A BOOLEAN POWER AND A DIRECT PRODUCT OF ABELIAN GROUPS

By
Katsuya EdA

A group means an abelian group in this paper. A Boolean power and a direct product of groups consist of all global sections of groups in some Boolean extensions $V^{(\boldsymbol{B})}$. We shall study about a homomorphism h whose domain is a group consisting of all the global sections of a group in $V^{(\boldsymbol{B})}$. We investigate two cases: one of them is that the range of h is a slender group, which is related to a torsion-free group, and the other is that the range of h is an infinite direct sum, which is related to a torsion group. We extend a few theorems which have been obtained in [4] and [5]. As in [5], we not only extend theorems, but improve them and give a good standing point of view.

We refer the reader to [9] or [1], for a Boolean extension $V^{(B)}$. We shall use notations and terminologies in [5], [6] and [7]. Throughout this paper, \boldsymbol{B} is a complete Boolean algebra and \mathscr{F} is the set of all countably complete maximal filters on \boldsymbol{B}. We do not mention these any more. \check{x} is the element of $V^{(B)}$ such that $\operatorname{dom} \check{x}=\{\check{y} ; y \in x\}$ and range $x \subseteq\{1\}$. As noted in [5], " \hat{x} " in [1] means our " \check{x} ". $\hat{x}=\left\{y ; \llbracket y \in x \rrbracket=1\right.$ and $\left.y \in V^{(B)}\right\}$ for $x \in V^{(B)}$, where $V^{(B)}$ is separated. For $b \in \boldsymbol{B}$ and a group A in $V^{(\boldsymbol{B})}$, i.e. $\llbracket A$ is a group $\rrbracket=1, \hat{A}^{b}$ is the subgroup of \hat{A} such that $x \in \hat{A}^{b}$ iff $x \in \hat{A}$ and $-b \leqq \llbracket x=0 \rrbracket$, where 0 is the unit of A. By this notation, $\hat{A}=\hat{A}^{1}$. For $x \in \hat{A}, x^{b}$ is the element of \hat{A}^{b} such that $b \leqq \llbracket x=x^{b} \rrbracket$.

1. A general setting about a complete Boolean algebra

Let $\Phi(b)$ be a property of $b \in \boldsymbol{B}$ which satisfies the following conditions:
(1) if $\left\{b_{n} ; n \in N\right\}$ is a pairwise disjoint subset of \boldsymbol{B}, there exists k such that $\Phi\left(\bigvee_{n \geq k} b_{n}\right)$ and $\Phi\left(b_{n}\right)$ hold for each $n \geqq k$;
(2) if $b \wedge c=\mathbf{0}, \Phi(b)$ and $\Phi(c)$ hold, then $\Phi(b \vee c)$ holds.

Let S be the subset of \boldsymbol{B} such that $b \in S$ iff $\Phi(b)$ does not hold and $c \wedge c^{\prime}$ $=0$ implies $\Phi(c)$ or $\Phi\left(c^{\prime}\right)$ for any $c, c^{\prime} \leqq b$.

Received February 18, 1982.

The author is partially supported by Grant-in-Aid for Encouragement of Young Scientist Project No. 56740087.

Lemma 1. Let F^{b} be the subset of \boldsymbol{B} defined by: $c \in F^{b}$ iff $\Phi(b \wedge c)$ does not hold. Then, $F^{b} \in \mathscr{F}$ for every $b \in S$.

Proof. We prove only the countable completeness. Let $b_{n} \in F^{b}$ for $n \in N$. Let $c_{1}=\mathbf{0}$ and $c_{n+1}=\bigwedge_{k=1}^{n} b_{k}-b_{n+1}$. Then, $b_{1}=\bigvee_{n \in N} c_{n} \vee \bigwedge_{n \in N} b_{n}$. By the condition (1) and (2) of Φ and the property of $S, \Phi\left(b \wedge \bigvee_{n \in N} c_{n}\right)$ and so $\Phi\left(b \wedge \wedge_{n \in N} b_{n}\right)$ does not hold.

