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ISOMETRIC IMMERSIONS OF LORENTZ SPACE
WITH PARALLEL SECOND FUNDAMENTAL FORMS

By

Martin A. MAGID

Introduction

In a series of papers, [F1], [F2], [F3], [F4], D. Ferus classified submanifolds
of euclidean space with parallel second fundamental forms. These submanifolds
form an important class of examples. In [F4], Ferus shows that they appear in
many topics in differential geometry.

There has been much recent work on parallel submanifolds of other ambient
spaces–notably the work of H. Naitoh, $[Nal]\neg[Na4]$ and M. Takeuchi [T]. An
interesting problem is to classify the parallel submanifolds of euclidean spaces
equipped with indefinite metrics.

This paper studies special classes of parallel submanifolds in $R_{1}^{m}$ , Lorentz space
of signature $(1, m-1)$ and in $R_{2}^{m}$ , euclidean space of signature $(2, m-2)$ . All

umbilical submanifolds are classified, as well as isometric immersions $R^{n}\rightarrow R_{1}^{n+k}$ ,

$R_{1}^{n}\rightarrow R_{1}^{n+2}$ and $R_{1}^{n}\rightarrow R_{2}^{n+2}$ with parallel second fundamental forms. These theorems

indicate some of the modifications which will be necessary in order to obtain a
complete classification.

The preliminary section (0) gives some basic results about indefinite Riemannian
geometry. These include an indefinite version of the result of Allendoerfer and

Erbacher for reducing the codimension of an isometric immersion with parallel

second fundamental form $(\nabla^{*}\alpha=0)$ , and an improved version of Petrov’s canonical
forms for symmetric transformations of Lorentz space.

Section 1 classifies isometric immersions $R_{1}^{2}\rightarrow R_{1}^{4},$ $R_{1}^{2}\rightarrow R_{2}^{4}$ and $R^{n}\rightarrow R_{1}^{n+k}$ with
$\nabla^{*}\alpha=0$ . These maps include a flat n-dimensional umbilic with lightlike mean
curvature vector (1.4) and the complex circle of radius $\kappa\in C(1.12)$ .

Section 2 contains the main classification results. These state that isometric

immersions $R_{1}^{n}\rightarrow R_{1}^{n+2}$ and $R_{1}^{n}\rightarrow R_{2}^{n+2}$ with $\nabla^{*}\alpha=0$ are either quadratic in nature,

like the flat umbilical immersion with lightlike mean curvature vector, or the

product of the identity map and previously determined low dimensional maps.

Most of the results in this paper are taken from the author’s Brown University
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Nomizu’s constant encouragement and patience.

Notation and Terminology

$R_{i.j}^{p}$ denotes the $p$-dimensional affine space with the metric $(, )$ whose canon-
ical form is

$\left\{\begin{array}{lll}-I_{i} & & \\ & I_{p- i- j} & O_{f}\end{array}\right\}$

where $I_{k}$ is the $k\times k$ identity matrix and $O_{j}$ is the $;\times jO$ matrix. The metric is
non-degenerate iff $j=0$ , in which case we write $R_{i}^{p}$ .

In general, if $M$ is a p-dimensional manifold whose tangent spaces have a
metric of signature $(i,p-i-j,j)$ we write $M_{i}^{p_{j}}.$ .

The indefinite sphere, hyperbolic space and lightcone are defined as follows:

$S_{i}^{p-1}(r)=\{x\in R_{i}^{p} : (x, x)=r^{2}\}$ , $r>0$

$H_{i-1}^{p-1}(r)=\{x\in R_{l}^{p} : (x, x)=-r^{2}\}$ , $r<0$

$LC_{i-1,1}^{p-1}=$ { $x\in R_{i}^{p}$ : $(x,$ $x)=0$ and $x\neq 0$ }

The isometric immersions

$ t\rightarrow$ ($a\cos(t/a),$ a $\sin(l/a)$)

$t\rightarrow(b\sinh(t/b), b\cosh(t/b))$

$t\rightarrow(b\cosh(t/b), b\sinh(l/b))$

are called circle maps. The first maps onto S’c $R^{2}$ or $H_{1}^{1}\subset R_{2}^{2}$ , the second onto
$S_{1}^{1}\subset R_{1}^{2}$ and the third onto $H^{1}\subset R_{1}^{2}$ . The circle maps, along with the map

$t(t, 0)$

are called one-dimensional maps.
A vector $X$ in an indefinite inner product space is called spacelike if (X, $X$ ) $>0$ ,

timelike if (X, $X$) $<0$ and null or lightlike if (X, $X$) $=0$ , where $(, )$ is the inner
product. A curve is called spacelike, timelike, or null depending on the character
of its tangent vectors.

A basis $X_{1},$
$\cdots,$

$X_{n}$ of an indefinite inner product space with the signature
$(p, n-p)$ is called orthonormal if the vectors are pairwise orthogonal, the first $p$

are unit timelike and the last $n-p$ are unit spacelike. If the signature is $(1, n-1)$ ,

so that the inner product space is Lorentz, we can define a pseudo-orthonormal
basis $\{l, l, X_{1}, \cdots, X_{n-2}\}$ . In such a basis $(l, l)=0=(\hat{l}, l)=(l, X_{i})=(l, x_{i}),$ $(1, f)=1$ and
$(X_{i}, X_{j})=\delta_{ij},$ $1\leq i,$ $j\leq n-2$ . A $\wedge over$ a vector will always have inner product 1
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with the hatless vector.
We recall the following notation from [K-N], vol. II, ch. 7. If $f:(M, g)\rightarrow(\tilde{M},\tilde{g})$

is an isometric immersion of one indefinite Riemannian manifold into another, and

if the Riemannian connections are denoted by $\nabla$ and $p$ , then for vector fields $X$

and $Y$ on $M$ we have the following decomposition.

I. $r_{X}f_{*}Y=f_{*}\nabla_{X}Y+\alpha(X, Y)$ .

Here $f_{*}\nabla_{X}Y$ is the tangential component and $\alpha(X, Y)$ is the normal component.
$\alpha$ is called the second fundamental form of $f$. For a normal field $\xi$ to $M$ we have

II. $ r_{X}\xi=-f_{*}A_{\xi}X+\nabla_{X}^{\perp}\xi$ .

$A_{\xi}$ is called the shape operator associated to $\xi$ and $\nabla^{\perp}$ is called the normal con-
nection. $A$ and $\alpha$ are related by the equation

$g(A_{\xi}X, Y)=\tilde{g}(\alpha(X, Y),$ $\xi$).

$\alpha$ is said to be parallel if

$(\nabla_{z^{\alpha}}^{*})(X, Y):=\nabla_{Z}^{\perp}\alpha(X, Y)-\alpha(\nabla_{Z}X, Y)-\alpha(X, \nabla_{Z}Y)=0$ .

0. Preliminaries

Defining the mean curvature vector $\eta$ as in the Riemannian case, we have

the following.

0.1 PROPOSITION. If $f:M\rightarrow\tilde{M}$ is an isometric immersion of one indefinite
Riemannian manifold into another with parallel second fundamental form, then

(i) the mean curvature vector is parallel: $\nabla_{\eta^{\perp}}=0$ .
(ii) the first normal spaces $N^{1}(x),$ $x\in M$ are $\nabla^{\perp}$ -parallel.

$N^{1}(x):=\{N^{0}(x)\}^{\perp}$ where $N^{0}(x)=\{\xi\in N(x):A_{\xi}\equiv 0\}$ .

The next theorem is about isometric immersions with parallel first normal
spaces and so can be applied to immersions with parallel second fundamental forms.

0.2 THEOREM (Indefinite version of a theorem of Allendoerfer and Erbacher).

Let $f:M_{i}^{n}\rightarrow R_{j}^{m}$ be an isometric immersion of an indefinite Riemannian manifold
with signature $(i, n-i)$ into $R_{j}^{m}$ . If the first normal spaces are parallel, then there

exists a complete $n+k$ dimensional totally geodesic submanifold $M^{*}$ of $R_{j}^{m}$ (where

$n=\dim M$ and $k=\dim N^{1}$ ) such that $f(M)\subset M^{*}$ .
Note: $M^{*}=R_{s,t}^{n+k}$ for some $s,$

$t$ and $t$ need not be zero. The proof of the

theorem shows that $t$ measures the degenerate part of $N^{1}$ .
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PROOF. The assumption means that for any curve $\tau$ from $x$ to $y$ the parallel
displacement of normal vectors along $\tau$ with respect to the normal connection
maps $N^{1}(x)$ onto $N^{1}(y)$ . Thus the dimension of $N^{1}$ is a constant, say $k$ . If $\xi$ is
a normal vector field such that $\xi\in N^{1}(x)$ for each $x$ in $M$, then $\nabla^{\perp}\mathfrak{X}\in N^{1}(x)$ for all
$X$ in $T_{x}(M)$ . Since $\nabla^{\perp}$ is a metric connection, the subspaces $N^{0}(x)$ are also parallel
relative to the normal connection. In fact $\xi\in N^{1},$ $\theta\in N^{0}$ implies $0=X(\xi, \theta)=(\nabla\perp \mathfrak{X}, \theta)$

