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ON FUNCTION SPACES FOR GENERAL
TOPOLOGICAL SPACES

By

Mitsuaki KAKIMI and Toshio YAGI

1. Introduction.

In this paper we mean by a space a topological space with no separation

axiom unless otherwise specified, and we denote by $R$ and $I$ the real line and
the closed unit interval respectively.

Given two spaces $X$ and $Y$ , let $F(X$, }’ $)$ denote the set of all maps from $X$

into $Y,$ $C(X, Y)$ the set of all continuous maps from $X$ into $Y$ . In case $Y$ is the

real line $R,$ $C(X, R)$ is denoted more simply by $C(X)$ . The map $\rho:F(X\times Y, T)$

$\rightarrow F(Y, F(X, T))$ defined by the formula $[\rho(f)(y)](x)=f(x, y)$ for $f\in F(X\times Y, T)$

is bijective; this correspondence is called the exponential map.
A topology on $C(X, T)$ is called proper if for every space $Y$ and any

$f\in C(X\times Y, T)$ the map $\rho(f)$ belongs to $C(Y, C(X, T))$ . Similarly, a topology on
$C(X, T)$ is called admissible if for every space $Y$ and any $g\in C(Y, C(X, T))$ the
map $\rho^{-1}(g)$ belongs to $C(X\times Y, T)$ . A topology on $C(X, T)$ that is both proper
and admissible is called an acceptable topology (see [1], [2] and [3]).

As is well known, the compact-open topology on $C(X, T)$ is acceptable for

any space $T$ when $X$ is locally compact Hausdorff (see [4]). Furthermore, the
following theorem was proved by R. Arens [1].

THEOREM 1.1. Let $X$ be a Tychonoff space. Then the following conditions
are equivalent.

(1) $X$ is locally compact.
(2) There exists an acceptable topology on $C(X)$ .

In the case that $X$ is not necessarily Tychonoff, Professor T. Ishii raised the
following problem: Characterize a space $X$ such that there exists an acceptable

topology on $C(X)$ .
The main purpose of this paper is to give the solution for this problem by

proving the following theorem.
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THEOREM 1.2. For a space $X$, the following conditions are equivalent.
(1) $X$ is locally relatively w-compact (that is, every point of $X$ has a relatively

w-compact $nbd(=neighborhood))$ .
(2) There exists an acceptable topology on $C(X, T)$ for any Tychonoff space $T$.
(3) There exists an acceptable topology on $C(X)$ .

The definition of relatively w-compact subsets is given in section 2. Section
3 is devoted to a study of a new topology on $C(X, T)$ which is acceptable when
$X$ is locally relatively w-compact. Theorem 1.2 is proved in section 4.

Tbe authors wish to thank Professor T. Ishii for his valuable comments.

2. Properties of relatively w-compact subsets.

A subset $P$ of a space $X$ is called $\tau$-open if $P$ is a union of cozero-sets of $X$

(see [6]). For any subset $A$ of $X$, we call the intersection of all zero-sets of $X$

containing $A$ the $\tau$-closure of $A$ , and we denote it by $\overline{A}^{\tau}$ . A subset $A$ of $X$ is
said to be $\tau$-closed if $A=\overline{A}^{\tau}$ holds.

DEFINITION 2.1. A subset $A$ of a space $X$ is relatively w-compact if for any
family $\{P_{\lambda}|\lambda\in\Lambda\}$ of $\tau$-open sets of $X$ such that $\{A\cap P_{\lambda}|\lambda\in\Lambda\}$ has the $f.i.p$ .
( $=finite$ intersection property), we have $\cap\{clP_{\lambda}|\lambda\in\Lambda\}\neq\phi$ .

T. Ishii introduced the notion of w-compact spaces, in connection with the
problem concerning a product formula for the Tychonoff functor ([6]). A space
$X$ is called w-compact if for any family $\{P_{\lambda}|\lambda\in\Lambda\}$ of $\tau$-open sets of $X$ with the
$f.i.p.$ , we have $\cap\{clP_{\lambda}|\lambda\in\Lambda\}\neq\phi$ . Clearly every w-compact subset of a space
$X$ is relatively w-compact.