Lemma 2. Let M be a maximal pairwise disjoint subfamily of S. Then, M is finite and $\boldsymbol{\Phi}(c)$ holds for any c such that $c \wedge \vee M=\mathbf{0}$.

Proof. By the condition of Φ, M is finite. Suppose that there exists c such that $\Phi(c)$ does not hold and $c \wedge \bigvee M=0$. By the maximality of M, there is no element of S below c. So, there are $b_{0}, c_{0} \leqq c$ such that $b_{0} \wedge c_{0}=0$ and $\Phi\left(b_{0}\right)$ nor $\Phi\left(c_{0}\right)$ does not hold. Then, take $b_{1}, c_{1} \leqq c_{0}$ with the same property of b_{0} and c_{0}. In such a way, we obtain a pairwise disjoint family $\left\{b_{n} ; n \in N\right\}$ such that $\Phi\left(b_{n}\right)$ does not hold for any $n \in N$, which is a contradiction.
2. $\operatorname{Hom}(\hat{A}, G)$

Let F be a maximal filter on \boldsymbol{B}. For a group A in $V^{(B)}, \hat{A} / F$ is the quotient of \hat{A} by the equivalence relation \sim_{F} such that $x \sim_{F} y$ iff $\llbracket x=y \rrbracket \in F$. In the case $A=\check{X}, \hat{A}$ is known as a Boolean power $X^{(B)}$ and \hat{A} / F is a Boolean ultrapower $X^{(B)} / F$. (Ref. [8]) In the case that $\boldsymbol{B}=\boldsymbol{P}(I)$ and $\hat{A}=\prod_{i \in I} A_{i}$, where A is defined by a natural way, \hat{A} / F is known as an ultraproduct $\prod_{i \in I} A_{i} / F$. (Ref. [2]) However, the following fact is enough to read the main part of this paper. Let K be the subgroup of \hat{A} defined by : $x \in K \leftrightarrow \llbracket x=0 \rrbracket \in F$. Then, $\hat{A} / F \cong \hat{A} / K$, where the right part is the quotient group.

Theorem 1. Let A be a group in $V^{(B)}$ and G a slender group. Then, $\operatorname{Hom}(\hat{A}, G) \cong \underset{F \in \mathscr{F}}{\oplus} \operatorname{Hom}(\hat{A} / F, G)$ holds.

Proof. Let h be a homomorphism from \hat{A} to G and $\Phi(b)$ the property " h " $\hat{A}^{b}=0$ ". Let $\left\{b_{n} ; n \in N\right\}$ be a pairwise disjoint subset of \boldsymbol{B} and $x_{n} \in \hat{A}^{b_{n}}$ for each $n \in N$. Think of the homomorphism $g: \boldsymbol{Z}^{N} \rightarrow \hat{A}$ such that $g\left(\sum_{n \in N} a_{n} \boldsymbol{e}_{n}\right)=$ $\sum_{n \in N} a_{n} x_{n}$, where $x=\sum_{n \in N} a_{n} x_{n}$ is the element of \hat{A}^{b} such that $b=\bigvee_{n \in N} b_{n}$ and $b_{n} \leqq$ $\llbracket x=a_{n} x_{n} \rrbracket$ for each $n \in N$, and apply the slenderness of G to $h \cdot g$, then $h \cdot g\left(\boldsymbol{e}_{n}\right)$ $=0$ and so $h\left(x_{n}\right)=0$ for almost all n. Hence, there exists k such that $\Phi\left(b_{n}\right)$ for any $n \geqq k$ and $h\left(\sum_{n \geq k} x_{n}\right)=0$, by Specker's theorem. (Ref. Prop. 1 of [5] or