$+(\xi, \nabla^{\perp}l)$ . Since the first term is zero, so is the second.
Let $x_{0}$ be a point of $M$ and consider the $n+k$ dimensional subspace $E$ of $R_{j}^{m}$

through $f(x_{0})$ which is perpendicular to $N^{0}(x_{0})$ . $E=T_{x_{0}}(M)\oplus N^{1}(x_{0})$ . The degenerate
part of $E$ is $N^{0}(x_{0})\cap N^{1}(x_{0})$ . It will be shown that $f(M)\subset E$. Let $x_{t}$ be any curve
in $M$ starting at $Xo$ . For any $\xi_{0}$ in $N^{0}(x_{0})$ let $\xi_{l}$ be the result of $\nabla^{\perp}$ -parallel dis-
placement of $\xi_{0}$ along $x_{t}$ , so that $\xi_{t}\in N^{0}(x_{t})$ . For the euclidean connection we have

$D_{t}\xi_{t}=-f_{*}A_{\epsilon_{t}}(\dot{x}_{t})+\nabla_{l^{\perp}}\xi_{t}=0$

which means that $\xi_{t}$ is parallel in $R_{j}^{m}$ and so is a constant vector. Now we have

$\frac{d}{dt}(f(x_{t})-f(x_{0}), \xi_{0})=(f_{*}(\dot{x}_{t}), \xi_{0})$

$=(f_{*}(\dot{x}_{t}), \xi_{t})$

$=0$

so that $f(x_{l})$ lies in $E$. Since $x_{l}$ is an arbitrary curve in $M,$ $f(M)\subset E$.
Next is an indefinite version of Moore’s lemma [Mo 1] which gives a condition

that allows an isometric immersion of a product manifold to be decomposed into
a product of immersions.

0.3 THEOREM. Let $M$ be an indefinite Riemannian product $M_{1}\times M_{2}$ . If $ f:M\rightarrow$

$R_{j}^{n}$ is an isometric immersion with $\alpha(X, Y)=0$ whenever $X\in T_{x}(M_{1})$ and $Y\in T_{x}(M_{2})$

then $f=f_{1}\times f_{2}$ : $M_{1}\times M_{2}\rightarrow R_{j_{1^{1}}}^{n}\times R_{j_{2}^{2}}^{n}$ and each $f_{i}$ is an isometric immersion.
The decomposition theorems here involve the shape operators of Riemannian

manifolds. A shape operator of a Riemannian manifold is always diagonalizable,
but this is not the case for a shape operator of a Lorentzian manifold. In order
to analyze the latter, a special case of Petrov’s Principal axis theorem for a tensor
is needed ([P] pp. 50-55).

0.4 THEOREM. Let $V$ be a real n-dimensional vector space equipped with a
Lorentzian metric and let $A$ be linear transformation of $V$ which is symmetric
with respect to this metric. Then $A$ can be put into one of the following four
forms with respect to bases whose inner products are given by $G$ .
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$A=[^{\lambda_{1}}$

$\lambda_{2}$

$\lambda_{n}$

$G=[-1$ 1

1

$A=[^{\lambda}0$

$ 1\lambda$

$\lambda_{1}$

$\lambda_{n-2}$

$G=[^{1}0$

$01$

1

1

$A=[\lambda 00$

$0\lambda 1$ $ 01\lambda$

$\lambda_{1}$

$\lambda_{n-3}$

$G=[^{1}0$

$01$

1

1

$ A=[-\beta\alpha$

$\alpha\beta$

$\lambda_{1}$

$\lambda_{n-2}$

$G=[+1$

$-1$

1

1

$\beta\neq 0$ .

These will be referred to as the case where there: are simple real eigenvalues,
is a non-simple eigenvalue of multiplicity 2, is a non-simple eigenvalue of multi-
plicity 3 or is a complex eigenvalue. The first and fourth cases will be said to
have simple eigenvalues.

This is a slightly sharper version of the theorem in [P]. Theorem 2, p. 229
[Mal] allows us to use an orthonormal basis in the case of a complex eigenvalue
instead of the more complicated basis which Petrov employs.

The following proposition can be proved using 0.4. Another proof can be
found in [Mo 2].

0.5 PROPOSITION. Let $M(c)$ and $\tilde{M}(\tilde{c})$ denote space forms of constant curvature
$c$ and $\tilde{c}$ . Suppose

(i) $M_{0}^{n}(c)$ is isometrically immersed in $\dot{\Lambda}^{l}f_{1}^{n+1}(\delta)$

or (ii) $M_{1}^{n}(c)$ is isometrically immersed in $\tilde{M}_{1}^{n+1}(\delta)$

or (iii) $M_{1}^{n}(c)$ is isometrically immersed in $\tilde{M}_{2}^{n+1}(\tilde{c})$ .

If $c\neq\tilde{c}$ and $n>2$ then the immersion is umbilical and in case (i) $\delta>c$ , in case
(ii) $\tilde{c}<c$ and in case (iii) $\delta>c$ .

It is necessary to know what form a Lorentzian symmetric matrix takes if it
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commutes with one of the four standard Lorentzian symmetric matrices.

0.6 PROPOSITION. Let $A$ and $B$ be square matrices which are symmetric with
respect to a Lorentzian inner product. If, with respect to a pseudo-orthonormal
basis,

$A=\left\{\begin{array}{lllll}\lambda & 1 & & & \\0 & \lambda & & & \\ & & \lambda I_{k_{0}} & & \\ & & & \lambda_{l}I_{k_{1}} & \\ & & & & \lambda_{s}I_{k_{\$}}\end{array}\right\}$

and $B$ commutes with $A$ then

$B=[\cdot\frac{\dot{0}c^{c_{k}}0\mu_{0}0^{1}\mu b_{1}c\cdots\cdots c_{k}d_{ij}^{0}}{1\underline{d_{ij}^{1}|}}0$ $\overline{|d_{ij}^{l1}}\ovalbox{\tt\small REJECT}$

where $d_{ij}^{r}$ is $k_{r}\times k_{r}$ .

0.7 PROPOSITION. Let $A$ and $B$ be square matrices which are symmetric with
respect to a Lorentzian inner product. If, with respect to a pseudo-orthonormal

basis,

$A=\left\{\begin{array}{llllll}\lambda & 0 & 1 & & & \\0 & \lambda & 0 & & & \\0 & 1 & \lambda & & & \\ & & & \lambda I_{k_{0}} & & \\ & & & & \lambda_{1}I_{k_{l}} & \\ & & & & & \lambda_{s}I_{k_{\$}}\end{array}\right\}$

and $B$ commutes with $A$ , then
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$B=\left\{\begin{array}{lllllllll}\mu & b & c_{1} & c_{2} & \cdots & c_{k_{0}+1} & 0 & \cdots & 0\\0 & \mu & 0 & 0 & \cdots & 0 & 0 & \cdots & 0\\0 & c_{1} & \mu & & & & & & \\0 & c_{2} & & & & & & & \\\vdots & \vdots & & & d_{ij}^{0} & & & & \\0 & c_{k_{0}+1} & & & & & & & \\\vdots & 0 & & & & & d_{ij}^{1} & & \\\vdots & \vdots & & & & & & & \\0 & 0 & & & & & & & d_{ij}^{s}\end{array}\right\}$

where $d_{ij}^{r}$ is $k_{r}\times k_{r}$ .

0.8 PROPOSITION. Let $A$ and $B$ be square matrices which are symmetric with
respect to a Lorentzian inner product. If, with respect to an orthonomal basis

$A=\left\{\begin{array}{lllll}\alpha & \beta & & & \\-\beta & \alpha & & & \\ & & \alpha I_{k_{0}} & & \\ & & & \lambda_{l}I_{k_{l}} & \\ & & & & \lambda_{s}I_{k_{\$}}\end{array}\right\}$ $\beta\neq 0$

and $B$ commutes with $A$ then

$ B=[-\delta\gamma$

$\gamma\delta$

$d_{ij}^{0}$ .
.

$d_{if}^{s}$

where $d_{ij}^{r}$ is $k_{r}\times k_{r}$ .
Propositions 0.6, 0.7 and 0.8 can be obtained by letting $B$ have the form of

a general symmetric matrix and setting $AB$ and $BA$ equal.

0.9 Partially umbilical immersions. If $f:M_{j}^{n}\rightarrow R_{k}^{m}$ is an isometric immersion
and there is a globally defined normal vector field $\theta$ such that

(i) $\theta$ is everywhere non-zero
(ii) $\nabla^{\perp}\theta=0$

(iii) $A_{\theta}=\lambda Id$ $\lambda\neq 0$

then $f(M_{j}^{n})$ is contained inside

$S_{k}^{m-1}(\frac{\sqrt{(\theta,\theta)}}{\lambda})$ if $(\theta, \theta)>0$ ,
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$H_{k-1}^{m-1}(\frac{-\sqrt{-(\theta,\theta)}}{\lambda})$ if $(\theta, \theta)<0$ and

$LC_{k-1}^{m-1_{1}}$ if $(\theta, \theta)=0$ .

0.10 COROLLARY. If $0$ in 0.9 is the mean curvature vector, then $f(M_{j}^{n})$ is
immersed minimally in $S_{k}^{m-1}$ or $H_{k-1}^{m-\iota}$ . (Such an immersion is called pseudo-
umbilical by Chen and Yano [Y-C].)

