^{\prime}\in cW^{\prime}$ such that

$fp_{i}(x)h(x)\in W_{1}^{\prime}$ .

Since $fp_{\lambda}(x)\in W^{\prime}$ , we conclude that $W^{\prime}\cap W_{1}^{\prime}\neq O$ and therefore

$h(x)\in W_{1}^{\prime}\subseteq St(W^{\prime c}W^{\prime})\subseteq W$ .
Consequently, $x\in h^{-1}(W)$ .

Let us now assume that $p;X\rightarrow X$ has properties (Bl)*and (B2). We will
first verify property (R1). Let $P$ be an ANR, $\mathcal{V}$ an open covering of $P$ and
$f:X\rightarrow P$ a map. One can assume that $P$ is a closed subset of a convex set $K$ in
a normed vector space. Let $G$ be an open neighborhood of $P$ in $K$, which admits
a retraction $r:G\rightarrow P$. Let $\mathcal{V}^{\prime}=r^{-1}(\mathcal{V})$ and let $\mathcal{V}^{\prime\prime}$ be an open covering of $G$ ,

which refines $\mathcal{V}^{\prime}$ and all of its members are convex. Then $cU=f^{-1}(\mathcal{V}^{\prime\prime})$ is a
normal covering of $X$ By (B2) there is a $ t^{\ell}\in\Lambda$ and a normal covering $cU^{\prime}$ of $X_{\mu}$

such that $(p_{\mu})^{-1}(cU^{\prime})$ refines $cU$ . Let $cU^{\prime\prime}$ be a locally finite normal covering of $X_{\mu}$ ,
which is a star-refinement of $cU^{\prime}$ . One can assume that $cU^{\prime\prime}=k^{-1}(K)$ , where
$k:X\rightarrow M$ is a mapping into a metric space $M$ and $JC$ is a locally finite open cover-
ing of $M$. Then $cW=\{W\in cU^{\prime\prime} : W\cap p_{\mu}(X)\neq O\}$ is a normal locally finite open cover-
ing of $N=St(p_{u}(X), cU^{\prime})$ . Let $(\varphi_{W}, W\in cW)$ be a partition of unity on $N$ subordinated
to the cover $Z7$ . For every $W\in cW$ we choose a $I^{X}$)$inty_{W}\in f((p_{\mu})^{-1}(W))$ and we
then define a map $h:N\rightarrow K$ by the formula

(7)
$h(z)=\sum_{\epsilon W\epsilon W}\varphi_{V^{\prime}}(z)y_{W},$

$z\in N$ .

We will now show that $h$ is actually a map into $G$ and the maps $hp_{\mu}$ and $f$

are $\mathcal{V}^{\prime\prime}$ -near.
Let $z\in N$ and let $W_{0},$

$\cdots,$
$W_{n}$ be all the members of $W\in cW$ for which $\varphi W(z)\neq 0$ .

Then

(8) $z\in W_{0}\cap\cdots W_{n}\subseteq St(W_{0}^{c}U^{\prime\prime})\subseteq U^{\prime}$
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for some $U^{\prime}\in\subseteq U^{\prime}$ . Let $U\in cU$ be such that

(9) $(p_{\mu})^{-1}(U^{\prime})\subseteq U$ .
Then

(10) $y_{W_{i}}\in f((p_{\mu})^{-1}(W_{i}))\subseteq f((p_{\mu})^{-1}(U^{\prime}))\subseteq f(U),$ $i=0,$ $\cdots,$ $n$ .
Since $f(U)$ is contained in some $V‘‘\in \mathcal{V}^{\prime\prime}$ and $V$“ is convex, it follows that also
$h(z)\in V^{\prime\prime}\subseteq G$ .

Now let $x\in X$ and let $z=p_{\mu}(x)$ . Since $p_{\mu}(x)=z\in W_{0}$ , we see, by (8) and (9), that

(11) $f(x)\in f((p_{\mu})^{-1}(W_{0}))\subseteq f(U)\subseteq V^{\prime\prime}$ .
Since, by (10), also $hp_{\mu}(x)=h(z)\in V^{\prime\prime}$ , we see that indeed, $f$ and $hp_{\mu}$ are $\mathcal{V}^{\prime\prime}\cdot near$

maps. Therefore, the maps $rhp_{\mu}$ and $f=rf$ are $\mathcal{V}$-near maps.
We now apply property (Bl)*and find a $\lambda\geq\mu$ such that $p_{\mu\lambda}(X_{\lambda})\subseteq N$. Clearly,

the map $g=rhp_{\mu\lambda}$ : $X_{\lambda}\rightarrow P$ has the desired property that the maps $gp_{\lambda}$ and $f$ are
$\mathcal{V}$-near.