Lem. 94.1 of [7])
Therefore, Φ satisfies the conditions (1) and (2) of § 1. Hence, Lem. 1 and Lem. 2 hold for this Φ. Now, let $M=\left\{b_{1} \cdots b_{n}\right\}$ and $b_{0}=\mathbf{1}-\bigvee M$. Let $h_{i}: \hat{A} / F^{b_{i} \rightarrow G}$ be defined by: $h_{i}\left([x]_{i}\right)=h\left(x^{b_{i}}\right)$, where $[x]_{i}$ is the equivalence class containing x with respect to $F^{b_{i}}$, for each $1 \leqq i \leqq n$. Since $\llbracket x=0 \rrbracket \in F^{b_{i}}$ implies $h\left(x^{b_{i}}\right)=0$ for $x \in \hat{A}^{-[x=0]}, h_{i}$ is well-defined for $1 \leqq i \leqq n$. For $x \in \hat{A}, h(x)=h\left(\sum_{i=0}^{m} x^{b_{i}}\right)=$ $\sum_{i=0}^{m} h\left(x^{b_{i}}\right)=\sum_{i=1}^{m} h\left(x^{b_{i}}\right)=\sum_{i=1}^{m} h_{i}\left([x]_{i}\right)$. The linear independence of $\{\operatorname{Hom}(\hat{A} / F, G)$; $F \in \mathscr{I}\}$ is clear. Now, the proof is completed.

In view of the paragraph preceding Th. 1, Th. 1 includes Th. 2 of [5] and Th. 94.4 of [7]. We express these as corollaries.

Corollary 1. Let A be a group and G a slender group. Then, $\operatorname{Hom}\left(A^{(B)}, G\right)$ $\cong \underset{F \in \mathscr{F}}{\oplus_{\mathscr{F}}} \operatorname{Hom}\left(A^{(B)} / F, G\right)$.

Corollary 2. Let A_{i} be a group for each $i \in I$ and G a slender group. Then, $\operatorname{Hom}\left(\prod_{i \in I} A_{i}, G\right) \cong \underset{F \in \mathcal{F}}{\oplus} \operatorname{Hom}\left(\prod_{i \in I} A_{i} / F, G\right)$.

If the cardinality of A is less than the least measurable cardinal M_{c} or \boldsymbol{B} satisfies $M_{c}-c . c ., A^{(B)} / F \cong A$ holds, so Cor. 1 is an extended form of Th. 2 of [5]. If the cardinality of I is less than M_{c}, then every $F \in \mathscr{F}$ is principal. Therefore, $\operatorname{Hom}\left(\prod_{i \in I} A_{i}, G\right) \cong \bigoplus_{i \in I} \operatorname{Hom}\left(A_{i}, G\right)$, which is a famous theorem. If the cardinalities of the A_{i} are bounded below M_{c}, then $\prod_{i \in I} A_{i} / F \cong A_{i}$ for some i, which was used in the proof of Cor. 2 of [5].

By Cor. 2, we can calculate a dual group of $\prod_{\lambda_{1}} \oplus_{\lambda_{2}} \cdots \prod_{\lambda_{2 n-1}} \boldsymbol{Z}$. Now, we shall do it in a simple case. Let $j_{F}: V \rightarrow M_{F}$ be the elementary embedding, where F is a countably complete maximal filter on $\boldsymbol{P}(\lambda)$ and M_{F} is the transitive model which is isomorphic to V^{λ} / F. (Ref. [10]) Let $\boldsymbol{B}=\boldsymbol{P}\left(\lambda_{1}\right)$, then

$$
\begin{aligned}
\operatorname{Hom}\left(\prod_{\lambda_{1}} \underset{\lambda_{2}}{\oplus} \boldsymbol{Z}, \boldsymbol{Z}\right) & \cong \bigoplus_{F \in \mathscr{F}} \operatorname{Hom}\left(\prod_{\lambda_{1}}\left(\underset{\lambda_{2}}{\oplus} \boldsymbol{Z}\right) / F, \boldsymbol{Z}\right) \\
& \cong \bigoplus_{F \in \mathcal{F}} \operatorname{Hom}\left(\bigoplus_{j_{F}\left(\lambda_{2}\right)} \boldsymbol{Z}, \boldsymbol{Z}\right) \\
& \cong \bigoplus_{F \in \mathscr{F}} \prod_{j_{F}\left(\lambda_{2}\right)} \boldsymbol{Z} .
\end{aligned}
$$