PROOFS. Note first that the vector $ f(x)+\theta/\lambda$ is constant for all $x$ in $M$. Denoting
this vector by $\vec{c}$ we have

$(f(x)-\vec{c}, f(x)-\vec{c})=(\theta/\lambda, \theta/\lambda)=\frac{(\theta,0)}{\lambda^{2}}$ .

Because $0$ is parallel this is a constant, and so $f(x)$ is contained in the sphere,
hyperbolic space or lightcone with center $\vec{c}$ .

Moreover, if $\theta$ is the mean curvature vector of $f(M_{j}^{n})$ in $R_{k}^{m}$ , then $\theta$ is parallel
to the position vector $f(x)-\vec{c}$ and so $f(M_{j}^{n})$ is minimal in either $S_{k}^{m-1}$ or $H_{k-1}^{m-1}$ .
Here $\lambda\neq 0$ implies $(\theta, \theta)\neq 0$ . Q. E. D.

1. Isometric Immersions with Parallel Second Fundamental Forms: $R^{n}\rightarrow R_{1}^{n+k}$ ,
$R_{1}^{2}\rightarrow R_{1}^{4},$ $R_{1}^{2}\rightarrow R_{2}^{4}$.
The classification of these isometric immersions will follow from some general

facts about submanifolds with $\nabla^{*}\alpha=0$ and global, parallel normal fields.
The first step is to classify one-dimensional submanifolds with parallel second

fundamental forms. Thus, the first proposition deals with non-null curves which
have parallel mean curvature vector.

1.1 PROPOSITION. Let $x(s)$ be a non-null curve in an indefinite euclidean space
$R_{j}^{m}$ with parallel mean curvature vector $\eta$ .

(i) If $\eta=0$ then $x(s)$ is a line segment.
(ii) If $(\eta, \eta)\neq 0$ then $x(s)$ is part of a circle map.
(iii) If $(\eta, \eta)=0$ and $\eta\neq 0$ then $x(s)$ is a curve in $R_{0,1}^{2}$ or $R_{1,1}^{2}$ of the form $ s|\rightarrow$

$(s, as^{2}+bs+c)$ . The first map is denoted by $U^{1}$ , the second by $U_{1^{1}}$ .
In case (iii) the metric vanishes on the second coordinate. $R_{j,1}^{2}$ is imbedded

in $R_{j+1}^{3}$ by sending $(x^{1}, x^{2})|\rightarrow(x^{2}, x^{1}, x^{2})$ .

PROOF. Let $x(s)$ be a curve in $R_{j}^{m}$ with $s$ its arc-length parameter and $X(s)=$

$d_{X}(s)/ds=;\dot{x}(s)$ its unit tangent vector. If $D$ denotes the flat connection in $R_{j}^{m}$ we
see that $D_{s}X(s)$ is normal to $x(s)$ and so $D_{s}X(s)=\alpha(X(s), X(s))$ . The mean curvature
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vector $\eta(s)=(X(s), X(s))\alpha(X(s)),$ $X(s))$ . Because $\eta(s)$ is parallel $(\eta(s), \eta(s))=k$ , a con-
stant. If $\eta=0$ then $D_{s}X(s)=0$ and $x(s)$ is a line segment.

If $k\neq 0$ set $Y(s)=\eta(s)/\sqrt{|k|}$, so that $Y(s)$ is a unit vector normal to $x(s)$ . $X(s)$

and $Y(s)$ form an orthonormal frame along $x(s)$ such that

$D_{s}X(s)=\sqrt{|k|}(X(s), X(s))Y(s)$

$D_{s}Y(s)=\frac{-k}{\sqrt{|k|}}X(s)$

(ii) follows by 0.2 and inspection.
Now suppose $(\eta, \eta)=0$ and $\eta\neq 0$ . By 0.2 $x(s)\subset R_{0,1}^{2}$ or $R_{1,1}^{2}$ , depending on the

length of $X(s)$ . Since $x(s)$ is an immersed submanifold

$x(s)=(s, \phi(s))$ or $(\phi(s), s)$ ,

where the metric vanishes on the second coordinate. Thus

$\dot{x}(s)=(1, \phi^{\prime})$ or $(\phi^{\prime}, 1)$

and $\alpha(X(s), X(s))=(O, \phi^{\prime/})$ or $(0,0)$ . The second possibility is totally geodesic. Since

$\nabla_{s^{\perp}}\alpha(X(s), X(s))=0$

$\phi^{\prime\prime\prime}=0$ and $\phi(s)=as^{2}+bs+c$ . Q. E. D.
One way to obtain submanifolds of an indefinite inner product space with

parallel second fundamental forms is to consider umbilical immersions. We will

find, besides the sphere and hyperbolic space, a third type of umbilical immersion,

and from these a complete classification of umbilical immersions.

1.2 LEMMA. Suppose $f:M_{i}^{n}\rightarrow R_{j,s}^{n+k+s}$ is an isometric immersion. If $ p:R_{j,s}^{n+k+s}\rightarrow$

$R_{j}^{n+k}$ is projection onto the first $n+k$ coordinates then $p\circ f:M_{i}^{n}\rightarrow R_{j}^{n+k}$ is an iso-

metric immersion.

PROOF. Choose $x_{0}$ in $M$ and let $U$ be a coordinate neighborhood of $x_{0}$ with co-
ordinates $(x^{1}, \cdots, x^{n})$ . Let $f(x^{1}, \cdots, x^{n})=(f^{1}, \cdots, f^{n+k}, h^{1}, \cdots, h^{s})$ , where the metric

vanishes in the last $s$ coordinates. Clearly

$g(\frac{\partial}{\partial x^{t}},$ $\frac{\partial}{\partial x^{m}})=(f_{*}\frac{\partial}{\partial x^{l}},$ $f_{*}\frac{\partial}{\partial x^{m}})=((p\circ f)_{*}\frac{\partial}{\partial x^{l}},$ $(p\circ f)_{*}\frac{\partial}{\partial x^{m}})$ . Q. E. D.

1.3 LEMMA. Let $f:M_{i}^{n}\rightarrow R_{r,s}^{n+m+s}$ be an isometric immersion with parallel second

fundamental form. If $f(x^{1}, \cdots, x^{n})=(f^{1}, \cdots, f^{n+m}, h^{1}, \cdots, h^{s})$ locally, then

$\frac{\partial^{3}h^{p}}{\partial x^{i}\partial x^{j}\partial x^{k}}=\sum_{u=1}^{n}\Gamma_{ji}^{u}\frac{\partial^{2}h^{p}}{\partial x^{u}\partial x^{k}}+\sum_{v=1}^{n}\Gamma_{jk^{\frac{\partial^{2}h^{p}}{\partial x^{v}\partial x^{i}}}}^{v}$ .
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PROOF. If $f$ has parallel second fundamental form then

$\nabla_{Z}^{\perp}\alpha(X, Y)=\alpha(\nabla_{Z}X, Y)+\alpha(X, \nabla_{Z}Y)$ .
If $p$ is projection onto the last $s$ coordinates then

$\nabla_{Z}^{\perp}p\circ\alpha(X, Y)=p\circ\alpha(\nabla_{Z}X, Y)+p\circ\alpha(X, \nabla_{Z}Y)$ .
Replacing $X,$ $Y,$ $Z$ by $\partial/\partial x^{j},$ $\partial/\partial x^{k},$ $\partial/\partial x^{i}$ yields the lemma, since, as is well

known

$\frac{\partial^{2}f}{\partial x^{j}\partial x^{k}}=D_{\partial/\partial x^{jf_{*}(\frac{\partial}{\partial x^{k}})}}=f_{*}(\nabla_{\partial/\partial x^{j}}\frac{\partial}{\partial x^{k}})+\alpha(\frac{\partial}{\partial x^{j}}$ , $\frac{\partial}{\partial x^{k}})$ . Q. E. D.

1.4 THEOREM. Let $f:M_{k}^{n}\rightarrow R_{j}^{m}$ be a complete umbilical immersion. Assume the
mean curvature vector $\eta\neq 0$ , so that $f$ is not totally geodesic.

(i) If $(\eta, \eta)>0$ then $f(M)cS_{k}^{n}\subset R_{k}^{n+\iota}$

(ii) If $(\eta, \eta)<0$ then $f(M)\subset H_{k}^{n}\subset R_{k+1}^{n+1}$

(iii) If $(\eta, \eta)=0$ then $M=R_{k}^{n}$ and $f(M)\subset R_{k}^{n+_{1}\iota}$ as an umbilic.
In this last case $f(x^{1}, \cdots x^{n})=(x^{1},$

$\cdots,$
$x^{n},$ $a(-\Sigma_{l=1}^{k}x^{i^{2}}+\Sigma_{i=k+1}^{n}x^{i^{2}})+b_{1}x^{1}+\cdots+$

$b_{n}x^{n}+c)$ and $R_{k}^{n+_{1}1}$ is imbedded in $R_{k+1}^{n+2}$ by $(y^{1}, \cdots, y^{n\vdash 1})|\rightarrow(y^{n+1}, y^{1}, \cdots, y^{n}, y^{n+1})$ .
Both affine spaces have the standard metric. Denote this submanifold by $U_{k}^{n}$ .

