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A BOOLEAN POWER AND A DIRECT PRODUCT
OF ABELIAN GROUPS

By

Katsuya EDA

A group means an abelian group in this paper. A Boolean power and a

direct product of groups consist of all global sections of groups in some Boolean

extensions $V^{(B)}$ . We shall study about a homomorphism $h$ whose domain $s$ a

group consisting of all the global sections of a group in $V^{(B)}$ . We investigate

two cases: one of them is that the range of $h$ is a slender group, which is

related to a torsion-free group, and the other is that the range of $h$ is an

infinite direct sum, which is related to a torsion group. We extend a few

theorems which have been obtained in [4] and [5]. As in [5], we not only

extend theorems, but improve them and give a good standing point of view.

We refer the reader to [91 or [11, for a Boolean extension $V^{(B)}$ . We shall

use notations and terminologies in [5], [6] and [7]. Throughout this paper, $B$

is a complete Boolean algebra and $\mathcal{F}$ is the set of all countably complete max-

imal filters on $B$. We do not mention these any more. $\check{x}$ is the element of

$V^{(B)}$ such that dom $\check{x}=\{\check{y} ; y\in x\}$ and range $x\subseteqq\{1\}$ . As noted in [5], $\hat{x}$
’ in

[1] means our $\check{x}$ . $\hat{x}=$ { $y;\ovalbox{\tt\small REJECT} y\in x\ovalbox{\tt\small REJECT}=1$ and $y\in V^{(B)}$ } for $x\in V^{(B)},$ $where_{\wedge}V^{(B)}$

is separated. For $b\in B$ and a group $A$ in $V^{(B)},$ $i.e.$ [A is a $groupJ=1,$ $A^{b}$ is

the subgroup of $\hat{A}$ such that $x\in\hat{A}^{b}$ iff $x\in\hat{A}$ and $-b\leqq\ovalbox{\tt\small REJECT} x=OJ$ , where $0$ is the

unit of $A$ . By this notation, $\hat{A}=\hat{A}^{1}$ . For $x\in\hat{A},$ $x^{b}$ is the element of $\hat{A}^{b}$ such

that $b\leqq\ovalbox{\tt\small REJECT} x=x^{b}\ovalbox{\tt\small REJECT}$ .

1. A general setting about a complete Boolean algebra

Let $\Phi(b)$ be a property of $b\in B$ which satisfies the following conditions:

(1) if $\{b_{n} ; n\in N\}$ is a pairwise disjoint subset of $B$, there exists $k$ such that

$\Phi(b_{n})n\geq k$ and $\Phi(b_{n})$ hold for each $n\geqq k$ ;

(2) if $b\wedge c=0,$ $\Phi(b)$ and $\Phi(c)$ hold, then $\Phi(bc)$ holds.

Let $S$ be the subset of $B$ such that $b\in S$ iff $\Phi(b)$ does not hold and $c\wedge c^{\prime}$

$=0$ implies $\Phi(c)$ or $\Phi(c^{\prime})$ for any $c,$
$c^{\prime}\leqq b$ .
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LEMMA 1. Let $F^{b}$ be the subset of $B$ defined by: $c\in F^{b}$ iff $\Phi(b\wedge c)$ does not
hold. Then, $F^{b}\in \mathcal{F}$ for every $b\in S$ .

PROOF. We prove only the countable completeness. Let $b_{n}\in F^{b}$ for $n\in N$.
Let $c_{1}=0$ and $c_{n+1}=_{\hat{k=}1}^{n}b_{k}-b_{n+1}$ . Then, $b_{1}=c_{n}\vee\bigwedge_{nn\in N\in N}b_{n}$ . By the condition (1)

and (2) of $\Phi$ and the property of $S,$ $\Phi(b\wedge c_{n})n\in N$ and so $\Phi(b\wedge\bigwedge_{n\in N}b_{n})$ does not

hold.

LEMMA 2. Let $M$ be a maximal pairwise disjoint subfamily of S. Then, $M$

is finite and $\Phi(c)$ holds for any $c$ such that $c\wedge M=0$ .

