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\S 1. Introduction.

Throughout this paper all spaces are assumed to be completely regular and
$T_{1}$ . A compactification $\alpha X$ of a space $X$ is said to be a countable-points com-
pactification (abbreviated to CCF) if the cardinality of the remainder $\alpha X-X$ is

at most countable. Every locally compact space or, by L. Zippin [7], every

rim-compact, Cech-complete separable metrizable space has a CCF. Thus, the

problem to characterize those spaces which have a CCF was raised by K. Morita

in [4], and for the case of metric spaces it was solved by the author [5].

In the present paper we consider the above problem on product spaces.

Indeed, even for the case of a separable metrizable space $X$ with a CCF and a
compact space $Y$ the product space $X\times Y$ does not have a CCF in general.

More precisely, we shall establish the following theorems.

THEOREM 1. Let $X$ be a space having a $CCF$, and $Y$ a zero-dimensional com-

pact metrizable space. Then $X\times Y$ has also a $CCF$.

THEOREM 2. Let $X$ be a paracompact space and $Y$ a compact space. Then
$X\times Y$ has a $CCF$ iff $X$ is locally compact or $X$ has a $CCF$ and $Y$ is zero-dimen-

sional and metrizable.

Theorems 1 and 2 will yield further the following theorem which charac-

terizes a product space of paracompact spaces to have a CCF.

THEOREM 3. Let $X$ and $Y$ be paracompact spaces. Then $X\times Y$ has a $CCF$

iff one of the following three conditions is satisfied:
(a) $X$ and $Y$ are both locally compact;
(b) one of $X$ and $Y$ is zero-dimensional, locally compact, separable metrizable,

and the other has a $CCF$.
(c) $X$ and $Y$ are both zero-dimensional, $\check{C}ech$-complete separable metrizable.
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\S 2. Preliminaries and proofs of Theorems 1 and 2.

A space is said to be rim-compact if it has a base consisting of open sets
with compact boundaries. A zero-dimensional space means a space with a base
consisting of open-and-closed sets.

If a space $X$ has a CCF, then every closed set or every open set of $X$ has
also a CCF, and $X$ is known to be rim-compact and $\check{C}$ech-complete. While \v{C}ech-
completeness is (countably) productive, rim-compactness is not. Hence the follow-
ing lemma, proved in [6], will be useful.

LEMMA 2.1. A product space $X\times Y$ is rim-compact iff one of the three condi-
tions below is satisfied:

(i) $X$ and $Y$ are both locally compact;
(ii) one of $X$ and $Y$ is locally compact and zero-dimensional and the other

is rim-compact;
(iii) $X$ and $Y$ are both zero-dimensional.

For a space X $R(X)$ denotes the set of all points at which $X$ is not locally
compact. The following lemma was proved in [5].

LEMMA 2.2. If a paracompact space $X$ has a $CCF$, then $R(X)$ is Lindelof.

With this lemma we easily have

LEMMA 2.3. Let $X=\vee X_{\alpha}$ be the topological sum of paracompact spaces, each
of which has a $CCF$. Then $X$ has a $CCF$ iff all but a countable number of $X_{\alpha}\prime s$

are locally compact.

PROOF OF THEOREM 1. Assume that $X$ has a CCF and $Y$ is zero-dimen-
sional, compact metrizable. Then there is a sequence $\{\mathcal{V}_{n}|n\in N\}$ of finite
disjoint open covers of $Y$ such that $\mathcal{V}_{n+1}$ refines $\mathcal{V}_{n}$ for $n\in N$ and $\{St(y, \mathcal{V}_{n})|$

$n\in N\}$ is a local base at each point $y$ of $Y$ , where $N=the$ set of all natural
numbers. Let $\alpha X$ be a CCF of $X$, and $\alpha X-X=\{p_{n}|n\in N\}$ . Let us put

$\mathcal{D}=\{\{(x, y)\}|(x, y)\in X\times Y\}\cup\{\{p_{n}\}\times V|V\in \mathcal{V}_{n}, n\in N\}$ .
Then $\mathcal{D}$ is an upper semi-continuous decomposition of $\alpha X\times Y$ . To see this, we
show that for any open set $G$ of $\alpha X\times Y$ the set $H=\cup\{D\in \mathcal{D}|D\subset G\}$ is open in
$\alpha X\times Y$ . Let $(x, y)\in H$. Then we can choose an open set $U$ of $\alpha X$ and $V\in \mathcal{V}_{n}$

for some $n$ so that $(x, y)\in U\times V\subset G$ , according as $(x, y)\in X\times Y$ or $(x, y)\in$

$\{p_{n}\}\times V,$ $V\in \mathcal{V}_{n}$ . Hence, in any case we have
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$(x, y)\in(U-\{p_{1}, \cdots, p_{n-1}\})\times V\subset H$ ,

that is, $H$ is open in $\alpha X\times Y$ . Let $Z$ be the decomposition space of $\alpha X\times Y$ with

respect to $\mathcal{D}$ . Then the above shows that $Z$ is a CCF of $X\times Y$ as required.

