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KOSTANT’S WEIGHTING FACTOR IN
MACDONALD’S IDENTITIES

By

Howard D. FEGAN and Stephen P. PETERSON

I. Introduction

Macdonald’s identities can be interpreted in terms of the fundamental solu-

tion, $H(x, t)$ , of the heat equation on a compact Lie group $G$ . In the notation

of [2] this is
$H(a, t)=e^{-i\pi kt/12}\eta(t)^{k}$ . (1.1)

Equation (1.1) can be obtained in two ways. One due to Kostant [3] and the

other due to Van Asch [5]. The purpose of this paper is to point out that a

key step in each of these derivations is in fact the same. This is done in the

proof of Theorem 1.1.

THEOREM 1.1. Let $P$ be the lattice of weights and $P^{*}its$ dual. If $\rho$ is half
the sum of the positive roots, $\lambda$ a dominant weight such that $\lambda=s\rho-\rho+\mu$ for
$s\in W$, the Weyl group, $\sigma:t\rightarrow t^{*}$ the isomorphism induced by the Killing form, and

$\mu\in(1/2)\sigma P^{*}$ , then $\chi_{\lambda}(a)=\det s$ . For all other $\lambda,$ $\chi_{\lambda}(a)=0$ , where $a$ is an element

“principal of type $\rho$

’

The derivation of Kostant involves rewriting Macdonald’s original identities

in terms of the highest weights of representations. In doing so the term $\chi_{\lambda}(a)$

was introduced. Here $\chi_{\lambda}(a)$ is the value of the character with highest weight

$\lambda$ on a special point $a$ called “principal of type $\rho$

’ It is clear from Kostant’s

work that $\chi_{\lambda}(a)$ is either $+1,$ $-1$ , or $0$ .
Meanwhile, Van Asch [5] gave a direct proof of Macdonald’s identities us-

ing the Poisson summation formula. Fegan, in [2], related this to the heat

equation, a step involving writing a sum over a full lattice as a sum over the

highest weights of representation. In both cases there is the need to reduce

the sum over a lattice $P$ to a sum over a sublattice. The point of this paper

is to show that the changes of Kostant and Van Asch are essentially the same.

While the formula of Theorem 1.1 is essentially contained in [3] the proof
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follows the lines of the reduction of the summation in [5]. We prove the
theorem in the next section. Finally we calculate $\chi_{\lambda}(a)$ for all the rank two
two groups. In the rank one case where $\lambda\in(1/2)Z$ and $\lambda\geqq 0$ the result

$\chi_{j\zeta}(a)=\left\{\begin{array}{l}(-1)^{\lambda} \lambda\in Z\\0 \lambda\not\in Z\end{array}\right.$

is well known and easy to prove.

II. Proof of the theorem.

We start by reviewing the notation and terminology. Let $G$ be a compact,
semi-simple and simply connected Lie group which is simple modulo its center.
Pick a maximal torus $T$ in $G$ , and let $t$ be the Lie algebra of $T$ . The negative
of the Killing form gives an inner product $\langle, \rangle$ on $t$ and hence a isomorphism
$\sigma:t\rightarrow t^{*}$ . The roots of $G$ are elements $\alpha_{i}\in l^{*}$ . Half of the roots are positive
and half are negative. Let $\rho=(1/2)\sum_{a>0}\alpha$ summed over the positive roots and

the element $a$ , “principal of type $\rho$

’ is given by $a=\exp(2\pi\sigma^{-1}(2\rho))$ . The Weyl
group is denoted by $W$ and $P\subset t^{*}$ is the lattice of weights. Its dual is $P^{*}=$

{ $x\in 1:y(x)\in Z$ for all $y\in P$}.
To study characters we introduce the formal character

$f_{x}(\lambda)=\frac{\sum_{s\in W}(-1)^{s}\exp(2\pi i\langle s\lambda,x\rangle)}{\sum_{s\in W}(-1)^{s}\exp(2\pi i\langle s\rho,x\rangle)}$ (2.1)

for $x\in t^{*}$ and $\lambda$ a weight. Then the Weyl character formula is

$\chi_{\lambda}(\exp(2\pi\sigma^{-1}(x)))=f_{x}(\lambda+\rho)$ (2.2)

when $\lambda$ is a highest weight. This is compatible with the notation of [2].

LEMMA 2.1. If $\lambda_{1}-\lambda_{2}\in(1/2)\sigma P^{*}$ then $f_{2}(\lambda_{1})=f_{2}(\lambda_{2})$ .

PROOF. By hypothesis $\lambda_{1}-\lambda_{2}=\mu$ for some $\mu\in(1/2)\sigma P^{*}$ . Let $s\in W$, the
Weyl group. Then

$\langle s\lambda_{1}, \rho\rangle=\langle s\lambda_{2},2\rho\rangle+\langle s\mu, 2\rho\rangle$

$=\langle s\lambda_{2},2\rho\rangle$ Mod $Z$

since $s\mu\in(1/2)\sigma P^{*}$ , for all $s\in W$ we have $\langle s\mu, 2\rho\rangle\in Z$ by definition of $P^{*}$ .
Remember that $\rho\in P$.