PROOF. By the condition of $\Phi,$ $M$ is finite. Suppose that there exists $c$

such that $\Phi(c)$ does not hold and $c\wedge M=0$ . By the maximality of $M$, there
is no element of $S$ below $c$ . So, there are $b_{0},$ $c_{0}\leqq c$ such that $b_{0}\wedge c_{0}=0$ and
$\Phi(b_{0})$ nor $\Phi(c_{0})$ does not hold. Then, take $b_{1},$ $c_{1}\leqq c_{0}$ with the same property of
$b_{0}$ and $c_{0}$ . In such a way, we obtain a pairwise disjoint family $\{b_{n} ; n\in N\}$

such that $\Phi(b_{n})$ does not hold for any $n\in N$, which is a contradiction.
2. $Hom(\hat{A}, G)$

Let $F$ be a maximal filter on $B$. For a group $A$ in $V^{(B)},\hat{A}/F$ is the
quotient of $\hat{A}$ by the equivalence relation $\sim F$ such that $x\sim Fy$ iff $[x=y\ovalbox{\tt\small REJECT}\in F$.
In the case $A=\check{X},\hat{A}$ is known as a Boolean power $X^{(B)}$ and $\hat{A}/F$ is a Boolean
ultrapower $X^{(B)}/F$. (Ref. [8]) In the case that $B=P(I)$ and $\hat{A}=\prod_{i\in I}A_{i}$ , where
$A$ is defined by a natural way, $\hat{A}/F$ is known as an ultraproduct $\prod_{i\in I}A_{\dot{i}}/F$. (Ref.

[2]) However, the following fact is enough to read the main part of this paper.
Let $K$ be the subgroup of $\hat{A}$ defined by: $x\in K\leftrightarrow[x=0J\in F$. Then, $\hat{A}/F\cong\hat{A}/K$,
where the right part is the quotient group.

THEOREM 1. Let $A$ be a group in $V^{(B)}$ and $G$ a slender group. Then,
$Hom(\hat{A}, G)\cong\bigoplus_{F\in \mathcal{F}}Hom(\hat{A}/F, G)$ holds.

PROOF. Let $h$ be a homomorphism from $\hat{A}$ to $G$ and $\Phi(b)$ the property
$h^{\prime\prime}\hat{A}^{b}=0’$ . Let $\{b_{n} ; n\in N\}$ be a pairwise disjoint subset of $B$ and $x_{n}\in\hat{A}^{b_{n}}$ for

each $n\in N$. Think of the homomorphism $g:Z^{N}\rightarrow\hat{A}$ such that $g(\sum_{n\in N}a_{n}e_{n})=$

$\sum_{n\in N}a_{n}x_{n}$ , where $x=\sum_{n\in N}a_{n}x_{n}$ is the element of $\hat{A}^{b}$ such that $b=_{n\in N}b_{n}$ and $ b_{n}\leqq$

[ $x=a_{n}x_{n}\ovalbox{\tt\small REJECT}$ for each $n\in N$, and apply the slenderness of $G$ to $h\cdot g$ , then $h\cdot g(e_{n})$

$=0$ and so $h(x_{n})=0$ for almost all $n$ . Hence, there exists $k$ such that $\Phi(b_{n})$

for any $n\geqq k$ and $h(\sum_{n\geq k}x_{n})=0$ , by Specker’s theorem. (Ref. Prop. 1 of [5] or
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Lem. 94.1 of [7])

Therefore, $\Phi$ satisfies the conditions (1) and (2) of \S 1. Hence, Lem. 1 and

Lem. 2 hold for this $\Phi$ . Now, let $M=\{b_{1}\cdots b_{n}\}$ and $b_{0}=1-M$. Let $h_{i}$ : $\hat{A}/F^{b_{i}}\rightarrow G$

be defined by: $h_{i}([x]_{i})=h(x^{b_{i}})$ , where $[x]_{i}$ is the equivalence class contain-
ing $x$ with respect to $F^{b_{i}}$ , for each $1\leqq i\leqq n$ . Since $\ovalbox{\tt\small REJECT} x=0\ovalbox{\tt\small REJECT}\in F^{b_{i}}$ implies $h(x^{b_{i}})=0$

for $x\in\hat{A}^{-[x=0]}$ , $h_{i}$ is well-defined for $1\leqq i\leqq n$ . For $x\in\hat{A}$ , $h(x)=h(\sum_{i=0}^{m}x^{b_{i}})=$

$\sum_{i=0}^{m}h(x^{b_{i}})=\sum_{i=1}^{m}h(x^{b_{i}})=\sum_{i=1}^{m}h_{i}([x]_{i})$ . The linear independence of {$Hom(\hat{A}/F, G)$ ;

$F\in \mathcal{F}\}$ is clear. Now, the proof is completed.