PROPOSITION 2.2. Let $A$ be a subset of a space X. Then the following con-
ditions are equivalent.

(1) $A$ is relatively w-compact.
(2) For any collection $\{A_{\alpha}|\alpha\in\Omega\}$ of closed sets of $X$ such that it is closed

under the finite intersection and each $A_{a}$ contains a cozero-set of $X$ which meets
$A$ , we have $\cap\{A_{\alpha}|\alpha\in\Omega\}\neq\emptyset$ .

(3) For every open cover $\{U_{\alpha}|\alpha\in\Omega\}$ of $X$ there exists a finite set $\{\alpha(1),$ $\cdots$ ,
$\alpha(n)\}\subset\Omega$ such that $A\subset\cup\{\overline{U}_{a(t)}^{\tau}|i=1, \cdots, n\}$ .

(4) For every family $\{U_{\alpha}|\alpha\in\Omega\}$ of open sets of $X$ such that $\overline{A}^{\tau}\subset\cup\{U_{\alpha}|\alpha\in\Omega\}$

there exists a finite set $\{\alpha(1), \cdots , \alpha(n)\}\subset\Omega$ such that $A\subset\cup\{\overline{U}_{\alpha(i)}^{\tau}|i=1, \cdots, n\}$ .
PROOF. The equivalences of (1) and (2) and of (1) and (3) are clear. And
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the implication (4) $\Rightarrow(3)$ is obvious. We prove only (3) $\Rightarrow(4)$ .
Let $\{U_{\alpha}|\alpha\in\Omega\}$ be a family of open sets of $X$ with $\overline{A}^{\tau}\subset\cup\{U_{\alpha}|\alpha\in\Omega\}$ . For

each $x\in X-\overline{A}^{\tau}$ we can take a zero-set nbd of $x$ which misses $\overline{A}^{\tau}$ since $X-\overline{A}^{\tau}$ is
a union of cozero-sets of $X$. Thus we obtain an open nbd $V_{x}$ of $x$ with

$\overline{V}_{x}^{\tau}\cap\overline{A}^{\tau}=\emptyset$ . Then $\{U_{\alpha}|\alpha\in\Omega\}\cup\{V_{x}|x\in X-\overline{A}^{\tau}\}$ is an open cover of $X$. From
this fact (4) follows from (3).

As is easily seen, a relatively w-compact subset of a Tychonoff space is
relatively compact. Hence, if a Tychonoff space is locally relatively w-compact,

then it is locally compact. However, there exists a regular $T_{1}$-space on which
every continuous real-valued function is constant (for instance, see [5]). This
example shows that there exists a locally relatively w-compact regular $T_{1}$-space
that is not locally compact. Hence, Theorem 1.2 shows that in case $X$ is not
Tychonoff, the local compactness of $X$ is unessential in Theorem 1.1.

Let $X$ and $Y$ be two spaces and $A$ a subset of $X$. The projection $\pi_{Y}$ : $A\times Y$

$\rightarrow Y$ is called a relative Z-map if $\pi_{Y}((A\times Y)\cap Z)$ is closed in $Y$ for any zero-set
$Z$ of $X\times Y$ (see [10]).

The following proposition is a generalization of [6, Proposition 2.7].

PROPOSITION 2.3. Let $A$ be a subset of a space X. Then the following con-
ditions are equivalent.

(1) $A$ is relatively w-compact.
(2) For any space $Y$ the set $\pi_{Y}((\overline{A}^{\tau}\times Y)\cap F)$ is closed in $Y$ for every $\tau$-closed

subset $F$ of $X\times Y$ , where $\pi_{Y}$ is the projection: $\overline{A}^{\tau}\times Y\rightarrow Y$ .
(3) The projection $\pi_{Y}$ ; $\overline{A}^{\tau}\times Y\rightarrow Y$ is a relative Z-map for any space $Y$ .
(4) The projection $\pi_{Y}$ ; $\overline{A}^{\tau}\times Y\rightarrow Y$ is a relative Z-map for any paracompact

Hausdorff space $Y$.