We will now verify property (R2). Let $P$ be an ANR and let $\mathcal{V}$ be an open
covering of $P$. Let $\mathcal{V}^{\prime}$ be a star-refinement of $\mathcal{V}$ . We will show that for any
$\lambda\in\Lambda$ and any maps $f_{1},$ $f_{2}$ ; $X_{\lambda}\rightarrow P$ such that $f_{1}p_{\lambda}$ and $f_{2}p_{\lambda}$ are $\mathcal{V}^{\prime}$ -near, there exists
a $\lambda^{\prime}\geq\lambda$ such that $f_{1}p_{\lambda\lambda^{\prime}}$ and $f_{2}p_{\lambda\lambda^{\prime}}$ are $\mathcal{V}$-near maps.

Let $U_{i}=(f_{i})^{-1}(\mathcal{V}^{\prime}),$ $i=1,2$ . Then $U_{1},$ $U_{2}$ are normal coverings of $X_{i}$ . Let $cU$

be a normal covering of $X_{\lambda}$ , which refines both coverings $cU_{1}$ and $cU_{2}$ . Let $N=$

St $(p_{\lambda}(X), cU)$ . We claim that the maps $f_{1}|N$ and $f_{2}|N$ are $\mathcal{V}$-near. Indeed, let
$y\in N$. Then there is a member $U$ of $cU$ and an element $x\in X$ such that $y\in U$ and
$p_{\lambda}(x)\in U$. Then there are elements $V_{1}^{\prime},$ $V_{2}^{\prime}\in \mathcal{V}^{\prime}$ such that $f_{1}(U)\subseteq V_{1}^{\prime},$ $f_{2}(U)\subseteq V_{2}^{\prime}$ .
Moreover, by assumption, there is an element $V^{\prime}\in \mathcal{V}^{\prime}$ such that $f_{1}p_{\lambda}(x),$ $f_{2}p_{\lambda}(x)\in V^{\prime}$ .
Since $p_{\lambda}(x)\in U$, we see that $V_{1}^{\prime}\cap V^{\prime}\neq\circ and$ $V_{2}^{\prime}\cap V^{\prime}\neq O$ . Consequently, there is
an element $V\in \mathcal{V}$ such that $V_{1}^{\prime}\cup V^{\prime}\cup V_{2}^{\prime}\subseteq St(V^{\prime}, \mathcal{V}^{\prime})\subseteq V$. Clearly, $f_{1}(y),$ $f_{2}(y)\in V$,
i.e., $f_{1}|N$ and $f_{2}|N$ are $\mathcal{V}$-near. We now apply (Bl)*and conclude that there is
a $\lambda^{\prime}\geq\lambda$ such that $p_{\lambda\lambda^{\prime}}(X_{\lambda},)\subseteq N$. Therefore, $f_{1}p_{l\lambda}$ , and $f_{2}p_{li}$ , are also $\mathcal{V}$-near maps.
This completes the proof of Theorem 1.

3. Characterizing resolutions of pairs

For a morphism $p:(X, A)\rightarrow(X, A)$ of pro-Top2 we now introduce a relative
version of property $(B1)^{*}$ .

(Bl)**For every $\lambda\in\Lambda$ and every normal covering $cU$ of $X_{J}$ there exists a $\lambda^{\prime}\geq\lambda$

such that

(1) $p_{\lambda\lambda},(A_{\lambda},)\subseteq St(p_{i}(A)^{c}U)$ .
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With every morphism $p:(X, A)\rightarrow(X, A)$ of pro-Top2 we can associate two
morphisms of pro-Top $p_{X}$ : $X\rightarrow X$ and $p_{A}$ : $A\rightarrow A$ , which are defined by restricting

$p_{\lambda}$ : $(X, A)\rightarrow(X_{\lambda}, A_{\lambda})$ to $p_{\lambda}$ : $X\rightarrow X$
)

$\wedge$ and $p_{\lambda}$ : $A\rightarrow A_{\lambda}$ respectively. The main result
of this section is the following theorem.

THEOREM 2. A morphism $p:(X, A)\rightarrow(X, A)$ of pro-Top2 is a resolution if and
only if $p_{X}$ : $X\rightarrow X$ has properties $(B1)^{*}$ , (B2) and $p$ has property (Bl)**.

Proof. Let us first assume that $p_{X}$ : $X\rightarrow X$ has properties $(B1)^{*}$ , (B2), i.e. is
a resolution of $X$, and $p$ has property (Bl)**. We will first verify property (R1)

for $p$ .
Let $(P, Q)$ be an ANR-pair, let $\mathcal{V}$ be an open covering of $P$ and let $ f:(X, A)\rightarrow$

$(P, Q)$ be a map. We choose for $\mathcal{V}^{\prime}$ a star-refinement of $\mathcal{V}$ Since $(P, Q)$ is an
ANR-pair, it is easy to find an open neighborhood $G$ of $Q$ in $P$ and a map $k:P\rightarrow P$

such that $k|G$ is a retraction $G\rightarrow Q$ and the maps $1_{P}$ and $k$ are $\mathcal{V}^{\prime}$ -near (see [6],

I, \S 6, Lemma 4). Let $\mathcal{V}^{\prime\prime}$ be an open covering of $P$, which refines $\mathcal{V}^{\prime}$ and star-
refines the covering $\{G, P\backslash Q\}$ . Since $p_{X}$ : $X\rightarrow X$ is a resolution, there exists a $\lambda\in\Lambda$

and a map $g;X_{\lambda}\rightarrow P$ such that the maps $gp_{\lambda}$ and $f$ are $\mathcal{V}^{\prime\prime}$ -near. Let $cU=g^{-1}(\mathcal{V}^{\prime\prime})$ .
We claim that

(2) $g(St(p_{\lambda}(A)^{c}U))\subseteq G$ .