In view of the paragraph preceding Th. 1, Th. 1 includes Th. 2 of [5] and

Th. 94.4 of [7]. We express these as corollaries.

COROLLARY 1. Let $A$ be a group and $G$ a slender group. Then, $Hom(A^{(B)}, G)$

$\cong\bigoplus_{F\in \mathcal{F}}Hom(A^{(B)}/F, G)$ .

COROLLARY 2. Let $A_{i}$ be a group for each $i\in I$ and $G$ a slender group.
Then, $Hom(\prod_{i\in I}A_{i}, G)\cong\bigoplus_{F\in \mathcal{F}}Hom(\prod_{i\in I}A_{i}/F, G)$ .

If the cardinality of $A$ is less than the least measurable cardinal $M_{c}$ or $B$

satisfies $M_{c}-c$ . $c.,$ $A^{(B)}/F\cong A$ holds, so Cor. 1 is an extended form of Th. 2 of
[5]. If the cardinality of $I$ is less than $M_{c}$ , then every $F\in \mathcal{F}$ is principal.

Therefore, $Hom(\prod_{i\in I}A_{i}, G)\cong\bigoplus_{i\in I}Hom(A_{i}, G)$ , which is a famous theorem. If the

cardinalities of the $A_{i}$ are bounded below $M_{c}$ , then $\prod_{i\in I}A_{i}/F\cong A_{i}$ for some $i$ ,

which was used in the proof of Cor. 2 of [5].

By Cor. 2, we can calculate a dual group of $\prod_{\lambda_{1}}\bigoplus_{\lambda_{2}}\cdots\prod_{\lambda_{2n-1}}Z$. Now, we shall

do it in a simple case. Let $j_{F}$ : $V\rightarrow M_{F}$ be the elementary embedding, where $F$

is a countably complete maximal filter on $P(\lambda)$ and $M_{F}$ is the transitive model

which is isomorphic to $V^{\lambda}/F$. (Ref. [10]) Let $B=P(\lambda_{1})$ , then

$Hom(\prod_{\lambda_{1}}\bigoplus_{\lambda_{2}}Z, Z)\cong\bigoplus_{F\in \mathcal{F}}Hom(\prod_{\lambda_{1}}(\bigoplus_{\lambda_{2}}Z)/F, Z)$

$\cong\bigoplus_{F\in \mathcal{F}}Hom(\bigoplus_{j_{F}(\lambda_{2})}Z, Z)$

$\cong\bigoplus_{F\in \mathcal{F}}\prod_{j_{F}(\lambda_{2})}Z$ .

In the calculation, we have used the absoluteness of direct sums. Unfortunately,

direct products are not absolute among transitive models. So, for the calculation
of $Hom(\prod_{\lambda_{1}}\bigoplus_{\lambda_{2}}\prod_{\lambda_{3}}Z, Z)$ , we must prepare a proposition which is obtained by

modifying Cor. 2. That can be done, if we notice the fact that only the count-
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ably completeness of $B$, not the full completeness, has been used in the proof

of Th. 1.
In this paper, we deal with the case that $B$ is a complete Boolean algebra.

Therefore, unless $B$ is very large, every element of $\mathcal{F}$ is principal. Concerning

a Boolean power, a countably complete Boolean algebra can give us interesting
groups, for there can be a non-principal $c.c$ . max-filter on a non-complete but
countably complete and small Boolean algebra.

3. A homomorphism into an infinite sum
In this section, we shall extend some results of [4]. We do not prove the

next lemma, because the proof is in [3] and [4], and the essential idea of it
will be developed in the proof of Lem. 5. For $X\subseteqq I$ , we identify $\prod_{i\in X}A_{i}$ with the

subgroup of $\prod_{i\in I}A_{i}$ such that $x\in\prod_{i\in X}A_{i}$ iff $x\in\prod_{i\in I}A_{i}$ and $x(i)=0$ for each $i\not\in X$.
Similarly, we do $\bigoplus_{i\in X}A_{i}$ with the subgroup of $\bigoplus_{i\in I}A_{i}$ .