PROOF. If $(\eta, \eta)\neq 0$ then by 0.2 there is an $R_{k}^{n+1}$ or $R_{k+1^{1}}^{n+}$ into which $M_{k}^{n}$ is iso-
metrically immersed, depending on the sign of $(\eta, \eta)$ . This mapping is umbilical
and by 0.10 the image is contained in a sphere or hyperbolic space.

If $(\eta, \eta)=0$ the image of $M_{k}^{n}$ is in $R_{k,1}^{n+1}$ . By 1.2 $f:M_{k}^{n}\rightarrow R_{k}^{n}$ is an isometric
immersion so that $M_{k}^{n}=R_{k}^{n}$ .

1.3 allows us to determine all $h$ such that

$f(x^{1}, \cdots, x^{n})=(x^{1}, \cdots, x^{n}, h(x^{1}, \cdots, x^{n}))$ .
As in 1.3 we have

$\alpha(\frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}})=(0, \cdots, 0, h_{ij})$ .

In addition, because $f$ is umbilical,

$\alpha(\frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}})=(\frac{\partial}{\partial x^{i}},$ $\frac{\partial}{\partial x^{j}})\eta=(0, \cdots, 0, h_{ij})$ .

It follows easily that $h$ is of the desired form. Q. E. D.
The classification of umbilical immersions allows us, following Walden [Wa],

to determine Riemannian immersions with parallel second fundamental forms and
trivial normal connections in an indefinite euclidean space. Later this will allow
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us to classify isometric immersions $R^{n}\rightarrow R_{1}^{n+k}$ with parallel second fundamental

forms.

1.5 THEOREM. If $f$ : $M^{n}\rightarrow R_{j}^{n+k}$ is an isometric immersion of a complete

Riemannian manifold with parallel second fundamental form and trivial normal

connection, then $f$ is a product of umbilical immersions.

$f(M^{n})=R^{l_{0}}\times U^{l_{1}}\times\cdots\times U^{l_{x}}\times S^{m_{1}}\times\cdots\times S^{m_{y}}\times H^{n_{1}}\times\cdots\times H^{n_{l}}$

Here $U^{\iota_{p}}\subset R_{1}^{l_{P^{+2}}}$ as an umbilic $p=1,$ $\cdots,$ $x$

$S^{m_{q}}\subset R^{m_{q+1}}$ as an umbilic $q=1,$ $\cdots,$ $y$

$H^{n_{r}}\subset R_{1}^{n_{r^{+1}}}$ as an umbilic $r=1,$ $\cdots,$ $z$

and $R^{l_{0}}\perp R_{1}^{\iota_{v^{+2}}}\perp R^{m_{q+1}}\perp R_{1}^{n_{\gamma}+1}$ . Note $k=2x+y+z$ and $j=x+z$ .

PROOF. [Wa].

We now prove some lemmas.

1.6 LEMMA. Let $f:R_{j}^{n}\rightarrow R_{k}^{m}$ be an isometric immersion with parallel second

fundamental form. If $(x^{1}, \cdots, x^{n})$ is a global coordinate system with $\nabla_{\partial_{i}}\partial_{j}=0,$ $i,j=$

$1,$ $\cdots,$ $n$ , then $\alpha(\partial_{i}, \partial_{j})$ is a global parallel normal field.

PROOF. This is an easy consequence of the definition of $\nabla^{*}\alpha=0$ .

1.7 LEMMA. Let $f:M_{j}^{n}\rightarrow R_{k}^{m}$ be an isometric immersion. If a global normal

field $\theta$ is parallel with respect to the normal connection, then $A_{\theta}$ commutes with
$A_{\xi}$ for all normal vectors $\xi$ .

PROOF. Since $R^{\perp}(X, Y)\theta=\nabla_{X}^{\perp}\nabla_{Y}^{\perp}\theta-\nabla_{Y}^{\perp}\nabla_{X}^{\perp}\theta-\nabla_{[X.Y]}^{\perp}\theta=0$ , this result follows from

Codazzi’s equation and the non-degeneracy of the metric on $M$.

1.8 PROPOSITION. If $f:R^{n}\rightarrow R_{1}^{n+k}$ is an isometric immersion with parallel second

fundamental form, then it has trivial normal connection, $i$ . $e.,$
$R^{\perp}\equiv 0$ .

PROOF. It must be shown that, for any two normal vectors $\xi$ and $\theta,$ $A_{\xi}$ and $A_{\theta}$

commute. By 1.6 and 1.7, if $\gamma$ is in the first normal space $N^{1}(x)$ then $A_{\gamma}$ com-
mutes with every other shape operator. On the other hand, if $\rho\in N^{0}(x)$ then $ A_{\rho}\equiv$

$0$ and $A_{\rho}$ commutes with every shape operator.

If the metric restricted to the first normal space is non-degenerate this is

sufficient because the normal space equals $N^{0}(x)\oplus N^{1}(x)$ .
If the metric restricted to $N^{1}(x)$ is degenerate then $N^{0}(x)+N^{1}(x)$ is not the

entire normal space. In this case there is a unique lightlike direction $\delta$ in $N^{1}(x)$

$\cap N^{0}(x)$ . Choosing a lightlike $\hat{\delta}$ with $(\delta,\hat{\delta})=1$ we see that $N^{0}(x),$ $N^{1}(x)$ and $\hat{\delta}$ span
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the normal space. Since $A_{\hat{\delta}}$ commutes with itself it is clear that all shape opera-
tors commute. Q. E. D.

1.8 allows us, in conjunction with 1.5, to classify isometric immersions of $R^{n}$

into $R_{1}^{n+k}$ with parallel second fundamental forms.

1.9 THEOREM. If $f:R^{n}\rightarrow R_{1}^{n+k}$ is an isometric immersion with parallel second
fundamental form, then $f$ has one of the following forms:

(i) $f$ is a product of circle maps and a totally geodesic map.

$f=s_{1}\times\cdots\times s_{j}\times Id:R^{1}\times\cdots\times R^{1}\times R^{n-j}\rightarrow S^{1}\times\cdots\times S^{1}\times R^{n-j}\subset R_{1}^{n+k}$

or $f=h\times s_{1}\times\cdots\times s_{j}\times Id;R^{1}\times R^{1}\times\cdots\times R^{1}\times R^{n-j-1}$

$\rightarrow H^{1}\times S^{1}\times\cdots\chi_{\iota}S^{1}\times R^{n-j-1}\subset R_{1}^{n+k}$ .

(ii) $f$ is a product of a flat umbilical map, circle maps, and a totally geodesic
map.

$f=u\times s_{1}\times\cdots\times s_{j}\times Id:R^{m}\times R^{1}\times\cdots\times R^{1}\times R^{n-m-j}$

$\rightarrow U^{m}\times S^{1}\times\cdots\times S^{1}\times R^{n-m-j}\subset R_{1}^{n+k}$

$u$ is one of the flat umbilical immersions of Theorem 1.4.

1.10 EXAMPLE. Let $f:R^{2}\rightarrow R_{0.2}^{4}$ be the isometric immersion $(x, y)|\rightarrow(x,$ $y,$ $xy$ ,
$x^{2}-y^{2}/2)$ with metrics $(+, +)$ and $(+, +, 0,0)$ . The associated mapping into $R_{2}^{6}$ ,
where $R_{0.2}^{4}\rightarrow R_{2}^{6}$ by $(y^{1}, y^{2}, y^{3}, y^{4})|\rightarrow(y^{4}, y^{3}, y^{1}, y^{2}, y^{3}, y^{4})$ neither has trivial normal
connection nor splits into a product of umbilics. This shows that in 1.8 and 1.9
the receiving space must be at least Lorentz.

1.11 LEMMA. If $\theta$ is a global parallel normal vector field associated to an
isometric immersion of $R_{1}^{n}$ with parallel second fundamental form then $A_{\theta}$ has
constant entries with respect to a flat coordinate system on $R_{1}^{n}$ .

PROOF. Let $\{x^{1}, \cdots, x^{n}\}$ be a global coordinate system such that $\nabla_{\partial_{i}}\partial_{j}=0,1\leq i,j\leq n$ .
Since the immersion has $\nabla^{*}\alpha=0$

$0=A_{\theta}(\nabla_{a_{i}}\partial_{j})=\nabla_{\partial_{t}}(A_{\theta}\partial_{j})=\nabla_{\partial_{i}}(a_{1j}\partial_{1}+\cdots+a_{nj}\partial_{n})=(\partial_{i}a_{1j})\partial_{1}+\cdots+(\partial_{i}a_{nj})\partial_{n}$ .
Therefore, $\partial_{i}a_{kj}=0$ for all $i,$ $j,$ $k$ . Q. E. D.

In order to classify isometric immersions with $\nabla^{*}\alpha=0$ from $R_{1}^{n}$ to $R_{1}^{n+2}$ or $R_{2}^{n+2}$

it is necessary to determine those from $R_{1}^{2}$ to $R$; or $R_{2}^{4}$ . For this we need some
examples.