In the calculation, we have used the absoluteness of direct sums. Unfortunately, direct products are not absolute among transitive models. So, for the calculation of $\operatorname{Hom}\left(\prod_{\lambda_{1}} \underset{\lambda_{2}}{\oplus} \prod_{\lambda_{3}} \boldsymbol{Z}, \boldsymbol{Z}\right)$, we must prepare a proposition which is obtained by modifying Cor. 2. That can be done, if we notice the fact that only the count-
ably completeness of \boldsymbol{B}, not the full completeness, has been used in the proof of Th. 1 .

In this paper, we deal with the case that \boldsymbol{B} is a complete Boolean algebra. Therefore, unless \boldsymbol{B} is very large, every element of \mathscr{F} is principal. Concerning a Boolean power, a countably complete Boolean algebra can give us interesting groups, for there can be a non-principal c.c.max-filter on a non-complete but countably complete and small Boolean algebra.
3. A homomorphism into an infinite sum

In this section, we shall extend some results of [4]. We do not prove the next lemma, because the proof is in [3] and [4], and the essential idea of it will be developed in the proof of Lem. 5. For $X \subseteq I$, we identify $\prod_{i \in X} A_{i}$ with the subgroup of $\prod_{i \in I} A_{i}$ such that $x \in \prod_{i \in X} A_{i}$ iff $x \in \prod_{i \in I} A_{i}$ and $x(i)=0$ for each $i \notin X$. Similarly, we do $\underset{i \in X}{ } \oplus_{i}$ with the subgroup of $\underset{i \in I}{ } A_{i}$.

Lemma 3. (Chase [3]) Let $h: \prod_{i \in N} A_{i} \rightarrow \bigoplus_{j \in J} G_{j}(=G)$ be a homomorphism. Then, there exist an integer $n>0$ and finite subsets $F \subseteq N$ and $J^{\prime} \cong J$ such that

$$
h^{\prime \prime} n \prod_{i \in N-F} A_{i} \subseteq \bigoplus_{j \in J^{\prime}} G_{j}+\bigcap_{n \in N} n G
$$

Theorem 2. Let A be a group in $V^{(B)}$ and $h: \hat{A} \rightarrow \underset{j \in J}{\oplus} G_{j}(=G)$ a homomorphism. Then, there exist $F_{1}, \cdots, F_{m} \in \mathcal{F}$, an integer $n^{*}>0$ and a finite subset J^{*} of J that satisfy the following condition: Let K be the subgroup of \hat{A} such that $x \in K$ iff $\llbracket x=0 \rrbracket \in F_{i}$ for each $1 \leqq i \leqq m$, then $h^{\prime \prime} n^{*} K \subseteq \bigoplus_{j \in J *} G_{j}+\bigcap_{n \in N} n G$. ${ }^{(*)}$

Let $\Phi(b)$ be the property " There exist an integer $n>0$ and a finite subset J^{\prime} of J such that $h^{\prime \prime} n \hat{A}^{b} \subseteq \subseteq_{j \in J^{\prime}} G_{j}+\underset{n \in N}{\bigcap} n G . "$

Lemma 4. This Φ satisfies the conditions (1) and (2) in $\S 1$.
Proof. Let $b=\bigvee_{n \in N} b_{n}$, for a pairwise disjoint family $\left\{b_{n} ; n \in N\right\}$. Then, $\hat{A}^{b} \cong \prod_{n \in N} \hat{A}^{b_{n}} . \quad b \leqq c$ and $\Phi(c)$ imply $\Phi(b)$. Hence, Φ satisfies the condition (1), by virtue of Lem. 3. Φ satisfies the condition (2) clearly.