PROOF. (1) $\Rightarrow(2)$ . Let $A$ be a relatively w-compact subset of $X$ and $F$ a
$\tau$-closed set of $X\times Y$ . Take a point $y_{0}\in Y-\pi_{Y}((\overline{A}^{\tau}\times Y)\cap F)$ . Since $(\overline{A}^{\tau}\times\{y_{0}\})\cap F$

$=\emptyset$ and $X\times Y-F$ is $\tau$-open, for each $x\in\overline{A}^{\tau}$ the point $(x, y_{0})$ has an open nbd
of the form $U_{x}\times V_{x}$ such that $(\overline{U}_{x}^{\tau}\times V_{x})\cap F=\emptyset$ . Clearly $\overline{A}^{\tau}\subset\cup\{U_{x}|x\in\overline{A}^{\tau}\}$ , so
that by Proposition 2.2, there exists a finite set $\{x(1), \cdots , x(n)\}\subset\overline{A}^{\tau}$ such that
$A\subset\cup\{\overline{U}_{x(i)}^{\tau}|i=1, \cdots, n\}$ . Put $V=\cap\{V_{x(i)}|i=1, \cdots , n\}$ . Then $V$ is an open nbd
of $y_{0}$ and $ V\cap\pi_{Y}((\overline{A}^{\tau}\times Y)\cap F)=\emptyset$ . It follows that $\pi_{Y}((\overline{A}^{\tau}\times Y)\cap F)$ is closed in $Y$ .

(2) $\Rightarrow(3)$ and (3) $\Rightarrow(4)$ are obvious and (4) $\Rightarrow(1)$ is easily verified by making use
of the method of [6, Proposition 2.6]. Thus the proof is completed.

Let $A$ be a relatively w-compact subset of a space $X$. Then, by Proposition
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2.2, we clearly have the following facts:
(1) $\overline{A}^{\tau}$ is also relatively w-compact.
(2) If $B\subset A$ , then $B$ is also relatively w-compact.

Let $X$ and $Y$ be two spaces. Then $\overline{A\chi B}^{\tau}=\overline{A}^{\tau}\times\overline{B}^{\tau}$ holds for $A\subset X$ and
$B\subset Y$ . Thus, the following proposition is easy to prove.

PROPOSITION 2.4. Let $X$ and $Y$ be two spaces. If $A$ and $B$ are relatively
w-compact subsets of $X$ and $Y$ respectively, then $A\times B$ is also a relatively w-com-
pact subset of $X\times Y$.

The following proposition is also clear.

PROPOSITION 2.5. Let $X$ and $Y$ be two spaces and $f$ a map in $C(X, Y)$ . If
$A$ is a relatively w-compact subset of $X$, then $f(A)$ is a relatively w-compact subset

of $Y$.

3. A topology on function spaces.

In this section, we consider a new topology on function spaces. Let $X$ be a
space and $T$ a Tychonoff space. For $A\subset X$ and $B\subset T$ we denote by $M(A, B)$

the totality of maps $f$ in $C(X, T)$ for which $f(A)\subset B$ . We consider the topology

on $C(X, T)$ generated by the base consisting of all sets $\cap\{M(\overline{A}_{i}^{\tau}, U_{i})|i=1, \cdots, n\}$ ,

where $A_{i}$ is a relatively w-compact subset of $X$ and $U_{i}$ is an open subset of $T$

for $i=1,$ $\cdots$ , $n$ . Throughout this section, a topology on function spaces is
assumed to be the topology defined above.

The following proposition easily follows from Proposition 2.3.

PROPOSITION 3.1. Let $X$ be a space and $T$ a Tychonoff space. Then the topo-
logy on $C(X, T)$ is proper.

The following lemma is also clear.

LEMMA 3.2. Let $X$ be a locally relatively w-compact space. Then for each
point $x$ of $X$ and for any $\tau$-open $nbdG$ of $x$ there exists a relatively w-compact
$nbdU$ of $x$ such that $\overline{U}^{\tau}\subset G$ .

PROPOSITION 3.3. Let $X$ be a locally relatively w-compact space and $T$ a
Tychonoff space. Then the topology on $C(X, T)$ is acceptable.