Now if $a$ is “principal of type $\rho’$ , we have

$\chi_{\lambda}(a)=f_{2\rho}(\lambda)$ thus $x_{\lambda_{1}}(a)=x_{\lambda_{2}}(a)$
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since $a=\exp(2\pi\sigma^{-1}(2\rho))$ .
Now we use the following facts which are found in [5]:

(1) There is a unique orbit in $P/(1/2)\sigma P^{*}$ on which $W$ acts transitively
$and_{\wedge}^{v}this$ orbit contains a coset with representative $\rho$

(2) If $\mu\in P$ defines a coset $\overline{\mu}$ in $P/(1/2)\sigma P^{*}$ such that the stabilizer of $\overline{\mu}$

under $W$ is nontrivial, then there is an $s\in W$ such that $\det s=-1$ and $s\overline{\mu}=\overline{\mu}$ .
From (2) it follows that if $\lambda\in P$ such that $\overline{\lambda}$ has a nontrivial stabilizer then

$f_{2\rho}(\lambda)=0$ . Thus only the orbit involving $\rho$ gives nonzero results. Hence

$\chi_{\lambda}(a)=f_{2\rho}(\lambda+\rho)=\det s(f_{2\rho}(\rho))=\det s$

for $\lambda+\rho=s\rho+\mu,$ $s\in W$ and $\mu\in(1/2)\sigma P^{*}$ .

III. Tables of results for the rank two groups.

We consider the rank two groups: $A_{2},$ $B_{2},$ $G_{2}$ . For each group we have

two fundamental weights $\sigma$ and $\tau$ . Then $\rho=\sigma+\tau$ and we can use $ a=2\rho$ . In

each table we let $\lambda=i\sigma+j\tau$ , where $i,$ $j=0,1,$ $\cdots$ . Thus the entry in the ith
column and the jth row, counting from the lower left hand corner is the value

of $\chi_{\lambda}(a)$ . The details are taken from [1].

(1) The group $A_{2}$ . The negative of the Killing forms gives:

$\langle\sigma, \sigma\rangle=\langle\tau, \tau\rangle=1/9$ . (3.1)

and
$\langle\sigma, \tau\rangle=1/18$ . (3.2)

The reader can easily see a $3\times 3$ block which is repeated.

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$0$ $-1$ $0$ $0$ $-1$ $0$ $0$ $-1$ $0$

1 $0$ $0$ 1 $0$ $0$ 1 $0$ $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$0$ $-1$ $0$ $0$ $-1$ $0$ $0$ $-1$ $0$

1 $0$ $0$ 1 $0$ $0$ 1 $0$ $0$

(2) The group $B_{2}$ . The negative of the Killing from gives

$\langle\sigma, \sigma\rangle=1$ (3.3)

$\langle\sigma, \tau\rangle=\langle\tau, \tau\rangle=\frac{1}{2}$ (3.4)
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$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$0-1$ $0$ $0$ 1 $0$ $0-1$ $0$ $0$ 1 $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$-1$ 1 $0$ 1 -1 $0-1$ 1 $0$ 1 -1 $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

1 $0$ $0-1$ $0$ $0$ 1 $0$ $0-1$ $0$ $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$0-1$ $0$ $0$ 1 $0$ $0-1$ $0$ $0$ 1 $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$-1$ 1 $0$ 1 -1 $0-1$ 1 $0$ 1 -1 $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

1 $0$ $0-1$ $0$ $0$ 1 $0$ $0-1$ $0$ $0$

As the reader can see there is a $6\times 6$ block which is repeated.

(3) The group $G_{2}$ . Here the negative of the Killing form gives

$\langle\sigma, \sigma\rangle=1/12$ (3.5)

$\langle\tau, \tau\rangle=1/4$ (3.6)

$\langle\sigma, \tau\rangle=1/8$ (3.7)

$0$ $0$ $0-1$ $0$ $0-1$ 1 $0$ $0$ 1 $0$ $0$ $0$ $0$

$-1$ $0$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0-1$ $0-1$ $0$ $0$

1 $0$ $0$ 1 -1 $0$ $0-1$ $0$ $0$ $0$ $0$ 1 $0$ $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$0$ $0$ $0-1$ $0$ $0-1$ 1 $0$ $0$ 1 $0$ $0$ $0$ $0$

$-1$ $0$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0-1$ $0-1$ $0$ $0$

1 $0$ $0$ 1 -1 $0$ $0-1$ $0$ $0$ $0$ $0$ 1 $0$ $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$0$ $0$ $0-1$ $0$ $0-1$ 1 $0$ $0$ 1 $0$ $0$ $0$ $0$

$-1$ $0$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0-1$ $0-1$ $0$ $0$

1 $0$ $0$ 1 -1 $0$ $0-1$ $0$ $0$ $0$ $0$ 1 $0$ $0$

$0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$

$0$ $0$ $0-1$ $0$ $0-1$ 1 $0$ $0$ 1 $0$ $0$ $0$ $0$

$-1$ $0$ $0$ $0$ 1 $0$ 1 $0$ $0$ $0-1$ $0-1$ $0$ $0$

1 $0$ $0$ 1 -1 $0$ $0-1$ $0$ $0$ $0$ $0$ 1 $0$ $0$
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Here there is a $12\times 4$ block which is repeated.
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