KOSTANT'S WEIGHTING FACTOR IN MACDONALD'S IDENTITIES

By

Howard D. Fegan and Stephen P. Peterson

I. Introduction

Macdonald's identities can be interpreted in terms of the fundamental solution, $H(x, t)$, of the heat equation on a compact Lie group G. In the notation of [2] this is

$$
\begin{equation*}
H(a, t)=e^{-i \pi k t / 12} \eta(t)^{k} \tag{1.1}
\end{equation*}
$$

Equation (1.1) can be obtained in two ways. One due to Kostant [3] and the other due to Van Asch [5]. The purpose of this paper is to point out that a key step in each of these derivations is in fact the same. This is done in the proof of Theorem 1.1.

THEOREM 1.1. Let P be the lattice of weights and P^{*} its dual. If ρ is half the sum of the positive roots, λ a dominant weight such that $\lambda=s \rho-\rho+\mu$ for $s \in W$, the Weyl group, $\sigma: \mathfrak{t} \rightarrow t^{*}$ the isomorphism induced by the Killing form, and $\mu \in(1 / 2) \sigma P^{*}$, then $\chi_{\lambda}(a)=\operatorname{det} s$. For all other $\lambda, \chi_{\lambda}(a)=0$, where a is an element "principal of type ρ ".

The derivation of Kostant involves rewriting Macdonald's original identities in terms of the highest weights of representations. In doing so the term $\chi_{\lambda}(a)$ was introduced. Here $\chi_{\lambda}(a)$ is the value of the character with highest weight λ on a special point a called "principal of type ρ ". It is clear from Kostant's work that $\chi_{\lambda}(a)$ is either $+1,-1$, or 0 .

Meanwhile, Van Asch [5] gave a direct proof of Macdonald's identities using the Poisson summation formula. Fegan, in [2], related this to the heat equation, a step involving writing a sum over a full lattice as a sum over the highest weights of representation. In both cases there is the need to reduce the sum over a lattice P to a sum over a sublattice. The point of this paper is to show that the changes of Kostant and Van Asch are essentially the same.

While the formula of Theorem 1.1 is essentially contained in [3] the proof
Received March 3, 1982. Revised June 15, 1982.
follows the lines of the reduction of the summation in [5]. We prove the theorem in the next section. Finally we calculate $\chi_{\lambda}(a)$ for all the rank two two groups. In the rank one case where $\lambda \in(1 / 2) \boldsymbol{Z}$ and $\lambda \geqq 0$ the result

$$
\chi_{\pi}(a)= \begin{cases}(-1)^{\lambda} & \lambda \in \boldsymbol{Z} \\ 0 & \lambda \in \boldsymbol{Z}\end{cases}
$$

is well known and easy to prove.

II. Proof of the theorem.

We start by reviewing the notation and terminology. Let G be a compact, semi-simple and simply connected Lie group which is simple modulo its center. Pick a maximal torus T in G, and let \mathfrak{t} be the Lie algebra of T. The negative of the Killing form gives an inner product \langle,$\rangle on t$ and hence a isomorphism $\sigma: t \rightarrow t^{*}$. The roots of G are elements $\alpha_{i} \in t^{*}$. Half of the roots are positive and half are negative. Let $\rho=(1 / 2) \sum_{\alpha>0} \alpha$ summed over the positive roots and the element a, "principal of type ρ " is given by $a=\exp \left(2 \pi \sigma^{-1}(2 \rho)\right)$. The Weyl group is denoted by W and $P \subset t^{*}$ is the lattice of weights. Its dual is $P^{*}=$ $\{x \in \mathfrak{t}: y(x) \in Z$ for all $y \in P\}$.

To study characters we introduce the formal character

$$
\begin{equation*}
f_{x}(\lambda)=-\frac{\sum_{s \in W}(-1)^{s} \exp (2 \pi i\langle s \lambda, x\rangle)}{\sum_{s \in W}(-1)^{s} \exp (2 \pi i\langle s \rho, x\rangle)} \tag{2.1}
\end{equation*}
$$

for $x \in t^{*}$ and λ a weight. Then the Weyl character formula is

$$
\begin{equation*}
\chi_{\lambda}\left(\exp \left(2 \pi \sigma^{-1}(x)\right)\right)=f_{x}(\lambda+\rho) \tag{2.2}
\end{equation*}
$$

when λ is a highest weight. This is compatible with the notation of [2].
Lemma 2.1. If $\lambda_{1}-\lambda_{2} \in(1 / 2) \sigma P^{*}$ then $f_{2 \rho}\left(\lambda_{1}\right)=f_{2 \rho}\left(\lambda_{2}\right)$.
Proof. By hypothesis $\lambda_{1}-\lambda_{2}=\mu$ for some $\mu \in(1 / 2) \sigma P^{*}$. Let $s \in W$, the Weyl group. Then

$$
\begin{aligned}
\left\langle s \lambda_{1}, \rho\right\rangle & =\left\langle s \lambda_{2}, 2 \rho\right\rangle+\langle s \mu, 2 \rho\rangle \\
& =\left\langle s \lambda_{2}, 2 \rho\right\rangle \operatorname{Mod} \boldsymbol{Z}
\end{aligned}
$$

since $s \mu \in(1 / 2) \sigma P^{*}$, for all $s \in W$ we have $\langle s \mu, 2 \rho\rangle \in \boldsymbol{Z}$ by definition of P^{*}. Remember that $\rho \in P$.