PROOF. By Proposition 3.1, it suffices to prove that the topology on $C(X, T)$
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is admissible. Let $Y$ be a space and $g$ a map in $C(Y, C(X, T))$ . We shall show
that $\rho^{-1}(g)$ is continuous. Take a point $(x_{0}, y_{0})$ in $X\times Y$ and an open nbd $U$ of
$\rho^{-1}(g)(x_{0}, y_{0})$ in $T$ . Here, notice $\rho^{-1}(g)(x_{0}, y_{0})=[g(y_{0})](x_{0})$ . Since $T$ is a
Tychonoff space and $g(y_{0})$ is continuous, $g(y_{0})^{-1}(U)$ is a $\tau$-open nbd of $x_{0}$ .
By Lemma 3.2, there exists a relatively w-compact nbd $V$ of $x_{0}$ such that
$\overline{V}^{\tau}\subset g(y_{0})^{-1}(U)$ . Hence we have $g(y_{0})\in M(\overline{V}^{\tau}, U)$ . Because of the continuity of

$g$ there exists a nbd $W$ of $y_{0}$ such that $g(W)\subset M(\overline{V}^{\tau}, U)$ . Therefore we obtain
a nbd $V\times W$ of $(x_{0}, y_{0})$ such that $\rho^{-1}(g)(V\times W)\subset U$ . Hence $\rho^{-1}(g)$ is continuous.
This completes the proof.

Let $X$ be a space, $T$ a Tychonoff space, and $f$ a map in $C(X, T)$ . Then it
is easily shown that $f(\overline{A}^{\tau})$ is compact for any relatively w-compact subset $A$ of
X. From this fact, one can easily prove the following lemma and proposition
(see [3, 3.4.14 and 3.4.15]).

LEMMA 3.4. Let $X$ be a space and $A$ a relatively w-compact subset of $X$.
Assigning to each $f\in C(X, I)$ the number $\xi(f)=\sup\{f(x)|x\in\overline{A}^{\tau}\}$ defines a con-
tinuous function $\xi:C(X, I)\rightarrow I$.

PROPOSITION 3.5 Let $X$ be a space and $T$ a Tychonoff space. Then $C(X, T)$

is also a Tychonoff space.

LEMMA 3.6. Let $X$ be a space, $T$ a Tychonoff space, and $\mathscr{Q}$ a subbase for $T$.
Then the sets $M(\overline{A}^{\tau}, U)$ , where $A$ is a relatively w-compact subset of $X$ and $U\in \mathscr{Q}$

form a subbase for the space $C(X, T)$ .

PROOF. Let $A$ be a relatively w-compact subset of $X,$ $U$ an open set of $T$,

and $f$ a map in $M(\overline{A}^{\tau}, U)$ . For each $x\in\overline{A}^{\tau}$ we can take sets $U_{1}^{x},$
$\cdots,$

$U_{n(x)}^{x}\in \mathscr{Q}$

with $x\in W_{x}=\cap\{f^{-1}(U_{j}^{x})|j=1, \cdots, n(x)\}$ and $\cap\{U_{j}^{x}|j=1, \cdots, n(x)\}\subset U$ . Since
$W_{x}$ is a $\tau$-open nbd of $x$ , we can take an open nbd $V_{x}$ of $x$ such that $\overline{V}_{x}^{\tau}\subset W_{x}$ .
By Proposition 2.2, there exists a finite set $\{x(1), \cdots, x(k)\}\subset\overline{A}^{\tau}$ such that
$\overline{A}^{\tau}\subset\cup\{\overline{V}_{x(i)}^{\tau}|i=1, \cdots , k\}$ . Put $A_{i}=\overline{A}^{\tau}\cap\overline{V}_{x(i)}^{\tau}$ . Clearly, $A_{i}$ is relatively w-com-
pact, and we have $\overline{A}^{\tau}=\cup\{\overline{A}_{i}^{\tau}|i=1, \cdots, k\}$ and $\overline{A}_{i}^{\tau}\subset\cap\{f^{-1}(U_{j}^{i})|j=1, \cdots, n(i)\}$ ,

where $U_{j}^{i}=U_{j}^{x(i)}$ and $n(i)=n(x(i))$ . Therefore, $f\in\cap\{\cap\{M(\overline{A}_{i}^{\tau}, U_{J}^{i})|j=1, \cdots , n(i)\}|$

$i=1,$ $\cdots,$
$k$ } $\subset M(\overline{A}^{\tau}, U)$ . Thus the proof is completed.