Indeed, if $y\in St(p_{\lambda}(A), cU)$ , then there exist a point $a\in A$ and a member $U\in cU$

such that $y\in U$ and $p_{4}(a)\in U$. Let $V^{\prime\prime}$ be an element of $\mathcal{V}^{\prime\prime}$ such that $U=g^{-1}(V^{\prime\prime})$ .
Then $g(y),$ $gp_{\lambda}(a)\in V$“. There is also an element $V_{1}^{\prime\prime}\in \mathcal{V}^{\prime\prime}$ such that $gp_{\lambda}(a),$ $f(a)\in V_{1}^{\prime\prime}$ .
Therefore, some element of $\{G, P\backslash Q\}$ must contain $\{g(y), f(a)\}\subseteq V^{\prime\prime}\cup V_{1}^{\prime\prime}$ . This
cannot be $P\backslash Q$ , because $f(a)\in Q$ . Consequently, $g(y)\in G$ , which establishes (2). We
apply (Bl)**and obtain an index $\lambda^{\prime}\geq\lambda$ such that (1) holds. We now define a map
of pairs $g^{\prime}$ : $(X_{\lambda},, A_{\lambda},)\rightarrow(P, Q)$ by putting

(3) $g^{\prime}=kgp_{\lambda\lambda^{\prime}}$ .
By assumption on $k$ , the maps $g^{\prime}p_{\lambda^{\prime}}=kgp_{\lambda}$ and $gp_{\lambda}$ are $\mathcal{V}^{\prime}$ -near. Since also $gp_{\lambda}$

and $f$ are $\mathcal{V}^{\prime}$ -near, it follows that the maps $g^{\prime}p_{l}$ , and $f$ are $\mathcal{V}$-near, which
establishes (R1). That property (R2) for $p$ holds is an immediate consequence of
the same property for $p_{X}$ .

We will now prove the converse. Let $p:(X, A)\rightarrow(X, A)$ be a resolution of
pairs. Then $p_{X}$ : $X\rightarrow X$ is a resolution of $X$ This is so because one can view
maps $f:X\rightarrow P,$ $P\in ANR$ , as maps of pairs $f:(X, A)\rightarrow(P, P)$ . Therefore, $p_{x}$ has
properties (Bl)*and (B2). We will now establish property (Bl)**.

Let $\lambda\in\Lambda$ and let $cU$ be a normal covering of $X$. Then there exists a metric
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space $M$, an open covering $cW$ of $M$ and a map $g;X_{\dot{4}}\rightarrow M$ such that $g^{-1}(cW)$ refines
$cU$ Clearly,

(4) $\overline{gp_{\lambda}(A}$) $\subseteq$ St $(gp_{\lambda}(A), cW)$ .

Let $k:M\rightarrow I=[0,1]$ be a map such that

(5) $k(\overline{gp_{\lambda}(A)})=0$ ,

(6) $k$($M\backslash St(\overline{gp_{\lambda}(A})$ , ’V7)) $=1$ .

Consider the ANR-pair (I, $\{0\}$ ) and let $\mathcal{V}$ be the covering $\{[0,1), (0,1]\}$ of I. Applying

(R2) for $p_{X}$ , we associate with $\mathcal{V}$ a covering $\mathcal{V}^{\prime}$ . Since $kgp_{i}(A)=0$ , property (R1)

for $p:(X, A)\rightarrow(X, A)$ implies the existence of an index $\lambda^{\prime}\in\Lambda$ and of a map $h:(X_{\lambda^{\prime}}$ ,

$A_{\lambda})\rightarrow(I, \{0\})$ such that the maps $kgp_{\lambda}$ and $hp_{\lambda}$ , are $\mathcal{V}^{\prime}$ -near. We now choose an
index $\lambda^{\prime\prime}\geq\lambda,$

$\lambda^{\prime}$ and consider the maps

$f_{1}=k_{\mathcal{G}}p_{\lambda\lambda^{\prime\prime}},$ $f_{2}=hp_{\lambda^{\prime}\lambda^{\prime\prime}}$ : $X_{\lambda^{\prime\prime}}\rightarrow I$ .