LEMMA 3. (Chase [3]) Let $h:\prod_{i\in N}A_{i}\rightarrow\bigoplus_{j\in J}G_{j}(=G)$ be a homomorphism. Then,

there exist an integer $n>0$ and finite subsets $F\subseteqq N$ and $J^{\prime}\subseteqq J$ such that

$h^{\prime\prime}n\prod_{i\in N- F}A_{i}\subseteqq\bigoplus_{j\in J^{\prime}}G_{j}+\bigcap_{n\in N}nG$ .

THEOREM 2. Let $A$ be a group in $V^{(B)}$ and $h:\hat{A}\rightarrow\bigoplus_{j\in J}G_{j}(=G)$ a homomor-

phism. Then, there exist $F_{1},$ $\cdots$ , $F_{m}\in \mathcal{F}$ , an integer $n^{*}>0$ and a finite subset $I^{*}$

of $J$ that satisfy the following condition: Let $K$ be the subgroup of $\hat{A}$ such that
$x\in K$ iff [ $x=0\ovalbox{\tt\small REJECT}\in F_{i}$ for each $1\leqq i\leqq m$ , then $h^{\prime\prime}n^{*}K\subseteqq\bigoplus_{j\in J*}G_{j}+\bigcap_{n\in N}nG^{(*)}$

Let $\Phi(b)$ be the property “ There exist an integer $n>0$ and a finite subset
$J^{\prime}$ of $J$ such that $h^{\prime\prime}n\hat{A}^{b}\subseteqq\bigoplus_{j\in J},$ $G_{j}+\bigcap_{n\in N}nG$ .

LEMMA 4. This $\Phi$ satisfies the conditions (1) and (2) in \S 1.

PROOF. Let $b=b_{n}n\in N$ for a pairwise disjoint family $\{b_{n} ; n\in N\}$ . Then,

$\hat{A}^{b}\cong\prod_{n\in N}\hat{A}^{b_{n}}$ . $b\leqq c$ and $\Phi(c)$ imply $\Phi(b)$ . Hence, $\Phi$ satisfies the condition (1), by

virtue of Lem. 3. $\Phi$ satisfies the condition (2) clearly.

LEMMA 5. There $e$ rist an integer $n^{*}>0$ and a finite subset $J^{*}$ of $J$ such
that, for any $b$ which satisfies $\Phi(b),$

$h^{\prime}n^{*}\hat{A}^{b}\subseteqq\bigoplus_{j\in J*}G_{j}+\bigcap_{n\in N}nG$ .

(*) Here we admit $m=0$ and in such a case $K=\hat{A}$.
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PROOF. Suppose the negation of the conclusion. Let $\pi_{j}$ : $\bigoplus_{j\in J}G_{j}\rightarrow G_{j}$ be the

projection for $j\in J$. We construct $b_{k}\in B,$ $a_{k}\in\hat{A},$ $n_{k}\in N,$ $j_{k}\in J$ and a finite

subset $J_{k}$ of $J$ satisfying the following conditions:

(1) $\langle b_{k} ; k\in N\rangle$ are pairwise disjoint and $\Phi(b_{k})$ for $k\in N$ ;

(2) $a_{k}\in n_{k-1}$ ! $\hat{A}^{b_{k}}$ and $\pi_{J_{k}}h(a_{k})\not\in n_{k}$ ! $G_{j_{k}}$ and $\pi_{j_{i}}h(a_{k})=0$ for each $i<k$ ;

(3) $h^{\prime\prime}n_{k-1}$ ! $\hat{A}^{b}\subseteqq$
$\oplus$

$G_{j}+\bigcap_{n\in N}nG$ , where $b=i^{\overline{\vee}b_{i};}k_{=1}1$

$j\in J_{k-1}$

(4) $j_{k}\in J_{k}$ and $j_{k}\not\in J_{i}$ for $i<k$ ;
(5) $\langle n_{k} ; k\in N\rangle$ and $\langle J_{k} ; k\in N\rangle$ are increasing.