THEOREM 3.7. Let $X$ and $Y$ be two spaces and $T$ a Tychonoff space. Then
the exponential map $\rho:C(X\times Y, T)\rightarrow C(Y, C(X, T))$ is a homeomorphic embedding.

PROOF. We first notice that $\rho(C(X\times Y, T))\subset C(Y, C(X, T))$ by Proposition 3.1.
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Let $A$ and $B$ be relatively w-compact subsets of $X$ and $Y$ respectively, and
$U$ an open set of $T$ . Then we clearly have $\rho^{-1}[M(\overline{B}^{\tau}, M(\overline{A}^{\tau}, U))]=M(\overline{A}^{\tau}\times\overline{B}^{\tau}, U)$ .

Since $\overline{A}^{\tau}\times\overline{B}^{\tau}$ is relatively w-compact by Proposition 2.4, the last lemma

implies that $\rho$ is continuous.
The above equality implies that

$\rho(M(\overline{A}^{\tau}\times\overline{B}^{\tau}, U))=M(\overline{B}^{\tau}, M(\overline{A}^{\tau}, U))\cap\rho(C(X\times Y, T))$ ;

$hence-\rho$ being a one-to-one map–it suffices to show that the sets $M(\overline{A}^{\tau}\times\overline{B}^{\tau}, U)$ ,

where $A$ and $B$ are relatively w-compact subsets of $X$ and $Y$ respectively and $U$

is open in $T$ , form a subbase for $C(X\times Y, T)$ .
Take a relatively w-compact subset $C$ of $X\times Y$ , an open set $U$ of $T$ and a

map $f\in M(\overline{C}^{\tau}, U)$ . Since $C$ is relatively w-compact and $f^{-1}(U)$ is $\tau$-open, there
exist open sets $V_{1},$ $\cdots$ $V_{n}\subset X$ and $W_{1},$ $\cdots$ , $W_{n}\subset Y$ with $\overline{C}^{\tau}\subset\cup\{\overline{V}_{i}^{\tau}\times\overline{W}_{i}^{\tau}|i=1$ ,
$\ldots$ $n$ } $\subset f^{-1}(U)$ . Let $A_{i}=\pi_{X}(\overline{C}^{\tau})\cap\overline{V}_{i}^{\tau}$ and $B_{i}=\pi_{Y}(\overline{C}^{\tau})\cap\overline{W}_{i}^{\tau}$ for $i=1,$ $\cdots,$ $n$ , where
$\pi_{X}$ ; $X\times Y\rightarrow X$ and $\pi_{Y}$ ; $X\times Y\rightarrow Y$ are the projections. Then $A_{i}$ and $B_{i}$ are rela-
tively w-compact subsets of $X$ and $Y$ respectively for $i=1,$ $\cdots,$

$n$ . Moreover,

we have $\overline{A}_{i}^{\tau}\subset\overline{V}_{i}^{\tau},\overline{B}_{i}^{\tau}\subset\overline{W}_{i}^{\tau}$ and $\overline{c}^{\tau}\subset\cup\{\overline{A}_{i}^{\tau}\times\overline{B}_{i}^{\tau}|i=1, \cdots, n\}$ . Hence, we have
$f\in\cap\{M(\overline{A}_{i}^{\tau}\times\overline{B}_{i}^{\tau}, U)|i=1, \cdots, n\}\subset M(\overline{C}^{\tau}, U)$ , and this completes the proof.

Proposition 3.3 and Theorem 3.7 imply

THEOREM 3.8. Let $X$ be a locally relatively w-compact space, $Y$ a space and
$T$ a Tychonoff space. Then the exponential map $\rho$ : $C(X\times Y, T)\rightarrow C(Y, C(X, T))$ is
a homeomorphism.

4. Proof of Theorem 1.2.

The following two lemmas are due to R. Arens and J. Dugundji [2].