1.12 EXAMPLE. Complex circle of radius $\kappa$ . Fix a non-zero number $ c+id=\kappa$ in
$C$ and let $a+ib=\kappa^{-1}$ . $C^{2}$ can be identified with $R_{2}^{4}$ by sending $(x+iy, u+iv)$ to
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$(x, u, y, v)$ . The metric on $R_{2}^{4}$ is $((x, u, y, v), (x, u, y, v))=x^{2}+u^{2}-y^{2}-v^{2}$ . The map-
ping $(x, y)\sim x+iy=z|\rightarrow^{J^{\prime}}\kappa(\cos z, \sin z)\in C^{2}$ is an isometric immersion of $R_{1}^{2}$ into $R_{2}^{4}$

with parallel second fundamental form. Let $J$ be the complex structure on $R_{2}^{4}$

which comes from multiplication by $i$ on $C^{2}$ . Then there is a natural orthonormal
basis $\{J\xi, \xi\}$ for the normal space such that

$A_{\xi}=\left\{\begin{array}{ll}a & -b\\b & a\end{array}\right\}$ and $A_{J\xi}=\left\{\begin{array}{ll}-b & -a\\a & -b\end{array}\right\}$ .

The mean curvature vector $\eta=a\xi+bJ\xi$ and $A_{C\xi}dJ\xi=-I_{2}$ . By 0.9, $f^{\prime}(R_{1}^{2})$ is con-
tained in $S_{2^{3}}(\sqrt{c^{2}-d^{2})}$ or $H_{1^{3}}(-\sqrt{-c^{2}+d^{2})}$ or $LC_{1,1}^{3}$ .

1.13 EXAMPLE. $f^{\prime}$ : $R_{1}^{2}\rightarrow R_{2}^{4}$ where $R_{2}^{4}$ has the standard metric.

$\sqrt{2}f^{\prime}(x, y)=((1+c)\sin y, (1+c)\cos y,$ $(1-c)\sin y,$ $(1-c)\cos y)$

$+(x+cy)(-\cos y, \sin y, \cos y, -\sin y)$ , $c\in R$ .
This mapping has, with respect to a pseudo-orthonormal basis for the normal
space $\{\eta,\hat{\eta}\}$ , where $\eta$ is the mean curvature vector, shape operators

$A_{\eta}=\left\{\begin{array}{ll}0 & 1\\0 & 0\end{array}\right\}$ and $A_{\eta}\wedge\left\{\begin{array}{ll}1 & c\\0 & 1\end{array}\right\}$ .

The basis for $T(R_{1}^{2})$ is $\{\partial/\partial x, \partial/\partial y\}$ . Since $A_{r-c\eta}\wedge=I_{2},$ $f^{\prime}(R_{1}^{2})$ is contained in $S_{2^{3}}(\sqrt{-2c})$

or $H_{1^{3}}(-\sqrt{2c})$ or $LC_{1^{3},1}$ . The shape operators associated to the immersions into the
sphere or hyperbolic space have non-simple real eigenvalues and non-zero trace.
Thus by the fundamental theorem of surfaces they are the unique immersions
with these shape operators.

1.14 EXAMPLE. B-scroll over the null cubic $C$ in $R_{I}^{3}([G1])$ . In $R_{1}^{3}$ take a null
curve $x(v)$ with a null frame, that is, a set of vector fields $A(v),$ $B(v),$ $C(v)$ such
that $x(v)=A(v)$ , $(A, A)=(B, B)=(A, C)=(B, C)=0$ and $(A, B)=(C, C)=1$ . If these
satisfy the following system of equations

$\dot{A}(v)=k_{1}(v)A(v)+k_{2}(v)C(v)$

$\dot{B}(v)=k_{1}(v)B(v)$

$\dot{C}(v)=-k_{2}(v)B(v)$

then $f^{\prime}(u, v)=x(v)-\ddagger^{-uB(v)}$ is a Lorentz surface in $R_{1}^{3}$ called a B-scroll over $x(v)$ .
If $k_{1}\equiv 0$ and $k_{2}\equiv 1$ then $\ddot{A}=0$ and the curve is called the null cubic C. ([B], p. 240).

In this case we have the B-scroll over the null cubic $C$.

1.14’ EXAMPLE. B’-scroll over the null cubic C’ in $R_{2}^{3}$ . This is the same as
1.14, with obvious modifications.
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1.15 THEOREM. If $f:R_{1}^{2}\rightarrow Rf$ is an isometric immersion with parallel second
fundamental form then, up to a rigid motion, $f$ has one of the following forms.

(i) $f$ is totally geodesic
(ii) $f$ is a product of one-dimensional maps
(iii) $f:R_{1}^{2}\rightarrow R_{1}^{3}cR_{1}^{4}$ is a B-scroll over the null cubic $C$.

Note: In case (iii) the mean curvature vector is zero, even though the im-
mersion is not totally geodesic.

1.16 LEMMA. If $f:R_{j}^{2}\rightarrow R_{j}^{4}$ or $R_{j+1}^{4}j=0,1$ is an isometric immersion with par-
allel second fundamental form and the mean curvature vector $\eta=0$ then the first
normal space has dimension less than two.

PROOF of 1.16: Assume that the first normal space is two-dimensional and let
$\xi_{1},$ $\xi_{2}$ be an orthonormal basis of $N(x)$ . Using 0.4 put $A_{\xi_{1}}$ into the appropriate
canonical form. Thus

$A_{\xi_{1}}=\left\{\begin{array}{ll}a & 0\\0 & -a\end{array}\right\}$ or $\left\{\begin{array}{ll}0 & 1\\0 & 0\end{array}\right\}$ or $\left\{\begin{array}{ll}0 & \beta\\-\beta & 0\end{array}\right\}$ .

Since $A_{\overline{\backslash }z}$ commutes with $A_{\epsilon_{1}}$ it is of the form

$\left\{\begin{array}{ll}b & 0\\0 & -b\end{array}\right\}$ or $\left\{\begin{array}{ll}0 & b\\0 & 0\end{array}\right\}$ or $\left\{\begin{array}{ll}0 & \gamma\\-\gamma & 0\end{array}\right\}$ .

A calculation of $\alpha$ on the $ba$sis of $T_{x}(M)$ shows that the first normal spaces are
at most one-dimensional. Q. E. D.

PROOF of 1.15: There are two cases to consider $\eta=0$ and $\eta\neq 0$ .

CASE I. $\eta=0$ . By 1.16 the first normal space is zero or one-dimensional. If it
is zero-dimensional, then $f$ is totally geodesic. If it is one-dimensional, let $\xi$ span
the first normal space. Then by 0.2 $f(R_{1}^{2})\subset R_{1}^{3}$ and $A_{\xi}$ has rank one and trace
zero, so

$A_{\xi}=\left\{\begin{array}{ll}0 & 1\\0 & 0\end{array}\right\}$ .

$[G1]$ shows that this is the B-scroll over the null cubic.

CASE II. $\eta\neq 0$ . Put $A_{\eta}$ into one of the three possible canonical forms. We will
see that $A_{\eta}$ can only be diagonal. Let $\eta^{\prime}$ be the unit vector in the direction of $\eta$

and choose another unit normal vector $\xi$ such that $\xi 1\eta$
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If $A_{\eta}=\left\{\begin{array}{ll}\lambda & 1\\0 & \lambda\end{array}\right\}$ then $A_{\xi}=\left\{\begin{array}{ll}\mu & a\\0 & \mu\end{array}\right\}$ since $A_{\eta}$ and $A_{\xi}$ commute. But $\mu=1/2$ trace $A_{\xi}$

$=(\xi, \eta)=0$ . If $\{l, f\}$ is the pseudo-orthonormal basis with respect to which $A_{\eta}$ and
$A_{\xi}$ are represented, then the Gauss equation yields

$0=(A_{\eta}, l, l)(A_{\eta}, l, l^{A})-(A_{\eta}, 1, l)^{2}+(A_{\xi}l, l)(A_{\xi}l, l)-(A_{\xi}l, l)^{2}$

$=-(const. \lambda)^{2}$ .

This implies that $\lambda=0$ , contradicting $\eta\neq 0$ .

Similarly, if $A_{\eta},=\left\{\begin{array}{ll}a & b\\-b & a\end{array}\right\}$ then $A_{\xi}=\left\{\begin{array}{ll}0 & c\\-c & 0\end{array}\right\}$ . The Gauss equation gives $a=$

$b=c=0$ contradicting $\eta\neq 0$.
If $A_{\eta}$ is diagonalizable with distinct eigenvalues, then all other $A_{\xi}$ are diago-

nalizable and 0.3 shows that $f:R_{1}^{2}\rightarrow R_{1}^{4}$ can be decomposed as

$f_{1}\times f_{2}$ : $R_{1}^{1}\times R^{1}\rightarrow R_{1}^{3}\times R_{1}^{1}$ or
$R_{1}^{2}\times R^{2}$ or
$R_{1}^{1}\times R^{3}$ .

Each $f_{i}$ has parallel mean curvature vector, so by 1.1

$f_{1}(R_{1}^{1})=S_{1}^{1}$ ; $f_{2}(R^{1})=R^{1}$ or
$f_{1}(R_{1}^{1})=S_{1}^{1}$ ; $f_{2}(R^{1})=S^{1}$ or
$f_{1}(R_{1}^{1})=R_{1}^{1}$ ; $f_{2}(R^{1})=S^{1}$ .