Suppose that we have already defined $b_{i},$ $a_{i},$ $n_{i},$ $j_{i}$ and $J_{i}$ for $i\leqq k$ satisfy-

ing the above conditions. By the hypothesis, there exists $b_{k+1}$ such that

$b_{k+1}\wedge i\Rightarrow 1^{k}b_{i}=0,$ $\Phi(b_{k+1})$ and $h^{\prime\prime}n_{k}$ ! $\hat{A}^{b_{k+1}}\not\leqq\bigoplus_{j\in J_{k}}G_{j}+\bigcap_{n\in N}nG$ . So, there exists $a_{k+1}$

$\in n_{k}$ ! $\hat{A}^{b_{k+1}}$ such that $h(a_{k+1})\not\in\bigoplus_{j\in J_{k}}G_{j}+\bigcap_{n\in N}nG$ . Hence, there are $j_{k+1}\not\in J_{k}$ and

$n>n_{k}$ such that $\pi_{j_{k+1}}h(a_{k+1})\not\in n!G_{j_{k+1}}$ . Let $J^{\prime}=J_{k}\cup\{];\pi_{j}h(a_{k+1})\neq 0\}$ . By the
property of $b_{k+1}$ , there exist $n_{k+1}$ and a finite subset $J_{k+1}$ such that $n<n_{k+1}$ and
$J^{\prime}\subseteqq J_{k+1}$ and $h^{\prime\prime}n_{k+1}$ ! $\hat{A}^{b_{k+1}}\subseteqq\bigoplus_{j\in J_{k+1}}G_{j}+\bigcap_{n\in N}nG.\sum_{k\in N}a_{k}$ exists in $\hat{A}$ and so let it

be $a$ . Then, $a-\sum_{i=1}^{k}a_{i}\in n_{k}$ ! $A$ and $\pi_{j_{k}}h(a_{k})\not\in n_{k}$ ! $G_{j_{k}}$ and $\pi_{j_{k}}h(a_{i})=0$ for each

$i<k$ . Hence, $\pi_{J_{k}}h(a)=\pi_{j_{k}}h(a-\sum_{t=1}^{k}a_{i})+\pi_{j_{k}}h(a_{k})\neq 0$ for each $k$ . Since $k\neq k^{\prime}$

implies $j_{k}\neq j_{k},$ , it is a contradiction.

PROOF OF TH. 2. By Lem. 1, Lem. 2 and Lem. 4, $M$ is finite and so let
$M=\{b_{1}, \cdots, b_{m}\}$ and $b_{0}=1-M$. Let $F_{i}=F^{b_{i}}$ for $1\leqq i\leqq m$ . Now, the theorem

is clear by Lem. 5 and the fact that $x\in K$ implies $x\in\hat{A}^{b}$ for some $b$ which

satisfies $\Phi(b)$ .

For a Group $A,\overline{A}$ denotes the corresponding Hausdorff group $A/\bigcap_{n\in N}nA$ .

LEMMA 6. For a group $A$ in $V^{(B)},\overline{\hat{A}}\cong^{\frac{\wedge}{A}}$ .

PROOF. By the absoluteness of $N,\bigcap_{n\in N}n\hat{A}\cong\bigcap_{n\in N}\hat{n}A$ . Hence, $\overline{\hat{A}}\cong\hat{A}/\bigcap_{n\in N}n\hat{A}\cong$

$\hat{A}/\bigcap_{n\in N}\hat{n}A\cong^{\frac{\wedge}{A}}$ .

Let $F$ be a maximal filter on $B$ and $K_{F}^{\hat{A}}$ the subgroup of $\hat{A}$ such that
$x\in K_{F}^{\hat{A}}$ iff $[x=0]\in F$.

LEMMA 7. $nx\in K_{F}^{\hat{A}}$ implies $nx\in nK_{F}^{\hat{A}}$, where $n$ is an integer.

PROOF. Let $b=[nx=0]$ . Let $x^{\prime}$ be the element of $\hat{A}$ such $that-b\leqq[x^{\prime}=x]$
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and $b\leqq\ovalbox{\tt\small REJECT} x^{\prime}=0\ovalbox{\tt\small REJECT}$ . Then, $x^{\prime}\in K_{F}^{\hat{A}}$ and $nx^{\prime}=nx$ .

