KOSTANT'S WEIGHTING FACTOR IN MACDONALD'S IDENTITIES

By

Howard D. FEGAN and Stephen P. PETERSON

I. Introduction

Macdonald's identities can be interpreted in terms of the fundamental solution, H(x, t), of the heat equation on a compact Lie group G. In the notation of [2] this is

$$H(a, t) = e^{-i\pi k t/12} \eta(t)^{k} .$$
(1.1)

Equation (1.1) can be obtained in two ways. One due to Kostant [3] and the other due to Van Asch [5]. The purpose of this paper is to point out that a key step in each of these derivations is in fact the same. This is done in the proof of Theorem 1.1.

THEOREM 1.1. Let P be the lattice of weights and P* its dual. If ρ is half the sum of the positive roots, λ a dominant weight such that $\lambda = s\rho - \rho + \mu$ for $s \in W$, the Weyl group, $\sigma: t \to t^*$ the isomorphism induced by the Killing form, and $\mu \in (1/2)\sigma P^*$, then $\chi_{\lambda}(a) = \det s$. For all other $\lambda, \chi_{\lambda}(a) = 0$, where a is an element "principal of type ρ ".

The derivation of Kostant involves rewriting Macdonald's original identities in terms of the highest weights of representations. In doing so the term $\chi_{\lambda}(a)$ was introduced. Here $\chi_{\lambda}(a)$ is the value of the character with highest weight λ on a special point *a* called "principal of type ρ ". It is clear from Kostant's work that $\chi_{\lambda}(a)$ is either +1, -1, or 0.

Meanwhile, Van Asch [5] gave a direct proof of Macdonald's identities using the Poisson summation formula. Fegan, in [2], related this to the heat equation, a step involving writing a sum over a full lattice as a sum over the highest weights of representation. In both cases there is the need to reduce the sum over a lattice P to a sum over a sublattice. The point of this paper is to show that the changes of Kostant and Van Asch are essentially the same.

While the formula of Theorem 1.1 is essentially contained in [3] the proof

Received March 3, 1982. Revised June 15, 1982.

follows the lines of the reduction of the summation in [5]. We prove the theorem in the next section. Finally we calculate $\chi_{\lambda}(a)$ for all the rank two two groups. In the rank one case where $\lambda \in (1/2)\mathbb{Z}$ and $\lambda \ge 0$ the result

$$\chi_{\pi}(a) = \begin{cases} (-1)^{\lambda} & \lambda \in \mathbb{Z} \\ 0 & \lambda \in \mathbb{Z} \end{cases}$$

is well known and easy to prove.

II. Proof of the theorem.

We start by reviewing the notation and terminology. Let G be a compact, semi-simple and simply connected Lie group which is simple modulo its center. Pick a maximal torus T in G, and let t be the Lie algebra of T. The negative of the Killing form gives an inner product \langle , \rangle on t and hence a isomorphism $\sigma: t \rightarrow t^*$. The roots of G are elements $\alpha_i \in t^*$. Half of the roots are positive and half are negative. Let $\rho = (1/2) \sum_{\alpha > 0} \alpha$ summed over the positive roots and the element a, "principal of type ρ " is given by $a = \exp(2\pi\sigma^{-1}(2\rho))$. The Weyl group is denoted by W and $P \subset t^*$ is the lattice of weights. Its dual is $P^* = \{x \in t: y(x) \in \mathbb{Z} \text{ for all } y \in P\}$.

To study characters we introduce the formal character

$$f_x(\lambda) = \frac{\sum\limits_{s \in W} (-1)^s \exp\left(2\pi i \langle s\lambda, x \rangle\right)}{\sum\limits_{s \in W} (-1)^s \exp\left(2\pi i \langle s\rho, x \rangle\right)}$$
(2.1)

for $x \in t^*$ and λ a weight. Then the Weyl character formula is

$$\chi_{\lambda}(\exp(2\pi\sigma^{-1}(x))) = f_x(\lambda + \rho) \tag{2.2}$$

when λ is a highest weight. This is compatible with the notation of [2].

LEMMA 2.1. If $\lambda_1 - \lambda_2 \in (1/2)\sigma P^*$ then $f_{2\rho}(\lambda_1) = f_{2\rho}(\lambda_2)$.

PROOF. By hypothesis $\lambda_1 - \lambda_2 = \mu$ for some $\mu \in (1/2)\sigma P^*$. Let $s \in W$, the Weyl group. Then

$$\langle s\lambda_1, \rho \rangle = \langle s\lambda_2, 2\rho \rangle + \langle s\mu, 2\rho \rangle \\ = \langle s\lambda_2, 2\rho \rangle \operatorname{Mod} Z$$

since $s\mu \in (1/2)\sigma P^*$, for all $s \in W$ we have $\langle s\mu, 2\rho \rangle \in \mathbb{Z}$ by definition of P^* . Remember that $\rho \in P$.

Now if a is "principal of type ρ ", we have

$$\chi_{\lambda}(a) = f_{2\rho}(\lambda)$$
 thus $\chi_{\lambda_1}(a) = \chi_{\lambda_2}(a)$

since $a = \exp(2\pi \sigma^{-1}(2\rho))$.