Lemma 5. There exist an integer $n^{*}>0$ and a finite subset J^{*} of J such that, for any b which satisfies $\Phi(b), h^{\prime \prime} n^{*} \widehat{A}^{b} \subseteq \bigoplus_{j \in J *} G_{j}+\bigcap_{n \in N} n G$.
(*) Here we admit $m=0$ and in such a case $K=\widehat{A}$.

Proof. Suppose the negation of the conclusion. Let $\pi_{j}: \underset{j \in J}{ } G_{j} \rightarrow G_{j}$ be the projection for $j \in J$. We construct $b_{k} \in \boldsymbol{B}, a_{k} \in \hat{A}, n_{k} \in N, j_{k} \in J$ and a finite subset J_{k} of J satisfying the following conditions:
(1) $\left\langle b_{k} ; k \in N\right\rangle$ are pairwise disjoint and $\Phi\left(b_{k}\right)$ for $k \in N$;
(2) $a_{k} \in n_{k-1}!\hat{A}^{b_{k}}$ and $\pi_{j_{k}} h\left(a_{k}\right) \notin n_{k}!G_{j_{k}}$ and $\pi_{j_{i}} h\left(a_{k}\right)=0$ for each $i<k$;
(3) $h^{\prime \prime} n_{k-1}!\hat{A}^{b} \subseteq \bigoplus_{j \in J_{k-1}}^{\bigoplus_{k}} G_{j}+\bigcap_{n \in N} n G$, where $b=\bigvee_{i=1}^{k-1} b_{i}$;
(4) $j_{k} \in J_{k}$ and $j_{k} \notin J_{i}$ for $i<k$;
(5) $\left\langle n_{k} ; k \in N\right\rangle$ and $\left\langle J_{k} ; k \in N\right\rangle$ are increasing.

Suppose that we have already defined $b_{i}, a_{i}, n_{i}, j_{i}$ and J_{i} for $i \leqq k$ satisfying the above conditions. By the hypothesis, there exists b_{k+1} such that $b_{k+1} \wedge \bigvee_{i=1}^{k} b_{i}=\mathbf{0}, \Phi\left(b_{k+1}\right)$ and $h^{\prime \prime} n_{k}!\hat{A}^{b_{k+1}} \subseteq \bigoplus_{j \in J_{k}} G_{j}+\bigcap_{n \in N} n G$. So, there exists a_{k+1} $\in n_{k}!\hat{A}^{b_{k+1}}$ such that $h\left(a_{k+1}\right) \notin \bigoplus_{j \in J_{k}} G_{j}+\bigcap_{n \in N} n G$. Hence, there are $j_{k+1} \notin J_{k}$ and $n>n_{k}$ such that $\pi_{j_{k+1}} h\left(a_{k+1}\right) \notin n!G_{j_{k+1}}$. Let $J^{\prime}=J_{k} \cup\left\{j ; \pi_{j} h\left(a_{k+1}\right) \neq 0\right\}$. By the property of b_{k+1}, there exist n_{k+1} and a finite subset J_{k+1} such that $n<n_{k+1}$ and $J^{\prime} \subseteq J_{k+1}$ and $h^{\prime \prime} n_{k+1}!\hat{A}^{b_{k+1}} \subseteq \bigoplus_{j \in J_{k+1}} G_{j}+\bigcap_{n \in N} n G . \sum_{k \in N} a_{k}$ exists in \hat{A} and so let it be a. Then, $a-\sum_{i=1}^{k} a_{i} \in n_{k}!A$ and $\pi_{j_{k}} h\left(a_{k}\right) \notin n_{k}!G_{j_{k}}$ and $\pi_{j_{k}} h\left(a_{i}\right)=0$ for each $i<k$. Hence, $\pi_{j_{k}} h(a)=\pi_{j_{k}} h\left(a-\sum_{i=1}^{k} a_{i}\right)+\pi_{j_{k}} h\left(a_{k}\right) \neq 0$ for each k. Since $k \neq k^{\prime}$ implies $j_{k} \neq j_{k^{\prime}}$, it is a contradiction.