Note that the maps $f_{1}p_{\lambda},,=kgp_{\lambda}$ and $f_{2}p_{\lambda},,=hp_{\lambda}$ , are $\mathcal{V}^{\prime}$ -near. Therefore, there

exists an index $\lambda^{*}\geq\lambda^{\prime\prime}$ such that the maps $f_{1}p_{\lambda\prime\lambda^{*}}=kgp_{\lambda\lambda^{s}}$ and $f_{2}p_{\lambda^{\prime\prime}\lambda^{1}}=hp_{\lambda^{\prime}\lambda}$ . are $\mathcal{V}-$

near. We claim that

(7) $p_{\lambda\lambda^{*}}(A_{\lambda^{*}})\subseteq St(p_{\lambda}(A), \subseteq U)$ .

Indeed, for any $x\in A_{\lambda^{r}}$ we have

(8) $f_{2}p_{\lambda\lambda^{*}}(x)=hp_{\lambda\lambda^{*}}(x)\in h(A_{\lambda^{\prime}})=\{0\}$ .

Since $[0,1$ ) is the only element of $\{[0,1), (0,1]\}$ , which contains $0$ , it follows that

(9) $f_{1}p_{\lambda\lambda^{5}}(x)=kgp_{\lambda\lambda*}(x)\in[0,1)$ .

We conclude, by (6), that

(10) $gp_{\lambda\lambda^{r}}(x)\in St(gp_{\lambda}(A)),$ $cW$).

Consequently, there is an element $W\in cW$ and a point $a\in A$ such that $gp_{\lambda i^{*}}(x),$ $gp_{\lambda}(a)\in W$.
Therefore, $p_{\lambda\lambda*}(x),p_{\lambda}(a)\in g^{-1}(W)\subseteq U$ for some $U\in\subset U$ . This yields the desired relation
$p_{\lambda\lambda^{*}}(x)\in St(p_{\lambda}(A), cU)$ .

REMARK 1. If $cU$ is a normal covering of $X_{\lambda}$ , then $cU|A_{\lambda}$ is a normal covering

of $A_{\lambda}$ . Therefore, property (Bl)* for $p_{A}$ implies property (Bl)** for $ p:(X, A)\rightarrow$

(X, $A$).

REMARK 2. We say that a subset $A\subseteq X$ is normally embedded (or P-embedded)

in a space $X$ provided every normal covering $\mathcal{V}$ of $A$ admits a normal covering

$cU$ of $X$ such that the restriction $cU|A$ refines $\mathcal{V}$ . If $A_{\lambda}\subseteq X_{\lambda}$ is normally embedded
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in $X_{\lambda}$ for each $\lambda\in\Lambda$ , then property (Bl)** for $p:(X, A)\rightarrow(X, A)$ implies property
(Bl)*for $p_{A}$ .

THEOREM 3. Let $p:(X, A)\rightarrow(X, A)$ be a resolution such that $A_{\lambda}$ is normally
embedded in $X_{\lambda}$ for each $\lambda\in\Lambda$ . The induced morphism $p_{A}$ : $A\rightarrow A$ is a resolution
if and only if $A$ is normally embedded in $X$

Proof. By Theorem 2, $p$ has property (Bl)**. Therefore, by Remark 2, $p_{A}$

has property (Bl)*and it suffices to show that $p_{A}$ also has property (B2). However,
this is an immediate consequence of the fact that $p_{X}$ has property (B2) and $A$ is
normally embedded in $X$

Now assume that $p_{A}$ is a resolution. Let $\mathcal{V}$ be a normal covering of A. By
Lemma 1, there is an ANR $Q$ an open covering $cW$ of $Q$ and a map $h:A\rightarrow Q$ such
that $h^{-1}(cW)$ refines $\mathcal{V}$ Let $cW^{\prime}$ be a star-refinement of $cW$ . By (R1) for $p_{A}$ there
is a $\lambda\in\Lambda$ and there is a map $f:A_{\lambda}\rightarrow Q$ such that $fp_{\lambda}|A$ and $h$ are $cW^{\prime}$ -near maps.
Then $f^{-1}(cW^{\prime})$ is a normal covering of $A_{\lambda}$ . Since $A_{\lambda}$ is normally embedded in $X_{\lambda}$ ,
there is a normal covering $cU^{\prime}$ of $X_{\lambda}$ such that $cU^{\prime}|A_{\lambda}$ refines $f^{-1}(cW^{\prime})$ . We now
put $cU=P^{-1}(cU^{\prime})$ . Clearly, $cU$ is a normal convering of $X$ Moreover, $cU|A$ refines
$\mathcal{V}$ . Indeed, let $U\in cU$ Then there is an element $U^{\prime}\in cU^{\prime}$ and an element $W\in cW^{\prime}$

such that $U=p_{\lambda}^{-1}(U^{\prime}),$ $U^{\prime}\cap A_{\lambda}\subseteq f^{-1}(W^{\prime})$ . Let $W\in cW$ and $V\in \mathcal{V}$ be chosen in such
a way that $St(W^{\prime c}W^{\prime})\subseteq W,$ $h^{-1}(W)\subseteq V$. We claim that $U\cap A\subseteq V$. Indeed, if
$a\in U\cap A$ , then $p_{\lambda}(a)\in U^{\prime}\cap A_{\lambda}$ and therefore $fp_{\lambda}(a)\in W$ . Moreover, since $fp_{\lambda}|A$ and
$h$ are $cW^{\prime}$ -near, there is an element $W_{1}^{\prime}\in cW^{\prime}$ such that $fp_{\lambda}(a),$ $h(a)\in W_{1}^{\prime}$ . Therefore,
$h(a)\in St(W^{\prime c}W^{\prime})\subseteq W$, i.e., $a\in h^{-1}(W)\subseteq V$.