This proves the theorem.
A space $X$ is said to be locally countably compact if every point of $X$ has

its neighborhood whose closure is countably compact. Since for paracompact

spaces, more generally for iso-compact spaces in the sense of Bacon [3], every

countably compact closed subset is compact, Theorem 2 follows from Theorem 1

and the next theorem.

THEOREM 2.4. Let $X$ be a space which is not locally countably compact and
$Y$ a compact space. If $X\times Y$ has a $CCF$, then $Y$ is zero-dimensional and metrizable.

PROOF. Suppose that $X\times Y$ has a CCF. Then $X\times Y$ is rim-compact and

Cech-complete. By assumptions on $X$ and $Y$ and Le.mma 2.1 $Y$ is zero-dimen-
sional. Let $x_{0}$ be the point at which $X$ is not locally countably compact. Since
$X$ is $\check{C}$ech-complete, by [2] $X$ is a space of point countable type. Hence, there
exists a compact subset $K$ of $X$ that contains $x_{0}$ and admits a countable neigh-

borhood base $\{U_{n}|n\in N\}$ with $U_{n+1}\subset U_{n}$ for $n\in N$. Since Cl $U_{n}$ is not countably

compact, we can select $ n_{1}<\cdots<n_{i}<\cdots$ of natural numbers and a countably

infinite discrete closed set $\{x_{ik}|k\in N\}$ for each $i\in N$ such that $x_{ik}\in U_{n_{i}}-U_{n_{j+1}}$

for $i,$ $k\in N$. Let us put

$X_{0}=\{x_{ik}|i, k\in N\}\cup K$ .

Then $X_{0}$ is a $\sigma$-compact closed subset of $X$, and is not locally compact. Let us
rewrite $X_{0}$ as $\{x_{n}|n\in N\}\cup K$. Since $X_{0}\times Y$ is closed in $X\times Y,$ $X_{0}\times Y$ has a CCF
$\alpha(X_{0}\times Y)$ . Let $\alpha(X_{0}\times Y)-X_{0}\times Y=\{q_{i}|i\in N\}$ . Note that each $q_{i}$ is $G_{\delta}$ in $\alpha(X_{0}\times Y)$

since $X_{0}\times Y$ is $\sigma$-compact. Therefore, $q_{i}$ has a countable neighborhood base
$\{V_{ik}|k\in N\}$ of open sets in $\alpha(X_{0}\times Y)$ since $\alpha(X_{0}\times Y)$ is compact Hausdorff.
Finally let us put

$\mathscr{Q}=\{p_{Y}((X_{0}\times Y)\cap V_{i} ,) |i, k\in N\}$ ,

where $p_{Y}$ is the projection from $X_{0}\times Y$ to $Y$ . Now we show that $\mathscr{D}$ is a base

of $Y$ . Let $y$ be any point of $Y$ and $G$ an open set of $Y$ with $y\in G$ . Let $W$ be

an open set of $\alpha(X_{0}\times Y)$ such that $X_{0}\times G=W\cap(X_{0}\times Y)$ . Since $X_{0}$ is not locally

compact, the set

$(W\cap C1_{\alpha(X_{0}xY)}(X_{0}\times\{y\}))-X_{0}\times Y$

is non-empty, and contains some $q_{i}$ . Then for some $k$ we have $V_{ik}\subset W$ and
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$ V_{ik}\cap(X_{0}\times\{y\})\neq\emptyset$ . Hence it follows that

$y\in p_{Y}((X_{0}\times Y)\cap V_{ik})\subset G$ ,

which shows that $B$ is a base of $Y$ . Thus, $Y$ is metrizable and the proof is
completed.

\S 3. Proof of Theorem 3.

With the aid of Theorem 2.4 as well as the method of its proof, we shall
obtain further the following result.

THEOREM 3.1. Let $X$ be a space which is not locally countably compact, and
$Y$ a paracompact space. If $X\times Y$ has a $CCF$, then $Y$ is zero-dimensional, $\check{C}ech-$

complete separable metrizable.

PROOF. Suppose that $X\times Y$ has a CCF. Then $Y$ is zero-dimensional and
$\check{C}$ech-complete. Let $X_{0}=\{x_{n}|n\in N\}\cup K$ be as constructed in the proof of
Theorem 2.4. Then $X_{0}\times Y$ has a CCF $\alpha(X_{0}\times Y)$ . Let $\alpha(X_{0}\times Y)-X_{0}\times Y=\{q_{i}|i\in N\}$ .

CLAIM 1. $R(Y)$ is separable metrizable.