LEMMA 4.1. For spaces $X$ and $T$ , a topology on $C(X, T)$ is admissible if and
only if the evaluation mapping $\omega(f, x)=f(x)$ of $C(X, T)\times X$ into $T$ is continuous.

LEMMA 4.2. Let $X$ and $T$ be spaces and let $q_{1}$ and $\xi\Gamma_{2}$ be topologies on
$C(X, T)$ . If $\xi\Gamma_{1}$ is proper and $\xi\Gamma_{2}$ is admissible, then $\mathcal{F}_{1}\subset 9_{2}$ .

We are now in a position to prove the main theorem. We modify the proof

by R. Arens ([1, Theorem 3]).

PROOF OF THEOREM 1.2. Since the implication (1) $\Rightarrow(2)$ is a direct consequence
of Proposition 3.3 and (2) $\Rightarrow(3)$ is obvious, we prove only (3) $\Rightarrow(1)$ .
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Suppose that there exists an acceptable topology on $C(X)$ and denote it by
$g;_{ac}$ . Let $g$ be the element of $C(X)$ such that $g(x)=0$ for each $x\in X$. Since
$\omega:C(X)\times X\rightarrow R$ is continuous with respect to the topology $X_{ac}$ on $C(X)$ by

Lemma 4.1, for any $x_{0}\in X$ there exist an open nbd $V$ of $x_{0}$ and an element $W$

of $9_{ac}$ such that $g\in W$ and $W\times V\subset\omega^{-1}((-1,1))$ .
Now we shall prove that $V$ is relatively w-compact. Let $\{G_{\lambda}|\lambda\in\Lambda\}$ be a

family of open sets of $X$ such that $\overline{V}^{\tau}\subset\cup\{G_{\lambda}|\lambda\in\Lambda\}$ and $\xi\Gamma$ the topology on
$C(X)$ with its subbase consisting of the sets of the form $M(\overline{A}^{\tau}, U)$ , where $A$ is
a subset of $X$ such that $A$ is contained in some element of $\{G_{\lambda}|\lambda\in\Lambda\}$ or
$\overline{A}^{\tau}\cap\overline{V}^{\tau}=\emptyset$ , and $U$ is open in $R$ . Then $\mathcal{F}$ is admissible. To see this, it suffices
to show that $\omega;C(X)\times X\rightarrow R$ is continuous with respect to $\sigma\tau$ by Lemma 4.1.
Let $U$ be an open set of $R$, and take a point $(f, x)\in\omega^{-1}(U)$ . Then $f^{-1}(U)$ is a
cozero-set nbd of $x$ in $X$. Consequently, there exists an open nbd $V_{1}$ of $x$ such
that $f(\overline{V}_{1}^{\tau})\subset U$ .

Case (a). If $x\in\overline{V}^{\tau}$, then there exists $\lambda\in\Lambda$ such that $x\in G_{\lambda}$ . Put $A=V_{1}\cap G_{\lambda}$ ,
then $A$ is an open nbd of $x$ such that $A\subset G_{\lambda}$ .

Case (b). If $x\not\in\overline{V}^{\tau}$, then there is an open nbd $V_{2}$ of $x$ such that $\overline{V}_{2}^{\tau}\cap\overline{V}^{\tau}=\emptyset$ .
Put $A=V_{1}\cap V_{2}$ , then $\overline{A}^{\tau}\cap\overline{V}^{\tau}=\emptyset$ .

Hence each of the two cases above implies that there exists an open nbd $A$

of $x$ such that $f(\overline{A}^{\tau})\subset U$ and $M(\overline{A}^{\tau}, U)\in \mathcal{F}$ . Furthermore $(f, x)\in M(\overline{A}^{\tau}, U)\times$

$A\subset\omega^{-1}(U)$ . Thus $\omega$ is continuous.
This implies $ g;_{ac}\subset\xi\Gamma$ by Lemma 4.2, so that there exist subsets $A_{1},$ $\cdots$ $A_{n}$

of $X$ and open subsets $U_{1},$
$\cdots,$

$U_{n}$ of $R$ such that $g\in\cap\{M(\overline{A}_{i}^{\tau}, U_{i})|i=1, \cdots, n\}$