4. Resolutions and direct products

Let $p:(X, A)\rightarrow(X, A)$ be a morphism of pro-Top2. For any space $K$, we as-
sociate with $p$ the system $K\times(X, A)=((K\times X_{\lambda}, K\times A_{\lambda}),$ $1\times p_{\lambda i},,$ $\Lambda$ ) and the morphism
$1\times p:K\times(X, A)\rightarrow K\times(X, A)$ , given by the maps $1\times p_{\lambda}:(K\times X, K\times A)\rightarrow(K\times X_{\lambda}$ ,
$K\times A_{\lambda})$ . Similarly, we associate with $p:X\rightarrow X$ the morphism $1\times p:K\times X\rightarrow K\times X$

THEOREM 4. If $p:X\rightarrow X$ is a resolution and $K$ is a compact Hausdorff space
then $1\times p:K\times X\rightarrow K\times X$ is also a resolution.

In the proof we use the following lemma, proved in [3], II, 1, Lemma 2.

LEMMA 2. Let $X$ be a topological space and $K$ a compact Hausdorff space.
Then every normal covering $cU$ of $K\times X$ admits a normal covering $\mathcal{V}$ of $X$ such
that each $V\in \mathcal{V}$ admits an open covering $CW_{V}$ of $K$ such that $CW=(CW_{V}\times V, V\in \mathcal{V})$
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is a covering of $K\times X$ (stacked covering), which refines $cU$

Proof of Theorem 4. It suffices to verify properties (Bl)*and (B2) for $1\times p$ .

Verification of (Bl)*. Let $\lambda\in\Lambda$ and let $cU$ be a normal covering of Kx $X_{\lambda}$ . Let
$CW=(CW_{V}\times V, V\in \mathcal{V})$ be a stacked covering of $K\times X_{\lambda}$ such that $\mathcal{V}$ is a normal
covering of $X_{\lambda}$ and $cl\nu$ refines $cU$ (Lemma 2). Clearly,

(1) St $((1\times p_{\lambda})(K\times X), cW)=K\times St(p_{\lambda}(X), \mathcal{V})$ .

Therefore, by property (Bl)*for $p$ , there is a $\lambda^{\prime}\geq\lambda$ such that

(2) $p_{\lambda\lambda},(X_{\lambda},)\subseteq St(p_{\lambda}(X), \mathcal{V})$ .

Consequently,

(3) (lx $p_{\lambda\lambda},$ ) $(K\times X_{\lambda},)\subseteq St((1\times p_{\lambda})(K\times X), cW)\subseteq St((1\times p_{\lambda})(K\times X)^{c}U)$ ,

Verification of (B2). Let $cU$ be a normal covering of $K\times X$ and let $CW=(CW_{V}\times V$,

$V\in \mathcal{V})$ be a stacked covering of $K\times X$, such that $\mathcal{V}$ is a normal covering of $X$

and $cW$ refines $\zeta U$ By (B2) for for $p$ , there is a $\lambda\in\Lambda$ and a normal covering $\mathcal{V}_{\lambda}$

of $X_{\lambda}$ such that $(p_{\lambda})^{-1}(\mathcal{V}_{\lambda})$ refines $\mathcal{V}$ . We now put

(4) $?\nu_{\lambda}=(cW_{V}\times V_{I}, V_{\lambda}\in \mathcal{V}_{\lambda})$ ,

where $(p_{\lambda})^{-1}(V_{i})\subseteq V\in \mathcal{V}$ . Clearly, $cW_{\lambda}$ is a normal covering of $K\times X_{\lambda}$ and $($lx $p_{\lambda})^{-1}(cW_{\lambda})$

refines $cW$ and thus also refines $cU$

The analogous theorem for pairs assumes the following form.

THEOREM 5. Let $p:(X, A)\rightarrow(X, A)$ be a resolution such that $A_{\lambda}$ is normally

embedded in $X_{\lambda}$ for each $\lambda\in\Lambda$ . If $K$ is a compact Hausdorff space, then $ 1\times p:K\times$

(X, $A$) $\rightarrow K\times(X, A)$ is a resolution of pairs.

Proof. By Theorem 2, it suffices to show that $1\times p_{X}$ : $K\times X\rightarrow K\times X$ has pro-
perties (Bl)*and (B2) and $1\times p$ has property (Bl)**. The first assertion follows
from Theorems 2, 1 and 4. Since $p$ has property (Bl)** (Theorem 2), Remark 2
implies that $p_{A}$ has property (Bl)*. This implies that also $1\times p_{A}$ has property $(B1)^{*}$ ,

because the argument given in the first part of the proof of Theorem 4 applies

(since it only uses property (Bl)*of $p_{A}$). We now apply Remark 1 and conclude
that $1\times p$ has property (Bl)**.