If $A_{\eta}=\lambda I_{2}$ then there is a minimal immersion of $R_{1}^{2}$ into $S_{1}^{3}(c)$ . The shape
operator $A$ of this minimal immersion can, a priori, be one of the three types.
Once again, the Gauss equation shows that $A$ must be diagonalizable. In this
final case the map splits as above. Q. E. D.

1.17 THEOREM. If $f:R_{1}^{2}\rightarrow R_{2}^{4}$ is an isometric immersion with parallel second
fundamental form, then, up to a rigid motion, $f$ has one of the following forms.

(i) $f$ is totally geodesic
(ii) $f$ is a product of one-dimensional maps
(iii) $f$ is a complex circle, as in 1.12
(iv) $f$ is a B-scroll over the null cubic, as in 1.14, 1.14’
(v) $f$ is as in1.13
(vi) $f:R_{1}^{2}\rightarrow R_{1,1}^{3}\subset R_{2}^{4}$ where $(x, y)_{1}\rightarrow(q(x, y),$ $x,$ $y,$ $q(x, y))$ and $q(x, y)=ax^{2}+bxy+$

$cy^{2}+dx+ey+g$ . $\eta$ is lightlike.

PROOF. The proof is divided into three cases: case I $(\eta, \eta)\neq 0$ , case II $(\eta, \eta)=0$

and $\eta\neq 0$ , and case III $\eta=0$ .
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CASE I. $(\eta, \eta)\neq 0$ . Suppose first that $A_{\eta}$ is diagonal. If the eigenvalues are
distinct then, as before, the map splits into a product of one-dimensional maps,
giving (ii). If the eigenvalues are equal, say to $\lambda$ , then $R_{1}^{2}$ immerses minimally
into $S_{2}^{3}$ or $H_{1^{3}}$ . By examining the Gauss equations, we see that the shape operator
$A$ of this minimal immersion can only be of the form

$A=A_{\eta^{\perp}}=\left\{\begin{array}{ll}0 & \beta\\-\beta & 0\end{array}\right\}$

with respect to an orthonormal basis $\{e, f\}$ with $(f, f)=-1$ . If $S_{2}^{3}$ has constant
curvature $\tilde{c}>0$ then $0=\tilde{c}-[(-\beta^{2})/-1]=\tilde{c}-\beta^{2}$ . If $H_{1^{3}}$ has constant curvature $\tilde{c}<0$

then $0=\tilde{c}+(-\beta^{2}/-1)=\delta+\beta^{2}$ . Both occur. In fact, in 1.12 let $c=1/\sqrt{\lambda},$ $d=0$ if
$\lambda>0$ and $d=1/\sqrt{-\lambda},$ $c=0$ if $\lambda<0$ . We have two maps: the given $f$ and the $f^{\prime}$ in
1.12. We see that $A_{\eta}f=A_{\eta}f^{\prime}A_{\eta^{\perp}}f=A_{\gamma}^{\perp}f$ ” $(\eta f, \eta r)=(\eta f^{\prime}, \eta f’),$ $(\eta^{\perp}f\eta^{\perp}f)=(\eta^{\perp\perp}f^{\prime},$$\eta f^{\prime)}$ and $0=$

$\nabla_{\eta^{\perp}\gamma}=\nabla_{\eta_{f}^{1}}^{\perp}=\nabla_{\eta^{\perp}}f’=\nabla_{n}^{\perp}\perp f$

’
so that we have a map $f:N_{f}\rightarrow N_{r\prime}$ , from the normal bundle

of $f$ to the normal bundle of $f^{\prime}$ , covering an isometry, which preserves bundle
metrics, bundle connections, and shape operators. By the uniqueness theorem for
immersions, there is a rigid motion from one image onto the other.

$A_{\eta}$ cannot have a non-simple real eigenvalue. If it did, the Gauss equation
would imply that $(\eta, \eta)=0$ .

If $A_{\eta}=\left\{\begin{array}{ll}\alpha & \beta\\-\beta & \alpha\end{array}\right\}$ then $A_{\eta^{\perp}}=\left\{\begin{array}{ll}0 & \gamma\\-\gamma & 0\end{array}\right\}$ .

This isometric immersion is also rigidly equivalent to a complex circle.

CASE II. $(\eta, \eta)=0$ and $\eta\neq 0$ . Assume that

$A_{\eta}=(1)\left\{\begin{array}{ll}a & 0\\0 & -a\end{array}\right\}$ or (2) $\left\{\begin{array}{ll}0 & 1\\0 & 0\end{array}\right\}$ or (3) $\left\{\begin{array}{ll}0 & \beta\\-\beta & 0\end{array}\right\}$

where $a\neq 0$ and $\beta\neq 0$ . Trace $A_{\eta}=0$ because $(\eta, \eta)=0$ . Choosing $\hat{\eta}$ in the normal
space so that $\{\eta,\hat{\eta}\}$ forms a pseudo-orthonormal basis, and using the fact that
trace $A_{\hat{\eta}}=2$ , we see that

$A_{\hat{\eta}}=(1)\left\{\begin{array}{ll}b & 0\\0 & 2-b\end{array}\right\}$ or (2) $\left\{\begin{array}{ll}1 & c\\0 & 1\end{array}\right\}$ or (3) $\left\{\begin{array}{ll}1 & \gamma\\-\gamma & 1\end{array}\right\}$ .

If (1) holds the map splits and the possibilities have been classified. If (2) holds,

the isometric immersion is equivalent to 1.13. If case (3) holds $\gamma=0$ and the map
is equivalent to a complex circle.

We must also consider what happens if $A_{\eta}=0$ . This implies that the first
normal space is one-dimensional and lightlike, so $f(R_{1}^{2})cR_{1,1}^{3}$ . 1.3 shows that
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$f(x, y)=(q(x, y),$ $x,$ $y,$ $q(x, y))$

and $q(x, y)=ax^{2}+bxy+cx^{2}+dx+ey+g$ .

CASE III. $\eta=0$ . By 1.16 the first normal space is one-dimensional if the map

is not totally geodesic. Let $\theta$ span the first normal space. If $(\theta, \theta)\neq 0$ then $f(R_{1}^{2})$

is contained in $R_{1}^{3}$ or $R_{2}^{3}$ and $A_{\theta}$ must have rank one and trace zero. Thus $A_{\theta}=$

$\left\{\begin{array}{ll}0 & 1\\0 & 0\end{array}\right\}$ . In this case the immersion is equivalent to 1.14 or 1.14’. If $(\theta, \theta)=0$ then

$A_{\theta}=0$ and the map falls into (vi). Q. E. D.
For completeness we state the classification of isometric immersions from $R^{2}$

to $R^{4}$ with parallel second fundamental form.

1.18 THEOREM. If $f:R^{2}\rightarrow R^{4}$ is an isometric immersion with parallel second
fundamental form, then $f$ is either totally geodesic or a product of one-dimensional
maps.

2. The n-Dimensional Classification.

Here we classify isometric immersions from $R_{1}^{n}$ into $R_{1}^{n+2}$ or $R_{2}^{n+2}$ with parallel

second fundamental forms. All such maps break into two classes. Immersions

in the first class are quadratic in nature, like the flat umbilical immersion with

lightlike mean curvature vector in 1.4. Immersions in the second class are pro-

ducts of the identity map and one of the two-dimensional immersions in 1.15, 1.17
or 1.18 or the B-D scroll immersion of $R_{1}^{3}$ into $R_{2}^{5}$ given below.

2.1 EXAMPLE. B-D scroll over the null quintic $Q$ . Consider a null curve $x(v)$ in
$R_{2}^{5}$ with a frame $A(v),$ $B(v),$ $C(v),$ $D(v)$ and $E(v)$ along $x(v)$ such that $\dot{x}(v)=A(v)$ ,

$A,$ $B$ are lightlike, $C$ unit timelike, $D,$ $E$ unit spacelike, $C,$ $D,$ $E\perp A,$ $B,$ $(A, B)=1$

and $C,$ $D,$ $E$ are mutually orthogonal. In addition, suppose $\dot{A}=bE,\dot{B}=0,\dot{C}=-D$ ,

$\dot{D}--C+E$, and $\dot{E}=-bB-D$ . Note that the fifth derivative of $A$ is zero, so that
$x(v)$ is a quintic $Q$ . Let $f(u, v, w)=x(v)+uB(v)+wD(v)$ . This is an isometric im-
mersion of $R_{1}^{3}$ into $R_{2}^{5}$ with $\{\partial/\partial u, \partial/\partial v, \partial/\partial w\}$ forming a pseudo-orthonormal basis of
$R_{1}^{3}$ . If $\xi=-wB(v)+C(v)$ and $\xi^{\perp}=-wB(v)+E(v)$ then $\{\xi, \xi^{\perp}\}$ form an orthonormal
basis of the normal space, $\nabla^{\perp}\xi=0=\nabla^{\perp}\xi^{\perp}$

$A_{\xi}=[_{0}^{0}0$ $001$ $001$ and $A_{\xi}^{\perp}=[000$ $0b1$ $001$

with respect to $\{\partial/\partial u, \partial/\partial v, \partial/\partial w\}$ .