$\subset W$ . Here, notice $0\in U_{i}$ for each $i$ .
Finally, we shall show that $V\subset\cup\{\overline{A}_{i}^{\tau}|i=1, \cdots, n\}$ . Assume that there exists

a point $x_{1}\in V$ such that $x_{1}\not\in\cup\{\overline{A}_{i}^{\tau}|i=1, \cdots , n\}$ . Then there exists a continuous
map $h:X\rightarrow I$ such that $h(x_{1})=1$ and $h(x)=0$ for $x\in\cup\{\overline{A}_{i}^{\tau}|i=1, \cdots, n\}$ , and so
$h\in\cap\{M(\overline{A}_{i}^{\tau}, U_{i})|i=1, \cdots , n\}$ . Hence $h\in W$. Since $x_{1}\in V$ and $W\times V\subset\omega^{-1}((-1,1))$ ,
we have $h(x_{1})\in(-1,1)$ . This is a contradiction. This implies $V\subset\cup\{\overline{A}_{i}^{\tau}|i=1$ ,

, $n$ }. Thus $V$ is contained in the union of finitely many members of $\{\overline{G}_{\lambda}^{\tau}|\lambda\in\Lambda\}$ .
Hence $V$ is relatively w-compact by Proposition 2.2, and this completes the proof
of Theorem 1.2.

5. An example.

A space $X$ is called locally cozero-set w-compact if for each point $x$ of $X$

there exists a cozero-set nbd $G$ of $x$ such that $clG$ is w-compact ([6] and [7]).

The following theorem, where we denote by $\tau$ the Tychonoff functor, was proved



144 Mitsuaki KAKIMI and Toshio YAGI

by T. Ishii in [6].

THEOREM 5.1. A space $X$ is locally cozero-set w-compact if and only if
$\tau(X\times Y)=\tau(X)\times\tau(Y)$ for any space $Y$.

Clearly every locally cozero-set w-compact space is locally relatively w-com-
pact. But the converse is false. We construct such an example. A space $X$ is

called $\tau$-compact if $\tau(X)$ is compact ([7]). The following lemma is easy to prove.

LEMMA 5.2 Every $\tau$-compact locally cozero-set w-compact space is w-compact.

EXAMPLE 5.3. Let $\omega_{1}$ be the first uncountable ordinal and let us put $S=$

$W(\omega_{1}+1)\times W(\omega_{1}+1)-\{(\omega_{1}, \omega_{1})\}$ , where $W(\omega_{1}+1)$ is the space of all ordinals less

than $\omega_{1}+1$ with the usual interval topology. Now let $X$ be a space obtained by

adding a new point $\xi$ to $S$ and introducing the topology in $X$ as follows: the

base at $\xi$ is given by the totality of the sets $ U_{\beta}(\xi)=\{(\alpha, \alpha)|\alpha$ is a non-limit

ordinal and $\beta<\alpha$} $\cup\{\xi\},$ $\beta<\omega_{1}$ and the base at $ x\neq\xi$ is the same as in $S$ . Then
$X$ has the following properties:

(1) $X$ is Hausdorff but not regular.

(2) $X$ is $\tau$-compact.

(3) $X$ is not w-compact.
(4) $X$ is locally relatively w-compact.

Indeed (1) is obvious and (2) follows from the fact that any cozero-set of $X$

containing $\xi$ has to contain a set of the form $\{\xi\}\cup T_{\alpha}$ for some $\alpha<\omega_{1}$ , where
$T_{\alpha}=\{(\lambda, \mu)|\lambda, \mu>\alpha\}\subset S$ , and (3) follows from the fact that $\{T_{a}-U_{\alpha}(\xi)|\alpha<\omega_{1}\}$ is

a family of closed sets of $X$ such that $T_{\alpha}-U_{\alpha}(\xi)$ contains isolated points of $X$

and $\cap\{T_{\alpha}-U_{\alpha}(\xi)|\alpha<\omega_{1}\}=\emptyset$ (see [6, p. 175]). Furthermore, each point $x\in S$