PROOF OF CLAIM 1. Since $X_{0}$ is $\sigma$ -compact, $X_{0}\times Y$ is paracompact, and so,
by Lemma 2.2 $R(X_{0}\times Y)=C1_{\alpha(X_{0}xY)}(\{q_{i}|i\in N\})-\{q_{i}|i\in N\}$ is Lindelof. Therefore,
the countable space $\{q_{i}|i\in N\}$ is a space of countable type [2], and hence, it is
metrizable. Then we see that each $q_{i}$ has a countable neighborhood base
$\{V_{ik}|k\in N\}$ of open sets in $C1_{\alpha(X_{0}\times Y)}(\{q_{i}|i\in N\})$ . Now, using $R(X_{0}\times Y)=$

$(R(X_{0})\times Y)\cup(X_{0}\times R(Y))$ it can be verified by the same way as in the proof of
Theorem 2.4 that the collection

$\{p_{Y}((X_{0}\times R(Y))\cap V_{ik})|i, k\in N\}$

is a base of the subspace $R(Y)$ . Hence, $R(Y)$ is separable metrizable.

CLAIM 2. $Y-R(Y)$ is an $F_{\sigma}$ subset of $Y$ .

PROOF OF CLAIM 2. Let us put and rewrite

$D=\{q_{i}|q_{i}\not\in C1_{a(X_{0}xY)}(X_{0}\times R(Y)), i\in N\}$

$=\{q_{i_{k}}|k\in N\}$ .
Then for each $q_{i_{k}}\in D$ there is an open $F_{\sigma}$ subset $W_{k}$ of $\alpha(X_{0}\times Y)$ such that
$q_{i_{k}}\in W_{k},$ $ W_{k}\cap(X_{0}\times R(Y))=\emptyset$ . Let us set
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$G_{nk}=p_{Y}((\{x_{n}\}\times Y)\cap W_{k})$ for $n,$ $k\in N$ ,

and
$\mathcal{G}=\{G_{nk}|n, k\in N\}$ .

Then it should be noted that each $G_{nk}$ is an open $F_{\sigma}$ subset of $Y$ and $G_{nk}\cap R(Y)$

$=\emptyset$ . We show that $\mathcal{G}$ covers $Y-R(Y)$ . Let $y\in Y-R(Y)$ . Since $R(Y)$ is closed,

there are open sets $U,$ $V$ of $Y$ such that $y\in U,$ $R(Y)\subset V$ and $ U\cap V=\emptyset$ . Take

open sets $G,$ $H$ of $\alpha(X_{0}\times Y)$ such that $X_{0}\times U=G\cap(X_{0}\times Y)$ and $X_{0}\times V=H\cap(X_{0}\times Y)$ .
Then as is seen before, $G\cap C1_{\alpha(X_{0}\times Y)}(X_{0}\times\{y\})-X_{0}\times Y$ contains some $q_{i}$ . Since

$ G\cap H=\emptyset$ and $X_{0}\times R(Y)\subset H$, we have $q_{i}\not\in C1_{\alpha(X_{0}xY)}(X_{0}\times R(Y))$ . Hence $q_{i}=q_{i_{k}}\in D$

for some $k\in N$, and since $q_{i_{k}}\in C1_{\alpha(X_{0}\times Y)}(X_{0}\times\{y\})$ and $K\times\{y\}$ is compact, we

have $(x_{n}, y)\in W_{k}$ for some $n\in N$. Hence $y\in G_{nk}\in \mathcal{G}$ , and the claim follows.

Since $R(X_{0}\times Y)$ is Lindelof, so is $Y$ . Hence by Claim 2 the locally compact

subspace $Y-R(Y)$ is also Lindelof, and so it is $\sigma$ -compact. Therefore for a

compact subset $C_{i},$ $i\in N$ we have $Y=R(Y)\cup\cup\{C_{i}|i\in N\}$ . Since each $C_{i}$ is

metrizable by Theorem 2.4, in view of Claim 1 $Y$ is a union of a countable

number of separable metrizable subspaces. Since $Y$ is \v{C}ech-complete, it is

separable metrizable by [1]. This completes the proof of the theorem.

Let us now prove Theorem 3.

PROOF OF THEOREM 3. Since the “only if” part directly follows from The-

orem 3.1, we shall prove the “if” part. Assume (b) in the theorem and that $X$

has a CCF and $Y$ is zero-dimensional, locally compact separable metrizable.

Then $ Y\cong$ (is homeomorphic $to$) $\vee C_{i}$ , the topological sum of a countable number

of zero-dimensional compact metrizable subspaces $C_{i},$ $i\in N$. Since $ X\times Y\cong$

$(X\times C_{i})$ , and each $X\times C_{i}$ has a CCF by Theorem 1, $X\times Y$ has also a CCF by

Lemma 2.3. Assume (c). Then $X\times Y$ is zero-dimensional $\check{C}$ech-complete separable

metrizable. Thus, by [7] $X\times Y$ has a CCF. This proves the theorem.

REMARK. In view of Theorem 3, it should be noted that there exists a

paracompact space $X$ such that $X$ has a CCF but $R(X)$ is not metrizable. Indeed,

let $X=\beta R-N$, where $\beta R=the$ Stone-\v{C}ech compactification of the real line $R$ .
Then $X$ has a CCF and $R(X)=\beta N-N$ [$8$, Example 3], but $X=(\beta R-R)\cup(R-N)$ ,

which is $\sigma$-compact.
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