2.2 LEMMA. Let $f:M_{1}^{n}\rightarrow R_{j}^{n+k}$ be an isometric immersion with $\nabla^{*}\alpha=0$ and a
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definite first normal space. If $x_{0}\in M$ and $\xi$ is a parallel normal field in a neigh-
borhood of $x_{0}$ such that $A\epsilon_{x_{0}}$ has a complex eigenvalue, then $f$ decomposes, in a
neighborhood of $x_{0}$ , as $f_{1}\times f_{2}$ : $M_{1^{2}}\times M^{n-2}\rightarrow R_{j_{1^{1}}}^{n}\times R_{j_{2^{2}}}^{n}$ .

PROOF. Let $\alpha(x)\pm i\beta(x),$ $\lambda_{1}(x),$
$\cdots,$

$\lambda_{m}(x)$ be the distinct eigenvalues of $A_{\xi}$ at $x$ .
First we show that $\lambda_{k}(x)$ is constant and that

$T_{x^{k}}^{\lambda}=\{X\in T_{x}(M):A_{\xi x}X=\lambda_{k}X\}$

is a parallel distribution on $M_{1}^{n}$ .
Let $X\in T^{\lambda},$ $Z\in T(M)$ . Then

$0=\nabla_{Z}(A_{\xi}X)-A_{\xi}(\nabla_{Z}X)$

$=\nabla_{Z}(\lambda X)-A_{\xi}(\nabla_{Z}X)$

$=(Z\lambda)X+\lambda(\nabla_{Z}X)-A_{\xi}(\nabla_{Z}X)$

$=(Z\lambda)X+\lambda(\nabla_{Z}X)^{\perp}-A_{\text{\’{e}}}((\nabla_{Z}X)^{\perp})$

where $($ $)^{\perp}$ denotes the orthogonal complement of $T^{\lambda}$ . Thus $(Z\lambda)=0$ and $A_{\xi}(\nabla_{Z}X)$

$=\lambda(\nabla_{Z}X)$ . It follows that each $T^{\lambda_{k}}$ is parallel and each $\lambda_{k}$ is constant.
Now let $C_{x}=(T_{x^{\lambda_{1}}})^{\perp}\cap\cdots\cap(T_{x^{m}}^{\lambda})^{\perp}$ . $C$ is also a parallel distribution. In fact, let

$Z\in TM$, $Y\in C$ and $X\in T^{\lambda_{1}}\oplus\cdots\oplus T^{\lambda_{m}}$ . Then $0=Z(X, Y)=(\nabla_{Z}X, Y)+(X, \nabla_{Z}Y)=$

(X, $\nabla_{Z}Y$ ) so $\nabla_{Z}Y\in C$. Therefore $M_{1}^{n}=M_{1}^{2}\times M^{n-2}$ locally. Because $A_{\xi}$ and $A_{\theta}$ com-
mute for all normal vectors $\theta$ , each $A_{\theta}$ has the same form by 0.8 and so $\alpha(X, Y)$

$=0$ whenever $X$ is tangent to $M_{\iota^{2}}$ and $Y$ is tangent to $M^{n-2}$ . The theorem follows
by 0.3. Q. E. D.

Let $V$ and $W$ be vector spaces. For a bilinear map $\alpha:V\times V\rightarrow W$ define the
relative nullity space of $\alpha,$ $N(\alpha)$ , by

$N(\alpha)=$ { $X\in V:\alpha(X,$ $Y)=0$ for all $Y$ in $V$ }.

$\alpha$ is said to be flat with respect to an inner product $(, )$ on $W$ if

$(\alpha(X, Z),$ $\alpha(Y, W))=(\alpha(X, W),$ $\alpha(Y, Z))$

for all $X,$ $Y,$ $Z,$ $W$ in $V$. We then have

2.3 PROPOSITION. $([Mo2])$

(i) If $\alpha;V\times V\rightarrow W$ is flat with respect to a positive definite inner product on
$W$ then $\dim N(\alpha)\geq\dim V-\dim W$.

(ii) If $\alpha:V\times V\rightarrow W$ is flat with respect to a Lorentzian inner product on $W$

and $\dim W=2$ then either $\dim N(\alpha)\geq\dim V-\dim W$ or $\alpha(X, Y)$ is null for all $X,$ $Y$

in $V$.

Note: This will be referred to as Moore’s nullity result.
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2.4 THEOREM. If $f:R_{1}^{n}\rightarrow R_{1}^{n+2}$ is an isometric immersion with parallel second
fundamental form then

$f=f_{1}\times Id:R_{1}^{2}\times R^{n-2}\rightarrow R_{1}^{4}\times R^{n-2}$ or
$f=Id\times f_{1}$ : $R_{1}^{n-2}\times R^{2}\rightarrow R_{1}^{n-2}\chi R^{4}$

where $f_{1}$ is one of the two-dimensional maps of 1.15 or 1.18.

PROOF. We consider the two cases $\eta=0$ and $\eta\neq 0$ .

CASE I. $\eta=0$ . We will see below that in this case the first normal space is
O-or l-dimensional. If it is l-dimensional, then $f(R_{1}^{n})\subset R_{1}^{n+1}$ non-trivially. If $\theta$

spans the first normal space then $A_{\theta}$ can be put into the only rank one, trace
zero canonical form. It is clear then that $f$ can be decomposed as $f_{1}\times Id:R_{1}^{2}\times R^{n-2}$

$\rightarrow R_{1}^{4}\times R^{n-2}$ where $f_{1}$ is the B-scroll over the null cubic.
Now it is shown that the first normal space cannot be two-dimensional.

Suppose that it is two-dimensional and let $\{\xi, \xi^{\perp}\}$ be an orthonormal basis of the
first normal space.

We will assume $A_{\xi}$ can be put into one of the canonical forms and then show

that the first normal space is not two-dimensional.
If $A_{\xi}$ were diagonal with respect to an orthonormal basis, then by minimality

and 2.3 it has at most two non-zero eigenvalues $\pm\lambda$ and the eigenspaces are one-
dimensional. The same reasoning shows that this is also true for $ A_{\xi}\perp$ , and in fact
the eigenspaces are the same as those of $A_{\xi}$ . If this is true, then the first normal
space is one-dimensional.

If $A_{\xi}$ had a non-simple eigenvalue of multiplicity 2 then combining 2.3, min-
imality and the fact that $A_{\xi}$ and $ A_{\xi}\perp$ commute, we have

$A_{\xi}=\left\{\begin{array}{lll}0 & 1 & \\0 & 0 & \\ & & O_{n-2}\end{array}\right\}$ and $A_{\xi}\perp=\left\{\begin{array}{lllllll}0 & b & 0 & \cdots & c_{j}0 & .\cdot & 0\\0 & 0 & 0\cdot & \cdots & \cdots & \cdots & 0\\0 & 0 & & & & & \\\vdots & \vdots & & & & & \\\vdots & 0 & & & & & \\\vdots & c_{j} & & O_{n-2} & & & \\\vdots & 0 & & & & & \\\vdots & \vdots & & & & & \\0 & 0 & & & & & \end{array}\right\}$

with respect to a pseudo-orthonormal basis $\{1, l, e_{1}, \cdots, e_{n-2}\}$ . This gives $\alpha(ff)=$

$\xi+b\xi^{\perp},$ $\alpha(e_{j}, e_{j})=0$ and $\alpha(e_{j}, l)=c_{j}\xi^{\perp}$ . Flatness of $\alpha$ gives $0=(c_{j}\xi^{\perp}, c_{j}\xi^{\perp})=c_{j}^{2}$ so that
the first normal space is one-dimensional.

If $A_{\xi}$ has a complex eigenvalue then $ A_{\xi}\perp$ does also and so
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$A_{\xi}=[-\beta 0$

$ 0\beta$

$0_{n-2}1$

and $A_{\xi}\perp=(-\gamma 0$

$ 0\gamma$

$0_{n-2}$

The first normal space has dimension one.
If $A_{\xi}$ had a non-simple eigenvalue of multiplicity 3 we see that

$A_{\xi}=[000$

$001$ $001$

$0_{n-3}$

and $A_{\xi}\perp=[000$

$0bc$
$00c$

$0_{n-8}$

with respect to a pseudo-orthonormal basis $\{l, l_{e}, e_{1}, \cdots, e_{n-3}\}$ . Here $\alpha(l, e)=\xi+c\xi^{\perp}$

and $\alpha(e, e)=0$ so that $1+c^{2}=0$ , which is impossible.

CASE II. $\eta\neq 0$ . Here we show that $A$ , is diagonalizable. Choose $\eta^{\prime}$ to be a
unit vector in the direction of $\eta$ and $\eta^{\perp}$ to be a unit vector perpendicular to $\eta$

Suppose first that $A_{\eta^{\prime}}$ is of the form

$A_{\eta},=[^{\lambda}0$

$ t\lambda$

$\lambda_{1}$

$\lambda_{n-2}$

$l\neq 0$

with respect to a pseudo-orthonormal basis $\{l,\hat{l}, e_{1}, \cdots, e_{n-2}\}$ . By Moore’s result,
we see that either $\lambda\neq 0$ and all $\lambda_{j}=0$ or $\lambda=0$ and exactly one $\lambda_{Jo}\neq 0$ .