Proof of Th. 2. By Lem. 1, Lem. 2 and Lem. 4, M is finite and so let $M=\left\{b_{1}, \cdots, b_{m}\right\}$ and $b_{0}=1-\bigvee M$. Let $F_{i}=F^{b_{i}}$ for $1 \leqq i \leqq m$. Now, the theorem is clear by Lem. 5 and the fact that $x \in K$ implies $x \in \hat{A}^{b}$ for some b which satisfies $\Phi(b)$.

For a Group A, \bar{A} denotes the corresponding Hausdorff group $A / \bigcap_{n \in N} n A$.
Lemma 6. For a group A in $V^{(B)}, \overline{\hat{A}} \cong \hat{\bar{A}}$.
Proof. By the absoluteness of $N, \bigcap_{n \in N} n \hat{A} \cong \bigcap_{n \in N} \widehat{n A}$. Hence, $\bar{A} \cong \hat{A}{ }_{n \in N} n \hat{A} \cong$ $\widehat{A} / \bigcap_{n \in N} \widehat{n A} \cong \hat{\bar{A}}$.

Let F be a maximal filter on \boldsymbol{B} and $K_{F}^{\widehat{A}}$ the subgroup of \hat{A} such that $x \in K_{F}^{\hat{A}}$ iff $[x=0] \in F$.

Lemma 7. $n x \in K_{F}^{\hat{A}}$ implies $n x \in n K_{F}^{\hat{\hat{A}}}$, where n is an integer.
Proof. Let $b=[n x=0]$. Let x^{\prime} be the element of \hat{A} such that $-b \leqq\left[x^{\prime}=x\right]$
and $b \leqq \llbracket x^{\prime}=0 \rrbracket$. Then, $x^{\prime} \in K_{F}^{\hat{\hat{A}}}$ and $n x^{\prime}=n x$.
LEmma 8. Let $\pi: \hat{A} \rightarrow \hat{\bar{A}}(\cong \overline{\hat{A}})$ be the canonical homomorphism. Then, $\pi^{\prime \prime} K_{F}^{\hat{A}}$ $=K_{F}^{\hat{\hat{A}}}$.

Proof. $\pi^{\prime \prime} K_{F}^{\hat{\hat{A}} \subseteq} \subseteq K_{F}^{\hat{A}}$ is obvious. Let $x \in K_{F}^{\hat{\hat{A}}}$. Then, there exists y in \hat{A} such that $\pi(y)=x$. So, there exists b such that $b \in F$ and $b \leqq \llbracket x=0 \rrbracket$. Let y^{\prime} be the element of \hat{A} such that $-b \leqq \llbracket y^{\prime}=y \rrbracket$ and $b \leqq \llbracket y^{\prime}=0 \rrbracket$. Then, $\pi\left(y^{\prime}\right)=\pi(y)$ and $y^{\prime} \in K_{\hat{F}}^{\hat{A}}$.

Lemma 9. Let A be a torsion group in $V^{(\boldsymbol{B})}$, then \hat{A} / F is also a torsion group for $F \in \mathcal{F}$.

Proof. Let $a \in \hat{A}$, then $\underset{n \in N}{\bigvee} \llbracket n a=0 \rrbracket=\llbracket \exists n \in N(n a=0) \rrbracket=1$. By the countable completeness of $F, \llbracket n a=0 \rrbracket \in F$ for some $n \in N$. So, \hat{A} / F is a torsion group.