Now we use the following facts which are found in [5]:

(1) There is a unique orbit in $P/(1/2)\sigma P^*$ on which W acts transitively and this orbit contains a coset with representative ρ .

(2) If $\mu \in P$ defines a coset $\bar{\mu}$ in $P/(1/2)\sigma P^*$ such that the stabilizer of $\bar{\mu}$ under W is nontrivial, then there is an $s \in W$ such that det s = -1 and $s\bar{\mu} = \bar{\mu}$.

From (2) it follows that if $\lambda \in P$ such that $\overline{\lambda}$ has a nontrivial stabilizer then $f_{2\rho}(\lambda)=0$. Thus only the orbit involving ρ gives nonzero results. Hence

$$\chi_{\lambda}(a) = f_{2\rho}(\lambda + \rho) = \det s(f_{2\rho}(\rho)) = \det s$$

for $\lambda + \rho = s\rho + \mu$, $s \in W$ and $\mu \in (1/2)\sigma P^*$.

III. Tables of results for the rank two groups.

We consider the rank two groups: A_2 , B_2 , G_2 . For each group we have two fundamental weights σ and τ . Then $\rho = \sigma + \tau$ and we can use $a = 2\rho$. In each table we let $\lambda = i\sigma + j\tau$, where $i, j = 0, 1, \cdots$. Thus the entry in the *i*th column and the *j*th row, counting from the lower left hand corner is the value of $\chi_{\lambda}(a)$. The details are taken from [1].

(1) The group A_2 . The negative of the Killing forms gives:

$$\langle \sigma, \sigma \rangle = \langle \tau, \tau \rangle = 1/9.$$
 (3.1)

and

$$\langle \sigma, \tau \rangle = 1/18.$$
 (3.2)

The reader can easily see a 3×3 block which is repeated.

0	0	0	0	0	0	0	0	0	
0	-1	0	0	-1	0	0	-1	0	
1	0	0	1	0	0	1	0	0	
0	0	0	0	0	0	0	0	0	
0	-1	0	0	-1	0	0	—1	0	
1	0	0	1	0	0	1	0	0	

(2) The group B_2 . The negative of the Killing from gives

$$\langle \sigma, \sigma \rangle = 1$$
 (3.3)

$$\langle \sigma, \tau \rangle = \langle \tau, \tau \rangle = \frac{1}{2}$$
 (3.4)

0	0	0	0	0	0	0	0	0	0	0	0
0	-1	0	0	1	0	0	-1	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	1	0	1	1	0 -	-1	1	0	1 -	-1	0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-1	0	0	1	0	0 -	-1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	-1	0	0	1	0	0	-1	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	1	0	1	-1	0 -	-1	1	0	1 ·	-1	0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-1	0	0	1	0	0 -	-1	0	0

As the reader can see there is a 6×6 block which is repeated.

(3) The group G_2 . Here the negative of the Killing form gives

$$\langle \sigma, \sigma \rangle = 1/12$$
 (3.5)

$$\langle \tau, \tau \rangle = 1/4$$
 (3.6)

$$\langle \sigma, \tau \rangle = 1/8$$
 (3.7)

0	0	0 -1 0	0 - 1 1	0	0 1	0 0	0	0
-1	0	0 0 1	0 1 0	0	0 -1	0 - 1	0	0
1	0	0 1 - 1	0 0 -1	0	0 0	0 1	0	0
0	0	0 0 0	0 0 0	0	0 0	0 0	0	0
0	0	0 - 1 0	0 - 1 1	0	0 1	0 0	0	0
-1	0	0 0 1	0 1 0	0	0 -1	0 -1	0	0
1	0	0 1 - 1	0 0 -1	0	0 0	0 1	0	0
0	0	0 0 0	0 0 0	0	0 0	0 0	0	0
0	0	0 - 1 0	0 -1 1	0	0 1	0 0	0	0
-1	0	0 0 1	0 1 0	0	0 -1	0 -1	0	0
1	0	0 1 -1	0 0 -1	0	0 0	0 1	0	0
0	0	0 0 0	0 0 0	0	0 0	0 0	0	0
0	0	0 -1 0	0 - 1 1	0	0 1	0 0	0	0
-1	0	0 0 1	0 1 0	0	0 -1	0 -1	0	0
1	0	0 1 -1	0 0 -1	0	0 0	0 1	0	0

Here there is a 12×4 block which is repeated.

References

- [1] Bourbaki, N., Groupes et algébres de Lie, Chap. 4, 5, et 6, Hermann, Paris, 1968.
- [2] Fegan, H.D., The heat equation and modular forms, J. Diff. Geo. Vol. 13, No. 4, Dec. 1978, 589-602.
- [3] Kostant, B., On Macdonald's η -function formula, the Laplacian and generalized exponents. Advances in Math. 20 (1976), 179-212.
- [4] Macdonald, I.G., Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143.
- [5] Van Asch, B., Des identitiés pour certain puissance de η, C.R. Acad. Sci. Paris Sér. A, 277 (1973) 1087-1090.

Professor Howard D. Fegan Department of Mathematics University of New Mexico Albuquerque, NM 87131

Stephen P. Peterson Department of Mathematics University of Notre Dame Notre Dame, IN 46556