LEMMA 8. Let $\pi;\hat{A}\rightarrow A^{\frac{\wedge}{}}(\cong\overline{\hat{A}})$ be the canonical homomorphism. Then, $\pi^{\prime\prime}K_{F}^{\hat{A}}$

$=K_{F}^{\frac{\wedge}{A}}$.

PROOF. $\pi^{\prime\prime}K_{F}^{\hat{A}}\subseteqq K^{\frac{\wedge}{FA}}$ is obvious. Let $x\in K_{F}^{\frac{\wedge}{A}}$. Then, there exists $y$ in $\hat{A}$ such
that $\pi(y)=x$ . So, there exists $b$ such that $b\in F$ and $b\leqq[x=0J$ . Let $y^{\prime}$ be the
element of $\hat{A}$ such that $-b\leqq[y^{\prime}=y\ovalbox{\tt\small REJECT}$ and $b\leqq[y^{\prime}=0J$ . Then, $\pi(y^{\prime})=\pi(y)$ and
$y^{\prime}\in K_{F}^{\hat{A}}$.

LEMMA 9. Let $A$ be a torsion group in $V^{(B)}$ , then $\hat{A}/F$ is also a torsion
group for $F\in \mathcal{F}$ .

PROOF. Let $a\in\hat{A}$ , then $n\in N[na=0\ovalbox{\tt\small REJECT}=[\exists n\in N(na=0)I=1$ . By the countable

completeness of $F,$ [ $na=0\ovalbox{\tt\small REJECT}\in F$ for some $n\in N$. So, $\hat{A}/F$ is a torsion group.

THEOREM 3. Let $A$ be a torsion group in $V^{(B)}$ . Then, for each direct sum
decomposition $\bigoplus_{j\in J}G_{j}$ of $\hat{A},\overline{G}_{j}$ is a torsion group for almost all $j\in J$.

PROOF. Applying Th. 2 directly, we have $F_{1},$ $\cdots$ , $F_{m}\in \mathcal{F}$ , an integer $n$ and
a finite subset $J^{\prime}$ of $J$ such that $nK\subseteqq\bigoplus_{j\in J},$ $G_{j}+\bigcap_{n\in N}nG$ , where $K$ and $G$ are the

same as Th. 2. Let $\pi;G\rightarrow\overline{G}$ be the canonical homomorphism. Then, $\pi^{\prime\prime}G_{j}\cong\overline{G}_{j}$

for each $j\in J$ and $n\pi^{\prime\prime}K\subseteqq\bigoplus_{j\in J}\pi^{\prime\prime}G_{f}$ .
Let $\psi:\overline{G}(=\overline{\hat{A}})\rightarrow\overline{G}/\pi^{\prime\prime}K$ be the canonical homomorphism. Then, the restric-

tion $\psi$ to $n\bigoplus_{j\in J-J^{l}}\pi^{\prime\prime}G_{j}$ is a monomorphism, by Lem. 6, 7 and 8. On the other

hand, $\overline{G}/\pi^{\prime\prime}K\cong^{\frac{\hat}{A}}b_{1}/F_{1}\oplus\cdots\oplus^{\frac{\hat}{A}}b_{m}/F_{m}\cong^{\frac{\wedge}{A}}/F_{1}\oplus\cdots\oplus^{\frac{\hat}{A}}/F_{m}$ , by virtue of Lem. 6, 7
and 8 and the fact: $K=\hat{A}^{b_{0}}\oplus K_{F_{1}}^{\hat{A}^{b}1}\oplus\cdots\oplus K_{F_{m^{m}}}^{\hat{A}^{b}}$ . Therefore, it is a torsion group
by Lem. 9 and $hence\bigoplus_{j\in J-J},\overline{G}_{j}$ is a torsion group.

Let $A_{i}$ be a torsion group for each $i\in I$ . In view of the first paragraph of
\S 2, we can take a torsion group $A$ in $V^{(P(I))}$ such that $\hat{A}\cong\prod_{i\in I}A_{i}$ . So, Th. 3

is an improvement of Lem. 8 of [4], even in the case of a direct product, $i.e$ .
dropping the cardinality hypothesis for $I$ . Hence, we have Th. 9 of [4] without
the cardinality hypothesis for $I$ .
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