5. ANR-resolutions of pairs

The main purpose of this section is to prove the following theorem.
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THEOREM 6. Every pair of topological spaces (X, $A$) admits an ANR-resolution
$p:(X, A)\rightarrow(X, A)$ indexed by a cofinite set $\Lambda$ .

The analogous theorem for single spaces was established in [4]. The proof
for pairs, presented here, follows the same general idea.

In the proof we will need the following lemma.

LEMMA 3. Let $f:(X, A)\rightarrow(Y, B)$ be a map of a pair of topological spaces to
an ANR-pair. There exists an ANR-pair $(Z, C)$ with density

(1) $s(Z)\leq\max(s(X), s(A))$ ,

(2) $s(C)\leq s(A)$

and there exist maps $g:(X, A)\rightarrow(Z, C),$ $h:(Z, C)\rightarrow(Y, B)$ such that $f=hg$ .
Recall that $s(X)$ is the least cardinal of subsets dense in $X$ Therefore,

$s(\overline{A})\leq s(A)$ and $s(f(A))\leq s(A)$ . Moreover, if $s(A)$ and $s(B)$ are not both finite, then
$s(A\cup B)\leq s(A)+s(B)\leq\max(s(A), s(B))$

Proof. We first consider the case when $f(A)$ is an infinite set. Let $\overline{f(A)}$

denote the closure of $f(A)$ in $f(X)$ . By the Kuratowski-Wojdislawski embedding
theorem ([6], I, \S 3.1. Theorem 2) one can assume that $\overline{f(A}$) is embeded in a normed
vector space and is closed in its convex hull L. Since $\overline{f(A}$) is infinite, one has

(3) $s(L)=s(\overline{f(A}))\leq s(fA))\leq s(A)$ .

Now note that $B$ is closed in $Y$ and therefore $\overline{f(A}$) $\subseteq B$. Since $B$ is an ANR, the
inclusion $i:\overline{f(A}$) $\rightarrow B$ extends to a map $j:C\rightarrow B$, where $C$ is an open neighbourhood
of $\overline{f(A}$) in $L$ . Since $L$ is an AR, $C$ is an ANR and $s(C)\leq s(L)\leq s(A)$ .

We now consider the space $W$ obtained from the topogical sum $f(X)\oplus C$

identifying the two copies of $\overline{f(A}$). Clearly, $W$ is a metric space with
(4) $s(W)\leq\max(s(f(X)), s(L))\leq\max(s(X), s(A))$ .

Moreover, since $\overline{f(A}$) is closed in $f(X)$ and in $C$ , there is a unique map $k:W\rightarrow Y$

such that $k|f(X)$ is the inclusion into $Y$ and $k|C$ is the composition of $j$ with the
inclusion $B\rightarrow Y$.

We can now assume that $W$ is embedded in a normed vector space and is
closed in its convex hull $K$ . Since $W\supseteq f(A)$ , it is infinite and therefore

(5) $s(K)=s(W)\leq\max(s(X), s(A))$ .
Since $Y$ is an ANR, one can extend $k:W\rightarrow Y$ to a map $h:Z\rightarrow Y$, where $Z$ is an
open neighborhood of $W$ in $K$. Hence, $Z$ is an ANR and
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(6) $s(Z)\leq s(K)\leq\max(s(X), s(A))$ .

Since $C$ is closed in $W$, we see that $C$ is also closed in $Z$ and therefore $(Z, C)$ is
an ANR-pair. Finally, we take for $g:X\rightarrow Z$ the composition of $f:X\rightarrow f(X)$ with

the inclusion $f(X)\rightarrow Z$. Clearly, $f=hg$ .
In the case when $f(A)$ is finite and $f(X)$ is infinite, the proof is simpler. We

immediately consider $f(X)$ as a closed subset of its convex hull $W$ in some normed
vector space. Then

(7) $s(W)=s(f(X))\leq s(X)=\max(s(X), s(A))$ .

We then extend the inclusion $f(X)\rightarrow Y$ to a map $h:Z\rightarrow Y$, where $Z$ is an open
neighborhood of W. Therefore, $Z$ is an ANR and

(8) $s(Z)\leq s(W)\leq\max(s(X), s(A))$ .

We take for $g:X\rightarrow Z$ the composition of $f:X\rightarrow f(X)$ with the inclusion $f(X)\rightarrow Z$.
Moreover, $g(A)=f(A)$ is finite and thus an ANR and a closed subset of $Z$. We
then put $C=g(A)$ . Note that $s(C)\leq s(A)$ .

Finally, if both $f(A)$ and $f(X)$ are finite, we put $(Z, C)=(f(X), f(A))$ , we take

for $g:X\rightarrow Z$ the map $f$ and for $h:Z\rightarrow Y$ the inclusion $f(X)\rightarrow Y$. Clearly, (1)

and (2) hold and $(Z, C)$ is an ANR-pair. This completes the proof of Lemma 2.