Theorem 3. Let A be a torsion group in $V^{(\boldsymbol{B})}$. Then, for each direct sum decomposition $\underset{j \in J}{\oplus} G_{j}$ of \hat{A}, \bar{G}_{j} is a torsion group for almost all $j \in J$.

Proof. Applying Th. 2 directly, we have $F_{1}, \cdots, F_{m} \in \mathscr{F}$, an integer n and a finite subset J^{\prime} of J such that $n K \subseteq \bigoplus_{j \in J^{\prime}} G_{j}+\bigcap_{n \in N} n G$, where K and G are the same as Th. 2. Let $\pi: G \rightarrow \bar{G}$ be the canonical homomorphism. Then, $\pi^{\prime \prime} G_{j} \cong \bar{G}_{j}$ for each $j \in J$ and $n \pi \prime \prime K \subseteq \bigoplus_{j \in J} \pi^{\prime \prime} G_{j}$.

Let $\psi: \bar{G}(=\overline{\bar{A}}) \rightarrow \bar{G} / \pi^{\prime \prime} K$ be the canonical homomorphism. Then, the restriction ψ to $n_{j \in J-J \hat{A}} \pi^{\prime \prime} G_{j}$ is a monomorphism, by Lem. 6, 7 and 8. On the other hand, $\bar{G} / \pi^{\prime \prime} K \cong \widehat{\bar{A}^{b_{1}}} / F_{1} \oplus \cdots \oplus \hat{\bar{A}}^{b_{m}} / F_{m} \cong \hat{\bar{A}} / F_{1} \oplus \cdots \oplus \hat{\bar{A}} / F_{m}$, by virtue of Lem. 6,7 and 8 and the fact: $K=\hat{A}^{b_{0}} \oplus K_{\hat{F}_{1}}^{b_{1}} \oplus \cdots \oplus K_{F_{m}}^{\hat{a}_{m}^{b}}$. Therefore, it is a torsion group by Lem. 9 and hence ${ }_{j \in J-J} \bigoplus_{j}$ is a torsion group.

Let A_{i} be a torsion group for each $i \in I$. In view of the first paragraph of $\S 2$, we can take a torsion group A in $V^{(P(I))}$ such that $\hat{A} \cong \prod_{i \in I} A_{i}$. So, Th. 3 is an improvement of Lem. 8 of [4], even in the case of a direct product, i.e. dropping the cardinality hypothesis for I. Hence, we have Th. 9 of [4] without the cardinality hypothesis for I.

Acknowledgement

The author would like to thank Prof. K. Honda for his kind teaching in the preparation of this paper.

References

[1] Bell, J.L., Boolean valued models and independence proofs in Set Theory, Clarendon Press, Oxford, (1977).
[2] Bell, J. L. and Slomson, A.B., Models and Ultraproducts, North-Holland, Amsterdam, (1969).
[3] Chase, S. U., On direct sums and products of modules, Pacific Journal of Mathematics, 12 (1962), 847-854.
[4] Dugas, M. and Zimmermann-Huisgen, B., Iterated direct sums and products of modules, in L.N. in Math. 874 Springer, (1981), 179-193.
[5] Eda, K., On a Boolean power of a torsion free abelian group, to appear in J. Algebra.
[6] Fuchs, L., Infinite abelian groups, Vol. I, Academic Press, (1970).
[7] Fuchs, L., Infinite abelian groups, Vol. II, Academic Press, (1973).
[8] Mansfield, R., The Theory of Boolean Ultrapowers, Annals of Mathematical Logic, 2 (1971), 297-323.
[9] Solovay, R.M. and Tennembaum, S., Iterated Cohen extensions and Souslin's Problem, Annals of Mathematics, 94 (1971), 201-245.
[10] Jech, T., Set Theory, Academic Press, (1978).
Institute of Mathematics
University of Tsukuba
Sakuramura, Ibaraki,
305 Japan