Now if a is "principal of type ρ ", we have

$$
\chi_{\lambda}(a)=f_{2 \rho}(\lambda) \quad \text { thus } \chi_{\lambda_{1}}(a)=\chi_{\lambda_{2}}(a)
$$

since $a=\exp \left(2 \pi \sigma^{-1}(2 \rho)\right)$.
Now we use the following facts which are found in [5]:
(1) There is a unique orbit in $P /(1 / 2) \sigma P^{*}$ on which W acts transitively and this orbit contains a coset with representative ρ.
(2) If $\mu \in P$ defines a coset $\bar{\mu}$ in $P /(1 / 2) \sigma P^{*}$ such that the stabilizer of $\bar{\mu}$ under W is nontrivial, then there is an $s \in W$ such that $\operatorname{det} s=-1$ and $s \bar{\mu}=\bar{\mu}$.

From (2) it follows that if $\lambda \in P$ such that $\bar{\lambda}$ has a nontrivial stabilizer then $f_{2 \rho}(\lambda)=0$. Thus only the orbit involving ρ gives nonzero results. Hence

$$
\chi_{\lambda}(a)=f_{2 \rho}(\lambda+\rho)=\operatorname{det} s\left(f_{2 \rho}(\rho)\right)=\operatorname{det} s
$$

for $\lambda+\rho=s \rho+\mu, s \in W$ and $\mu \in(1 / 2) \sigma P^{*}$.

III. Tables of results for the rank two groups.

We consider the rank two groups: A_{2}, B_{2}, G_{2}. For each group we have two fundamental weights σ and τ. Then $\rho=\sigma+\tau$ and we can use $a=2 \rho$. In each table we let $\lambda=i \sigma+j \tau$, where $i, j=0,1, \cdots$. Thus the entry in the i th column and the j th row, counting from the lower left hand corner is the value of $\chi_{\lambda}(a)$. The details are taken from [1].
(1) The group A_{2}. The negative of the Killing forms gives:

$$
\begin{equation*}
\langle\sigma, \sigma\rangle=\langle\tau, \tau\rangle=1 / 9 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle\sigma, \tau\rangle=1 / 18 \tag{3.2}
\end{equation*}
$$

The reader can easily see a 3×3 block which is repeated.

0	0	0	0	0	0	0	0	0
0	-1	0	0	-1	0	0	-1	0
1	0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0	0
0	-1	0	0	-1	0	0	-1	0
1	0	0	1	0	0	1	0	0

(2) The group B_{2}. The negative of the Killing from gives

$$
\begin{gather*}
\langle\sigma, \sigma\rangle=1 \tag{3.3}\\
\langle\sigma, \tau\rangle=\langle\tau, \tau\rangle=\frac{1}{2} \tag{3.4}
\end{gather*}
$$

0	0	0	0	0	0	0	0	0	0	0	0
0	-1	0	0	1	0	0	-1	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	1	0	1	-1	0	-1	1	0	1	-1	0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-1	0	0	1	0	0	-1	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	-1	0	0	1	0	0	-1	0	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	1	0	1	-1	0	-1	1	0	1	-1	0
0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	-1	0	0	1	0	0	-1	0	0

As the reader can see there is a 6×6 block which is repeated.
(3) The group G_{2}. Here the negative of the Killing form gives

$$
\begin{align*}
& \langle\sigma, \sigma\rangle=1 / 12 \tag{3.5}\\
& \langle\tau, \tau\rangle=1 / 4 \tag{3.6}\\
& \langle\sigma, \tau\rangle=1 / 8 \tag{3.7}
\end{align*}
$$

0	0	0	-1	0	0	-1	1	0	0	1	0	0	0	0
-1	0	0	0	1	0	1	0	0	0	-1	0	-1	0	0
1	0	0	1	-1	0	0	-1	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-1	0	0	-1	1	0	0	1	0	0	0	0
-1	0	0	0	1	0	1	0	0	0	-1	0	-1	0	0
1	0	0	1	-1	0	0	-1	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-1	0	0	-1	1	0	0	1	0	0	0	0
-1	0	0	0	1	0	1	0	0	0	-1	0	-1	0	0
1	0	0	1	-1	0	0	-1	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	-1	0	0	-1	1	0	0	1	0	0	0	0
-1	0	0	0	1	0	1	0	0	0	-1	0	-1	0	0
1	0	0	1	-1	0	0	-1	0	0	0	0	1	0	0

Here there is a 12×4 block which is repeated.

References

[1] Bourbaki, N., Groupes et algébres de Lie, Chap. 4, 5, et 6, Hermann, Paris, 1968.
[2] Fegan, H.D., The heat equation and modular forms, J. Diff. Geo. Vol. 13, No. 4, Dec. 1978, 589-602.
[3] Kostant, B., On Macdonald's η-function formula, the Laplacian and generalized exponents. Advances in Math. 20 (1976), 179-212.
[4] Macdonald, I. G., Affine root systems and Dedekind's η-function, Invent. Math. 15 (1972), 91-143.
[5] Van Asch, B., Des identitiés pour certain puissance de η, C.R. Acad. Sci. Paris Sér. A, 277 (1973) 1087-1090.

Professor Howard D. Fegan
Department of Mathematics
University of New Mexico
Albuquerque, NM 87131
Stephen P. Peterson
Department of Mathematics
University of Notre Dame
Notre Dame, IN 46556