Proof of Theorem 6. We say that two maps $p:(X, A)\rightarrow(P, Q),$ $p^{J}$ : (X, $A$) $\rightarrow$

$(P^{\prime}, Q^{\prime})$ are equivalent if there is a homeomorphism $h:(P, Q)\rightarrow(P^{\prime}, Q^{\prime})$ such that
$hp=p^{\prime}$ . Let $\Gamma$ be the set of all equivalence classes of maps of (X, $A$) into ANR-
pairs $(P, Q)$ with density satisfying

(9) $s(P)\leq\max(s(X), s(A))$

(10) $s(Q)\leq s(A)$ .

That $\Gamma$ is indeed a set follows from the fact that the weight $w(P)=s(P)$ and card
$(P)\leq 2^{w(P)}$ . For every $\gamma\in I\urcorner$ let $q_{\gamma}$ : $(X, A)\rightarrow(Y_{\gamma}, B_{\gamma})$ be a map from the class $\gamma$ .
Let $\Delta$ be the set of all finite subsets of $\Gamma$ ordered by inclusion. If $\delta=\{\gamma_{1}, \cdots, \gamma_{n}\}\in\Delta$ ,

we put $(Y_{\delta}, B_{\delta})=(Y_{r_{1}}\times\cdots\times Y_{\gamma_{n}}, B_{\gamma 1}\times\cdots\times B_{\gamma_{n}})$ . If $\delta\leq\delta^{\prime}=\{\gamma_{1}, \cdots, \gamma_{n}, \cdots, \gamma_{m}\}\in\Delta$ , we
define $q_{\delta\delta}$

, : $(Y_{\delta},, B_{\delta},)\rightarrow(Y_{\delta}, B_{\delta})$ to be the projection

$Y_{\gamma 1}\times\cdots\times Y_{\gamma_{n}}\times\cdots\times Y_{\gamma_{m}}\rightarrow Y_{\gamma 1}\times\cdots\times Y_{\gamma_{n}}$ .

We also define $q_{\delta}$ : $(X, A)\rightarrow(Y_{\delta}, B_{\delta})$ to be the map

$q_{\delta}=q_{r1}\times\cdots\times q_{\gamma_{n}}X\rightarrow Y_{\gamma 1}\times\cdots\times Y_{\gamma_{n}}$ .

Clearly, $(Y_{\delta}, B_{\delta})$ is an ANR-pair and
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$q_{\delta\delta^{\prime}}q_{\delta\delta^{\prime\prime}}=q_{\delta\delta^{\prime\prime}},$
$\delta\leq\delta^{\prime}\leq\delta^{\prime\prime}$ ,

$q_{\delta\delta^{\prime}}q_{\delta^{\prime}}=q_{\delta},$
$\delta\leq\delta^{\prime}$ .

Consequently, $(Y, B))=((Y_{\delta}, B_{\delta}),$ $q_{\delta\delta},,$

$\Delta$ ) is an inverse system of ANR-pairs and
the maps $q_{\delta}$ define a morphism $q:(X, A)\rightarrow(Y, B)$ of pro-Top2.

As an immediate consequence of Lemma 3, we have the following property
(Rl), which is even stronger than (R1).

(Rl) For every ANR-pair $(P, Q)$ and every map $f:(X, A)\rightarrow(P, Q)$ there exist
an index $\delta\in\Delta$ and a map $g;(Y_{\delta}, B_{\delta})\rightarrow(P, Q)$ such that $f=gq_{\delta}$ .

In order to obtain property (R2), we will replace $(Y, B)$ by a larger system.
We let $M$ be the set of all pairs $\mu=(\delta, U)$ , where $\delta\in\Delta$ and $U$ is an open neighbor-
hood of the set $q_{\beta}(X)$ in $l^{r_{\delta}}$ . We order $M$ by putting $\mu\leq\mu^{\prime}=(\delta^{\prime}, U^{\prime})$ whenever
$\delta\leq\delta^{\prime}$ and $q_{\delta\delta^{\prime}}(U^{\prime})\subseteq U$. For $\mu=(\delta, U)\in M$, we put $(Z_{\mu}, C_{\mu})=(U, U\cap B_{\delta})$ and $r_{\mu}=q_{\delta}$ :
$X\rightarrow U$. For $\mu\leq\mu^{\prime}$ we put $r_{\mu\mu},=q_{\grave{0}\delta},|U^{\prime}$ : $U^{\prime}\rightarrow U$. Clearly, $(Z, C)=((Z_{\mu}, C_{\mu}),$ $r_{\mu\mu},,$ $M$ )

is an inverse system of ANR-pairs and $r=(r_{\mu}):(X, A)\rightarrow(Z, C)$ is a morphism of
pro-Top2. It is also clear that $r$ satisfies condition $(R1)^{\prime}$ .