has a compact nbd, and $A_{\beta}=\{(\alpha, \alpha)|\beta<\alpha\}\cup\{\xi\}$ for $\beta<\omega_{1}$ is a relatively w-com-
pact nbd of $\xi$ . To show this, take an open cover $\{G_{\lambda}|\lambda\in\Lambda\}$ of $X$ and a $\theta\in\Lambda$

such that $\xi\in G_{\theta}$ . Then there exists a $\gamma<\omega_{1}$ such that $U_{\gamma}(\xi)\subset G_{\theta}$ . It is easily

seen that $clU_{\gamma}(\xi)$ contains the set $A_{\gamma}$ and $A_{\beta}-A_{\gamma}$ is compact. Hence, $A_{\beta}$ is

contained in the union of finitely many members of $\{clG_{\lambda}|\lambda\in\Lambda\}$ , which implies

that $A_{\beta}$ is relatively w-compact. Thus, (4) is proved.

Lemma 5.2 and properties (2) and (3) imply that $X$ is not locally cozero-set

w-compact.

REMARK. Recently, T. Ishii has obtained the following result ([8]): Let $X$

be a space. Then $\tau(X\times Y)=\tau(X)\times\tau(Y)$ holds for any Tychonoff space $Y$ if and
only if $X$ satisfies the following property $(*)$ :
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$(*)$ Let $\{P_{\lambda}|\lambda\in\Lambda\}$ be a family of $\tau$-open sets of $X$ such that there exists a
point $x_{0}$ of $X$ such that $\{P_{\lambda}|\lambda\in\Lambda\}\cup\{U\}$ has the $f.i$ . $p$ . for any cozero-set nbd
$U$ of $x_{0}$ . Then we have $\cap\{clP_{\lambda}|\lambda\in\Lambda\}\neq\emptyset$ .

He also showed in [8] that if a space $X$ satisfies the property $(*)$ and $\tau(X)$

is locally compact, then $X$ is locally cozero-set w-compact.
From this fact and Example 5.3, it follows that there exists a locally rela-

tively w-compact space which does not satisfy the property $(*)$ .

After submitting this paper, the authors observed the following fact: If a
space $X$ is locally relatively w-compact and the equality $\tau(X\times Y)=\tau(X)\times\tau(Y)$

holds for any Tychonoff space $Y$ , then $X$ is locally cozero-set w-compact. See
the proof of Lemma 1.4 in: K. Morita, \v{C}ech cohomology and covering dimension
for topological spaces, Fund. Math. 87 (1975), 31-52.

References

[1] Arens, R., A topology for spaces of transformations, Ann. of Math. 47 (1946),
480-495.

[2] Arens, R. and Dugundji, J., Topologies for function spaces, Pacific J. of Math. 1
(1951), 5-31.

[3] Engelking, R., General topology, PWN. Warsaw, 1977.
[4] Fox, R. H., On topologies for function spaces, Bull. Amer. Math. Soc. 51 (1945),

429-432.
[5] Herrlich, H., Wann sind alle stetigen Abbildungen in Y konstant ?, Math. Zeitschr.

90 (1965), 152-154.
[6] Ishii, T., On the Tychonoff functor and w.compactness, Topology and Appl. 11

(1980), 173-187.
[7] Ishii, T., Some results on w-compact spaces, Uspehi Mat. Nauk. 35 (1980), no. 3

(213), $61-66=Russian$ Math. Surveys 35 (1980), 71-77.
[8] Ishii, T., On w-paracompactness and its applications, to appear.
[9] Jackson, J. R., Spaces of mappings on topological products with applications to

homotopy theory, Proc. Amer. Math. Soc. 3 (1952), 327-333.
[10] Noble, N., A note on z.closed projections, Proc. Amer. Math. Soc. 23 (1969), 73-76.

Shizuoka Gakuen High School
226-3, Hijiriishiki, Shizuoka
422 Japan

Department of Mathematics
Faculty of Science
Shizuoka University
Ohya, Shizuoka
422 Japan


	ON FUNCTION SPACES FOR ...
	1. Introduction.
	THEOREM 1.1. ...
	THEOREM 1.2. ...

	2. Properties of relatively ...
	3. A topology on function ...
	THEOREM 3.7. ...
	THEOREM 3.8. ...

	5. An example.
	THEOREM 5.1. ...

	References