$ A_{\eta}\perp=[.\frac{0\mu\mu b}{0c_{1},c_{n-2}}|_{d_{ij}}^{C\cdots C}\underline{0^{1}\cdots 0^{n-2}}J\cdot$

We have $\alpha(l, l)=0$ and $\alpha(l, l)=\lambda\eta^{\prime}+\mu\eta^{\perp}$ . The Gauss equation applied to the plane
spanned by 1 and 1 shows $\mu=0=\lambda$ . Thus $\lambda_{Jo}\neq 0$ for some $j_{0}$ . Moore’s result then
gives each $c_{j}=0$ and possibly one $d_{j_{0}j_{0}}\neq 0$ . However, trace $A_{\eta}\perp=0$ forces $d_{j_{0}j_{0}}=0$ .
Therefore $\alpha(e_{jo}, e_{Jo})=\lambda_{Jo}\eta^{\prime},$ $\alpha(e_{Jo},\hat{l})=0$ and $\alpha(l,\hat{l})=t\eta^{\prime}+b\eta^{\perp}$ . From this we get $\lambda_{j_{0}}=0$

and so $A_{\eta^{\prime}}$ cannot have a non-simple eigenvalue of multiplicity two.
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Suppose $A_{\eta}=[\lambda 00$

$ 0c\lambda$

$ 0c\lambda$

$\lambda_{1}$

$\lambda_{n-3}$

Then 2.3 implies $\lambda=0=\lambda_{j}$ , contradicting

$(\eta, \eta)\neq 0$ .
If $A_{\eta}$ had a complex eigenvalue, then by 2.2 the map splits, but the two-

dimensional argument shows this splitting can’t occur.
Finally, if $A_{\eta}$ is diagonalizable, it has at most two non-zero entries, and the

map splits into a product of the identity map and one of the possible two-
dimensional maps. Q. E. D.

If the normal space is Lorentzian, then there are more possibilities.

2.5 THEOREM. If $f:R_{1}^{n}\rightarrow R_{2}^{n+2}$ is an isometric immersion with parallel second
fundamental form, then $f$ is one of the following.

(i) $f=f_{1}\times Id:R_{1}^{2}\times R^{n-2}\rightarrow R_{2}^{4}\times R^{n-2}$

(ii) $f=f_{1}\times Id:R_{1}^{n-2}\times R^{2}\rightarrow R_{1}^{n-2}\times R_{1}^{4}$ where $f_{1}$ is one of the two-dimensional
maps.

(iii) $f=f_{1}\times Id:R_{1}^{3}\times R^{n-3}\rightarrow R_{2}^{5}\times R^{n-3}$ where $f_{1}$ is the B-D scroll over the null
quintic.

(iv) $f$ is a quadratic map:

$(x^{1}, \cdots, x^{n})|\rightarrow(q(\vec{x}), x^{1}, \cdots, x^{n}, q(\vec{x}))$ with
$q(x^{1}, \cdots, x^{n})=\Sigma a_{ij}x^{i}x^{j}+\Sigma b_{i}x^{i}+c$ .

PROOF. We consider three cases. Case I: $(\eta, \eta)\neq 0$ , Case II: $(\eta, \eta)=0,$ $\eta\neq 0$ , Case
III: $\eta=0$ .

CASE I. We show that $A_{\eta}$ cannot have any non-simple real roots, and that if
it has simple roots it splits as in (i) and (ii).

Let $\eta^{\prime}$ be a unit vector in the direction of $\eta$ and let $\eta^{\perp}$ be a vector orthogonal
to $\eta$ satisfying $(\eta^{\prime}, \eta^{\prime})+(\eta^{\perp}, \eta^{\perp})=0$ . Define $\sigma^{:}=(\eta^{\prime}, \eta^{\prime})$ and $\tau^{:}=(\eta^{\perp}, \eta^{\perp})$ . If

$A_{\eta},=[^{\lambda}0$

$\lambda t$

$\lambda_{1}$

$\lambda_{n-2}$

$A_{\eta^{1=}}[\frac{0\mu\mu b}{c_{1}}c_{n-2}|c_{1}\cdots c_{n-2}d_{ij}]$

with respect to a pseudo-orthonormal basis $\{l, fe_{1}, \cdots, e_{n-2}\}$ with $t\neq 0$ , then Moore’s
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result says $A_{\eta^{\prime}}$ has rank $\leq 2$ and non-zero trace. Then either $\lambda=0=c_{1}=\cdots=c_{n-2}$

and one $\lambda_{Jo}\neq 0$ or $\lambda\neq 0$ and $d_{ij}=0=\lambda_{i}=c_{i}$ . If $\lambda\neq 0$ then $f$ would split into the pro-
duct of the identity map and a non-existent two-dimensional map, so assume $\lambda=0$ .
Since $\alpha(l, l)=0$ and $\alpha(l, l^{A})=\tau\mu\eta^{\perp},$ $\tau\mu^{2}=0$ implying that $\mu=0$ . By 2.3 and the fact
that trace $A_{n}\perp=0$ all $d_{ij}=0$ . Then $\alpha(e_{Jo}, l)=0,$ $\alpha(e_{j_{0}}, e_{Jo})=\lambda_{j_{0}}\sigma\eta^{\prime}$ and $\alpha(ff)=\sigma t\eta^{\prime}+b\tau\eta^{\perp}$

so $0=(\lambda_{Jo}\sigma\eta^{\prime}, \sigma t\eta^{\prime}+b\tau\eta^{\perp})=\lambda_{j_{0}}\sigma t$ which would imply $\lambda_{j_{0}}=0$ , which cannot happen.
$A_{\eta^{\prime}}$ cannot have a non-simple real eigenvalue of multiplicity 3, non-zero trace

and rank $\leq 2$ .
If $A_{\eta^{\prime}}$ is diagonalizable then, as above, it has one or two non-zero entries and

the map splits into a product of the identity map and a two-dimensional map. The
same is true when $A_{\eta}$ , has a complex eigenvalue.

CASE II. $\eta\neq 0$ and $(\eta, \eta)=0$ .
If $A_{\eta}\neq 0$ and has simple eigenvalues the map splits into the product of the

identity map and an appropriate two-dimensional map.
When

$A_{\eta}=[^{\lambda}0$

$ 1\lambda$

$\lambda_{1}$

$\lambda_{n-2}$

$A_{\hat{\eta}}=[c_{n-2}\frac{0\mu\mu b}{c_{1}}|c_{1}\cdots c_{n-2}d_{ij}]$

where $\hat{\eta}$ is a lightlike normal vector satisfying $(\eta,\hat{\eta})=1$ we see that $\lambda=0=\lambda_{j}$ . If
$\mu\neq 0$ then $c_{j}=0=d_{ij}$ and the map reduces to a product of the identity map and a
known two-dimensional immersion. On the other hand, $\mu$ cannot be zero. If $\mu=0$

then for some $j_{0},$ $d_{j_{0}j_{0}}\neq 0$ and possibly $c_{Jo}\neq 0$ , while all the other entries are $0$ .
This would give $\alpha(\hat{\iota}, l)=\hat{\eta}+b\eta,$ $\alpha(e_{j_{0}}, l)=c_{j_{0}}\eta$ and $\alpha(e_{j_{0}}, e_{Jo})=d_{j_{0}f_{0}}\eta$ Because $\alpha$ is flat
we have $0=(\hat{\eta}+b\eta, d_{JoJo}\eta)=d_{j_{0}j_{0}}$ , contradicting trace $A_{\hat{\eta}}\neq 0$ .

When $A_{\eta}$ has a non-simple eigenvalue of multiplicity three then $A_{\hat{\eta}}$ is of the
form

$\ovalbox{\tt\small REJECT} c_{n-2}\frac{0\mu_{1}0\mu bc0c\mu^{1}}{c_{2}}|c_{2}\cdots c_{n-2}d_{ij^{\backslash }}]$ .

Using the arguments above, we have $\mu=0=d_{ij}$ , contradicting once again that
trace $A_{9}\neq 0$ .
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If $A_{\eta}=0$ it is easy to see using 1.3 that $f$ is quadratic in nature and we get
(iv).

CASE III. $\eta=0$ .
If the first normal space is one-dimensional and definite then the immersion

is the product of the identity and the B-scroll. If the first normal space is one-
dimensional and lightlike, the immersion is quadratic.

If the normal space is two-dimensional, arguments similar to those above show
that if $\{\xi, \xi^{\perp}\}$ is an orthonormal basis of the first normal space then the only
canonical form possible for $A_{\xi}$ and $ A_{\text{\’{e}}}\perp$ is

$A_{\xi}=[\underline{001010}|$

$0_{n-3}$

$]$ $A_{\xi}\perp=\left\{\begin{array}{llll}0 & b & 1 & \\0 & 0 & 0 & \\0 & 1 & 0 & \\ & & & O_{n-3}\end{array}\right\}$

and $f$ splits as the product of the identity map and the B-D scroll over $Q$ . Q. E. D.
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