We will now show that $r$ also satisfies the following stronger form of (R2):

(R2) Let $(P, Q)$ be an ANR-pair and $\mathcal{V}$ be an open covering of $P$. If $\mu\in M$

and $g,$
$g^{\prime}$ : $(Z_{\mu}, C_{\mu})\rightarrow(P, Q)$ are maps such that the maps $gr_{\mu}$ and $g^{\prime}\gamma_{\mu}$ are $\mathcal{V}$-near,

then there is a $\mu^{\prime}\geq\mu$ such that also the maps $gr_{\mu\mu^{\prime}}$ and $g^{\prime}r_{\mu\mu^{\prime}}$ are $\mathcal{V}$-near.
Indeed, let $\mu=(\delta, U)$ and let $g,$

$g^{\prime}$ : $(U, U\cap B_{\delta})\rightarrow(P, Q)$ be such that $gr_{\mu}$ and $g^{\prime}r_{\mu}$

are $\mathcal{V}$-near for some open covering $\mathcal{V}$ of $P$. Then also $g|q_{\delta}(X)$ and $g^{\prime}|q_{\delta}(X)$ are
$\mathcal{V}$-near. Therefore, any point $z\in q_{\delta}(X)$ admits a $V\in \mathcal{V}$ such that $g(z),$ $g^{\prime}(z)\in V$. By
continuity, there exists an open neighborhood $U(z)$ of $z$ in $U$ such that for any $z^{\prime}\in U(z)$

one has $g(z^{\prime}),$ $g^{\prime}(z^{\prime})\in V$. Let $U^{\prime}$ be the union of all $U(z)$ , when $z$ ranges over $q_{\delta}(X)$ .
Then $U^{\prime}$ is an open neighborhood of $q_{\delta}(X)$ in $Y_{\delta}$ and $U^{\prime}\subseteq U$. Moreover, the maps
$g|U^{\prime},$ $g^{\prime}|U^{\prime}$ are $\mathcal{V}$ -near. Therefore, $\mu^{\prime}=(\delta, U^{\prime})\in M,$ $\mu\leq\mu^{\prime}$ , and the maps $gr_{\mu\mu},=g|U^{\prime}$

and $g^{\prime}r_{\mu\mu^{\prime}}=g^{\prime}|U^{\prime}$ are $\mathcal{V}$-near.
It now only remains to achieve cofiniteness of the index set ,1, i.e., to achieve

that every element of $\Lambda$ has only a finite number of predecessors. We define $\Lambda$

as the set of all finite subsets of $M$ ordered by inclusion. We then define an in-
creasing function $\varphi:l\rightarrow M$ such that $\varphi(\{\mu\})=/\ell$ . This is obtained by induction on
$n$ , where $\lambda=\{\mu_{1}, \cdots, \mu_{n}\}$ . We then put

$(X_{\lambda}, A_{\lambda})=(Z_{\varphi(\lambda)}, C_{\varphi(\lambda)})$ ,
$p_{\lambda\lambda^{\prime}}=r_{\varphi(\lambda)\varphi(\lambda\prime)},$ $p_{\lambda}=r_{\varphi(\lambda)}$ .

Clearly, (X, $A$ ) $=((X_{\lambda}, A_{\lambda}),$ $p_{\lambda\lambda},,$
$\Lambda$ ) is a cofinite inverse system of ANR-pairs and $p=$
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$(p_{\lambda}):(X, A)\rightarrow(X, A)$ is a morphism of $pro- Top^{2}$ , which obviously has property (Rl).

Now assume that $(P, Q)$ is an ANR-pair, $\mathcal{V}$ is an open covering of $P$ and
$q,$

$g^{\prime}$ : $(X_{\lambda}, A_{\lambda})\rightarrow(P, Q)$ are maps such that $qp_{\lambda},$ $g^{\prime}p_{\lambda}$ are $\mathcal{V}$-near maps, i.e. $gr_{\varphi(\lambda)},$
$g^{\prime}r_{\varphi(\lambda)}$

are $\mathcal{V}$ -near. Then there is a $\mu\geq\varphi(\lambda)$ such that also $qr_{\varphi(\lambda)\mu},$ $g^{\prime}r_{\varphi(\lambda)\mu}are\mathcal{V}$-near maps.
Let $\lambda^{\prime}=\lambda\cup\{\mu\}$ . Then $\lambda\leq\lambda^{\prime}$ and $\{\mu\}\leq\lambda^{\prime}$ and thus $\mu=\varphi(\{\mu I)\leq\varphi(\lambda^{\prime})$ and

$gp_{\lambda\lambda^{\prime}}=qr_{\varphi(\lambda)\mu}r_{\varphi(\lambda)},$ $g^{\prime}p_{\lambda\lambda^{\prime}}=g^{\prime}r_{\varphi(\lambda)\mu}r_{\mu\varphi(\lambda^{\prime})}$ .
Consequently, the maps $gp_{\lambda\lambda},,$ $g^{\prime}p_{\lambda\lambda}$ , are also $\mathcal{V}$ -near. This completes the proof of
Theorem 6.
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